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Abstract- The issue of designing an analytical optimal so
lution to the problem of energy management for charge
sustaining hybrid electric vehicles is addressed. In particular, 

it is shown that, by suitably casting the energy management 
problem into a nonlinear optimal regulation problem and using 
an appropriate control Lyapunov function candidate, it can 
be proved that the state-feedback based optimal control law 
(with respect to minimum fuel consumption) produces a charge
sustaining behavior. We provide sufficient conditions for state 
feedback based control law to guarantee asymptotic stability 
and optimality with respect to an infinite horizon performance 

functional. The optimal control law is implemented in a series 
hybrid electric vehicle and the performance of the proposed 
energy management strategy is shown in simulation for a 
specific driving case. 

I. INTRODUCTION 

Hybrid electric vehicles (HEVs) combine two or more 

energy sources for their propulsion. Usually, one or more 

electric machines and an energy storage system are con

nected to a conventional internal combustion engine (ICE) 

[1]. The energy management problem in HEVs consists of 

finding the optimal power split between the ICE and the 

electric machines while minimizing a performance objective. 

The minimization can be performed with respect to several 

objectives like fuel consumption, emissions, battery aging, 

etc., or a combination of the above [2], [3]. A possible 

classification of the energy management strategies proposed 

in the literature over the past decade can be done based on 

the feasibility of implementation of the strategy in a real 

vehicle. In particular, two main categories can be identified. 

The first category involves the use of classical optimal 

control techniques to assure global optimality of the solution. 

Dynamic programming (DP) and Pontryagin's minimum 

principle (PMP) belong to this category. DP assumes a

priori knowledge of the driving cycle and solves the problem 

backwards in time, considering all the possible power split 

choices at each instant. This approach gives the global opti

mal solution and it has been used as a benchmark solution 

[4], [5]. PMP, on the other hand, formulates and minimizes 

a Hamiltonian function (a function of the instantaneous cost 

and the state constraint) at each instant to obtain the extremal 

solution [6], [7]. PMP gives only the necessary conditions 
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(not sufficient) that must be satisfied by the optimal solution 

(known as extremal solutions). In the second category we 

find strategies that can be implemented in the real-vehicle, 

which do not necessarily guarantee optimality. For exam

ple, equivalent consumption minimization strategy (ECMS), 

adaptive energy management strategies and rule based con

trol strategies belong to this category. The basic idea of 

ECMS is to reformulate the global optimization problem 

into a local optimization problem. The method can give very 

good results, but the equivalence factors (tuning parameters) 

must be determined with optimization techniques, and are 

dependent on driving cycles [8], [9]. An initial version of 

adaptive equivalent consumption minimization strategy (A

ECMS) was proposed where the tuning parameters of ECMS 

were calculated by either predicting the driving cycle, [10], 

or using a look up table for the correlation between the 

factors and the driving cycle, [11]. A different version of 

A-ECMS as proposed in [12], [13], [14] adapts the tuning 

parameter using the correlation between equivalence factor 

and state of charge (SOC) of battery. 

It is clear that if the strategies guarantee global optimality 

using classical optimal control techniques, and make use of 

future driving information they cannot be implemented in a 

real vehicle. The second category of strategies which can be 

implemented in a real vehicle, though can give performance 

close to optimal solution (by fine tuning), is clearly sub

optimal. For example, the optimality of ECMS depends on 

the optimal equivalence factor for a given driving cycle [15], 

[12]. Thus, different driving conditions will result in different 

optimal equivalence factors. Because some of strategies in 

the second category involve minimization at each instant, this 

requires significant computational power on board, which 

sometimes is not available. 

Hence the need for optimal energy management strategies 

which can be easily implemented in a real vehicle still 

ensuring optimality is evident. The optimal control problem 

under study is the minimization of a non quadratic cost 

functional subject to nonlinear system dynamics. Inspired by 

the tutorial exposition of a simplified framework for optimal 

nonlinear regulation in feedback control problems involving 

non quadratic cost functionals shown in [16], we propose a 

new framework to cast and solve the energy management 

problem in HEV s in this paper. 

This paper aims at finding an energy management strat

egy that can ensure optimality and stability and be easily 

implemented in a real vehicle. In particular, it is shown 

that, by suitably casting the energy management problem 

into a nonlinear optimal regulation problem and using an 
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appropriate control Lyapunov function candidate, it can be 

proved that the state-feedback based optimal control law 

(with respect to minimum fuel consumption) produces a 

charge-sustaining behavior. This paper proposes and proves 

sufficient conditions on stability and optimality of the state 

feedback control law designed for a series medium duty truck 

hybrid electric vehicle. 

