
Battery Life Estimation in PHEV
Applications: A Monte Carlo Simulation

Study

BJ Yurkovich, Oruganti Prashanth Sharma,
Yann Guezennec, Simona Onori

Center for Automotive Research - The Ohio State University,
Columbus, OH 43212 USA,

e-mail: {yurkovich.7, sharma.264, guezennec.1, onori.1}@osu.edu

Abstract: With the onset of the electrification of vehicles, battery life estimation has become a
very important issue in the design and commercialization of vehicle electrification technologies.
Designing and implementing algorithms to adequately predict battery life is essential for the
wide-scale adoption of hybrid vehicles, i.e. both charge-sustaining electric vehicles (HEVs) and
plug-in electric vehicles (PHEVs) and pure electric vehicles (EVs). In order to effectively design
methods for predicting battery life, accurate and efficient modeling and simulation tools are
required to support in the design, identification, and modeling of such methodologies and
algorithms. In this paper, we will present a modeling and simulation tool that is intended to be
used for battery life estimation in PHEV applications. The dynamic PHEV model is based on
many years of development at The Ohio State University’s Center for Automotive Research in
Columbus OH. The focus of the paper is not so much on each individual vehicle component of
the model, but on the design and implementation of the software model. In addition, we will
present the design and implementation of parallelized Monte Carlo simulations completed on
The Ohio Supercomputer Center using the software model. At the end of the paper, we will
present some example results and metrics obtained from the simulation infrastructure that can
be used for battery life estimation.

Keywords: hybrid and electric vehicles, powertrain simulation, batteries,driveline simulation,
modeling, simulation, monte carlo, supercomputing

1. INTRODUCTION

Since the adoption of electric transportation has become
more prevalent in the technology market, issues of battery
life have become a major focus of research. In order to
design and implement effective battery aging methodolo-
gies and techniques, detailed models and simulation in-
frastructures need to be developed to support the study
of battery life estimation. There exists some models and
simulators that describe battery and vehicle models for
Hybrid and Electric Vehicles (i.e., HEVs/PHEVs/EVs)
and the associated components such as the engine, electric
machine, and control strategy , such as in Yurkovich and
Guezennec (2009), Tulpule et al. (2010), Plett (2004) and
Kroeze and Krein (2008), Moura et al. (2011).

There has been a significant amount of work on the the
design and implementation of hybrid vehicle models and
simulators (see Guzzella L. (2007) and Miller (2003) and
references therein). Most of these models are implemented
in the industry standard Mathworks Simulink software
program. In addition, rigid software design principles, such
as Object Oriented design principles, are rarely enforced in
the design and implementation of such models. Therefore,

⋆ Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
uppercase.

a refactoring of the existing models that are found in the
literature is required in order to support the research in
the area of Battery life estimation.

In this paper, we focus on the development, design, and
implementation of such a model and simulator that can
be used to complete massive distributed simulations in
order to study the effects that driving of a PHEV has on
battery life. We have chosen a model that was developed
at the Center for Automotive Research at The Ohio
State University. In addition to describing the tool, the
simulation infrastructure that is required to perform large
scale will also be presented.

At the end of the paper, we will show some example
battery aging results that were gathered from running
the simulation on a supercomputer. Finally, using battery
aging methodologies such weighted amp-hour counting
defined in Onori et al. (2012), metrics will be defined to
showcase how driving effects battery life in a PHEV.

2. PHEV MODEL AND SIMULATOR

2.1 Original Model

We have chosen to use a specific PHEV model and sim-
ulator implemented Simulink model as a basis that was

developed using years of research at the Center for Au-
tomotive Research at The Ohio State University Tulpule
et al. (2009). Although the model physics are well de-
signed, the software design does not lend itself well to
reusability and scalability. Therefore, a more rigid software
design approach needs to be taken in order to allow for the
model to be extended to support the research of battery
life estimation.

For small scale simulation to determine how a single PHEV
driving pattern effects the battery pack, the described
Simulink Model works well. However, in order to ade-
quately determine the true impact that driving has on a
PHEV battery pack, large numbers of simulations must be
completed varying battery pack size, engine size, location,
temperature, and driving profile distance and velocity.
Therefore, using a single Simulink model to simulate all
possible cases would take a number of years and significant
user interaction.

Therefore, to make the model more accessible, it was
decided that a refactorization from the implementation
of the Simulink model to a more modular MATLAB