The paper is organized as follows: Section II describes 

the energy management problem in a series HEV, the engine 

fuel consumption rate model and the battery model; Section 

III lists the mathematical preliminaries required to state and 

prove the main results of the paper found in Section IV where 

sufficient conditions for asymptotic stability of the origin and 

optimality of the control law are proved. In Section V the 

proposed control law is implemented and simulation results 

show the effectiveness of the solution proposed. Finally, 

conclusions and future work are discussed in Section VI. 

II. ENERGY MANAGEMENT PROBLEM IN HEVs 

The objective of the energy management strategy in a HEV 

is to find the optimal power split between the primary and 

secondary energy sources that minimizes a given objective 

function over an entire driving cycle. In this paper, we 

consider the problem of minimizing the total mass of fuel, 

mj [g] during a driving mission, or equivalently, minimizing 

the following cost J: 
tf 

J = J rhj(u(t))dt (1) 

to 
where rh j [g/s] is the instantaneous fuel consumption rate, 

u( t) is the control action, and t j - to is the optimization 

horizon. 

The energy management problem, by its very nature, is 

a constrained optimal control problem, where the objective 

function (1) is minimized under a set of both local and global 

constraints on the state and control variables, as outlined in 

the following. 

System Dynamics. The system dynamics are given in terms 

of state-of-charge (SOC) variation with respect to time 

according to: 

s6C(t) = -0 !.!!:.L 
Qmax 

(2) 

where 0 represents the Coulombic efficiency [1]; I(t) [A] 

is the current flowing in (positive) and out (negative) of 

the battery and Qmax [Ah] is the maximum battery charge 

capacity. The battery is modeled through the zero-th order 

equivalent circuit mode, shown in Fig. 1, whose parameters 

are: the equivalent resistance, Req and the open circuit 

voltage, Voc. These parameters depend on several factors, 

the most important being, the SOC and the temperature. 

Because in a charge-sustaining HEV, the battery is used 

only over a limited range of SOC (typically between 0.5-

0.8 SOC), the model parameters do not vary significantly 

as a function of SOC, and they are considered constant in 

this work. Moreover, in this study we neglect the effect 

of the temperature on the battery parameters, leaving the 

Fig. 1. Zero-til order electrical circuit model of the battery 

Electrical 
Accessory 

Fig. 2. Power flow diagram of series HEY 

investigation in the case of temperature dependent parameters 

to future studies. 

With reference the equivalent circuit model of Fig. 1, the 

SOC variation can be expressed as a function of battery 

power. In fact, the voltage at the battery pack terminals, 

VL(t), is given by: 

(3) 

Multiplying (3) by current I(t) on both sides, the battery 

power, Pbatt, is obtained as: 

Solving the quadratic equation (4), the battery current I(t) 
is obtained as: 

() 
Voc - J(Voc)2 - 4Req Pbatt(t) I t = . 

2Req 
(5) 

This result, substituted into (2) generates the nonlinear map

ping: 

s6C(t) = -0 
Voc - J(Voc)2 - 4Req Pbatt(t) . (6) 

2ReqQmax 
Global Constraints. In a charge sustaining HEV, the net 

energy from the battery is zero over a given driving mission, 

meaning that the SOC at the end of the driving cycle should 

be the same as that in the beginning of the driving cycle, 

i.e., 

SOC(tj) = SOC(to). (7) 

where SOC(to), SOC(t j) represent the battery SOC at the 

beginning and end of the driving cycle. 

Local Constraints. Local constraints are imposed on the 

state and control variables. These constraints mostly concern 

physical operation limits, such as the maximum engine 

torque and speed, the motor power, or the battery SOc. For 
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a series HEV powertrain, shown in Fig. 2, local constraints 

are expressed as: { Pbatt,min ::; Pbatt(t) ::; Pbatt,max, 
SOCmin ::; SOC(t) ::; SOCmax 

(8) 
Tx,min ::; Tx(t) ::; Tx,max, 
Wx,min ::; wx(t) ::; wx,max, x = ice, gen, mot. 

where the last two inequalities in (8) represent limitations 

on the instantaneous engine, motor and generator torque 

and speed respectively; Umin, Umax is the minimum and 

maximum value of power/SOC/torque/speed at each instant. 

Moreover, drivability constraints are also enforced at each 

instant to ensure that the total power demand at the wheels 

is satisfied. In a series HEV, the engine and generator are 

connected in series with the battery pack and can be operated 

independent of the vehicle speed. The vehicle uses an all 

electric propulsion with an electric motor connected directly 

to the wheels. Because the electric motor (mot) propels the 

vehicle, its speed and torque are directly determined by the 

driver's torque request and the only degree of freedom is the 

torque of the generator (Tgen). The torque/power balance 

equations that must be satisfied are: 

Tice(t) - Taccmech(t) = -Tgen(t), 
Tmot(t) = Tgb(t), 
Pbatt(t) = Pmot,e(t) + Pgen,e(t) + Paccelec, (9) 

Wmot(t) = Wgb(t), 
Wice(t) = wgen(t), 

where Tgb is the instantaneous gearbox torque and Wgb 
is the instantaneous gearbox speed; Taccmech and Paccelec 
represent the instantaneous mechanical accessory torque and 

electrical accessory power; and, Pmot,e, Pgen,e represent the 

instantaneous electrical power at input/output terminals of 

the electric machines. 

A. Engine Fuel Consumption Rate Model 

The fuel consumption to be minimized over a driving 

cycle, is generally modeled as a map for every possible 

combination of engine speed and torque. The engine fuel 

consumption rate, mj, can be expressed as a closed-form 

expression of the engine power and speed using an appro

priate Willan's line model [17], [15]. In general, for any 

energy conversion device, the efficiency of the device can be 

modeled by representing the input power as an affine function 

of the output power and losses. In the case of internal 

combustion engine, the input power (Pin = Pchem) is written 

as an affine function of the output power (Pout = Pice). The 

slope al and intercept ao of the equation are polynomial 

functions of engine speed, represented by: { Pin(t) = aO� iCe(t)) + al (Wice (t)) Pout(t\ 
aO(wice(t)) - aOO + aOl . Wice(t) + a02 . Wice(t), 
al (Wice(t)) = al O + a11 . Wice(t) + a12 . w7ce(t), 

(lO) 

where aij, i, j = 0, 1, 2 are Willans line coefficients, Pin = 

Pchem = m j . Q LHV is the chemical power input to the 

1000 1500 2000 2500 
Engine Speed [RPM] 

Fig. 3. Maximum efficiency operating line 

3000 

engine and Pout = Pice = Tice . Wice is the engine power 

output. Given the engine power Pice and speed Wice, the fuel 

consumption rate can be written as 

In a series HEV, the engine speed Wice is independent of 

the vehicle speed and can be chosen to operate the engine 

at the most efficient operating point given the engine power 

request. Thus, the optimal engine speed is known for any 

given Pice can be calculated separately by minimizing the 

chemical power Pchem in the manner 

For a given power requested from the engine (Pice), the 

maximum efficiency operating line, shown in Fig. 3, is 

decided using the optimal engine speed Wice,opt. The fuel 

consumption rate (consumed by operating the engine in the 

most efficient speed for a given power) can now be expressed 

as an affine function of Pice alone, as: 

(13) 

where mo and ml are known constants obtained from (11) 

and (12). Moreover, since Pice is a function of the control 

input Pbatb 

1 
Paccmech + -- [1]mot Pgb(t) + Paccelec] + 

1]gen 
1 

-- Pbatt(t) (14) 
1]gen 

where 1]mot, 1]gen are efficiencies of the generator and electric 

motor and Paccmech is the mechanical accessory power. 

Ultimately the fuel consumption rate mj(t) is a direct 

function of the control input, Pbatt, i.e, 

(15) 

through coefficients 80, 81, 82 which are known constants, 
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obtained from (14) and (15) expressed as follows: { So = mo + m1 ( PaCCmeCh + � PaCCeleC) , 'Igen 
Sl = - ml , 'rJgen 
S - ml 2 - 1]gen1]mot 

(16) 

The engine fuel consumption rate model (15) and the battery 

SOC dynamics (6) described in this section will be used in 

the remainder of the paper to cast the energy management 

problem as a nonlinear optimal regulation problem. The 

closed-form expression for the fuel consumption rate using 

Willans line model will be used in finding an analytical 

optimal control law, which is a significant contribution in 

the HEV literature. The next section aims at presenting the 

mathematical background needed for the results proved in 

Section IV. 

III. MATHEMATICAL PRELIMINARIES 

We formulate the optimal control problem for energy 

management in HEVs as a nonlinear optimal regulation 

problem by studying the deviation of the battery SOC from 

a constant reference value SOCre!. For the remainder of the 

paper, all the variables are implicitly assumed to be functions 

of time i.e., x =} x(t) and the constants are explicitly 

described. The battery SOC error and the battery SOC 
dynamics are defined as: { e = SOCre! - SOC, 

. _ Voc-V(Voc)2-4RcqP&att _ 
f 

(R ) (17) 
e - ex 2ReqQmax - e batt · 

In this section, we introduce some mathematical prelimi

naries for the scalar system (17) with single control input, 

which are instrumental to the discussion presented in the next 

section. 

Consider an open set V c JR such that e E V an arbitrary 

set U c JR such that Pbatt E U and 0 E V,O E U. In the 

HEV problem, the state domain and control domain can be 

defined as 

{ e E V = [SOCre! - SOCmax, SOCre! - SOCmin], 
Pbatt E U = [Pbatt,min, Pbatt,max] 

Furthermore, let fe : U --+ JR satisfy fe(O) = O. Now 

consider the controlled system 

e = fe(Pbatt), e(O) = eo, t?: o. (18) 

where the control input Pbatt(-) is restricted to the class 

of admissible controls consisting of measurable functions 

Pbatt (. ) such that 

Pbatt E Sl, t?: 0, (19) 

where the control constraint set Sl C U is compact and 0 E 
Sl. Let an optimal control law Pbatt be a measurable mapping 

Pbatt : V --+ Sl satisfying Pbatt(O) = O. Now the system (17) 

with feedback control Pbatt(t) = Pbatt(e(t)), has the form 

e = fe(Pbatt(e)), e(O) = eo, t?: o. (20) 

e(t) 

Fig. 4. Energy management strategy as a nonlinear optimal regulation 
problem 

In order to address the problem of characterizing feedback 

controllers that minimize a performance functional, let H : 
JR x JR x JR x JR --+ JR, m! : JR x JR --+ JR and p E JR such that, 

H(e, Pbatt, Pgb,P) � m!(Pbatt, Pgb) + p . fe(Pbatt). (21) 

where H (-, ., ., .) is the Hamiltonian function, m! (-, .) is the 

instantaneous cost function expressed in (15) and P is the 

co-state variable. 

Because the Hamiltonian function has to take the mini

mum value when the optimal control input is applied, a new 

augmented Hamiltonian function ii is defined as: 

ii(e, Hatt, Pgb,p) � H(e, Pbatt, Pgb,p) - So· (22) 

where So is the Willans line coefficient defined in (16). 

IV. NONLINEAR OPTIMAL REGULATION OF HEV 

In this section, we solve the energy management problem 

formulated in Section II according to a nonlinear optimal 

regulation framework (Fig. 4) which guarantees that the 

battery SOC error dynamics is regulated to zero. The 

result that follows gives sufficient conditions under which 

the origin e = 0 can be locally asymptotically stabilized 

under nonlinear state feedback control which also guarantee 

optimality with respect to the fuel consumption over an 

infinite time horizon. In this paper, sufficient conditions 

for stability and optimality are given in the case where no 

external inputs or disturbances enter the system (18). This 

scenario corresponds to Pgb = 0, V t ?: 0 in the engine 

fuel consumption rate model (15) and the system initial 

condition being different from zero, i.e. e(O) = eo "I- O. In the 

context of charge-sustaining HEVs, the considered scenario 

corresponds to having the vehicle switched on without any 

tractive force at the wheels (v ( t) = 0) with the actual battery 

SOC being at not at the reference value, i.e., SOCre! "I
SOC(O). What follows is the first of a series of original 

results obtained by the authors on stability and optimality in 

the context of energy management problem in HEVs, that 

builds upon the main results of [16]. 

Theorem 1: Consider the system (18) with performance 

functional 

J(eo, Pbatt(-)) � 100 m!(Pbatt)dt. (23) 

Then with the feedback control Pbatt = Pbatt ( e), where 

Pbatt satisfies: 

(24) 
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the solution e(t) = 0, t 2: 0 of the closed-loop system 

(20) is locally asymptotically stable and the optimal feedback 

control law Pbatt ( e U) minimizes J (eo, Pbatt U). 
Proof Considering the candidate Lyapunov function 

V (e) = � e2, local asymptotic stability of the origin e( t) = 0 
and optimality of Pbatt with respect to J(eo, PbattU) are 

proven by showing that conditions listed in [16] are met for 

the candidate Lyapunov function. 

1) The Lyapunov function V (e) has a minimum value of 

o at the origin 

V(O) = 0; (25) 

2) The candidate Lyapunov function V(e) is a posItIve 

definite function. In fact, V (e) is a quadratic function 

of e 
V(e» O V eEV,ei-O; ( 26) 

3) The optimal feedback control law is zero at the origin: 

200
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'-

----
-'-'=='==M�O=T====� 

� - 100 r �-�-��:�h. AC QJ 
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(27) Fig. 5. Optimal battery SOC, SOC error, ICE, GEN, MOT torques and 
optimal battery power (SOCo = 0.8) 

4) Asymptotic stability of the origin is achieved when the 

optimal control law is applied, i.e. V(Pbatt) < O. { �� fe (Pbatt (e)) < 0 Ve E V, e i-0, 
= e(t)fe(Pbatt(e)) < 0, 
=} { fe(Pbatt(e) < 0 =} Pbatt(e) < OVe > 0, 

fe(Pbatt(e) > 0 =} Pbatt(e) > OVe < 0 
(28) 

This analysis provides conditions on the sign of state 

feedback control law Pbatt (e) as: {p:att(e) < 0, V e > 0, 
Pbatt(O) = 0, 
Pbatt(e) > 0, V e < O. 

(29) 

5) The Hamiltonian function it. takes on the minimum 

value of zero when the optimal control law (Pbatt = 

Pbatt (e» is applied: 

{it.(e,Pbatt(e), (��)T) = 0, 
=} mf(Pbatt(e)) = -�� fe (Pbatt (e)) Ve E V. 

(30) 

From (30), substituting the expression of fuel con

sumption (15), the optimal control law Pbatt(e) from 

nonlinear state feedback is: 

{ P* - 2Voc e _ 4Req e2 batt - c --cr ,  
c 

= 
2ReqQ=axSl

. '" 

(31) 

6) The Hamiltonian function it. takes on a value greater 

than zero when a control law (Pbatt) other than the 

optimal control law (Pbatt) is applied: 

{it.( e, Pbatt, (�� () 2: 0, 
=} mf(e, Pbatt) 2: �� fe(Pbatt) Ve E V, U E n. 

(32) 
• 
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TABLE I 

VEHICLE CHARACTERISTICS 

Vehicle mass 
Engine capacity 

Engine power 
Motor power 

Generator power 
Battery energy capacity 

Electrical Accessory 
Mechanical Accessory 

18000 kg 
6.7 L Diesel 

194 kW 
200 kW 
45 kW 

7.5 kWh (27 MJ) 
7 kW 
4 kW 

V. SIMULATION RESULTS 

The series heavy-duty HEV is simulated using a lon

gitudinal and quasi-static forward vehicle simulator [18]. 

All the vehicle components are modeled using quasi-static 

map-based models and the characteristics of the vehicle 

modeled in this paper are shown in Table I. Because the 

mechanical accessory represents the accessory load due to 

the operation of the engine, it is supplied as torque using 

the engine throughout the simulation. All the remaining 

secondary accessory loads in the vehicle are lumped into the 

electrical accessory power supplied using electrical power. 

The scenario investigated in this work consists in the 

vehicle being switched on without any tractive force at 

the wheels (the vehicle is at standstill, i.e. Vveh = 0). In 

this situation, the optimal control law (31) is implemented 

and shows that the origin of the SOC error dynamics, 

e = 0 is stabilized asymptotically while minimizing the fuel 

consumed by the engine over an infinite time horizon. As 

no tractive force is requested at the wheels, the system (Fig. 

4) is excited by an initial value of battery SOC different 

from SOCrej (SOCrej = 0.65). When SOCo > SOCrej, 
the control law depletes the battery initially to supply the 

accessory power and then uses the engine and generator to 

maintain the battery SOC at the reference value as shown 

in Fig. 5. After supplying the electrical accessory power 

directly from the battery, the engine and the generator are 

used together to maintain the battery SOC at SOCrej. 
In the absence of external tractive force, the engine and 

generator are operated as shown in Figures 6 and 7 to supply 

the mechanical accessory torque and the electrical accessory 

power. Given the small power request from the accessories, 

the engine is operated at a low speed and low torque region as 

shown in Fig. 6 and the generator is operated in the negative 

torque region to generate electrical power to supply electrical 

accessory power (Fig. 7). 

VI. CONCLUSION AND FUTURE WORK 

This paper has aimed at casting the energy management 

problem in a charge sustaining series HEV as a nonlinear 

optimal regulation problem. The paper uses a zero th order 

model for the battery and an appropriate Willans line model 

of the engine fuel consumption rate to design the optimal 

control law based on the results from [16]. The solution 

proposed in this paper is the first of a series of results 

on proving asymptotic stability of the closed loop system 

using a state-feedback based optimal control law while 

minimizing fuel consumption. The analytical control law has 

been implemented in a forward simulator and the results are 

shown for a specific scenario (vehicle at stand still). The 

main contribution of the work lies in the development of 

stability and optimality framework to design and analyze 

energy management strategies in the absence of external 

disturbances. The objective of the future work is to extend the 

stability and optimality framework developed here to include 

external disturbances (vehicle in traction mode). 
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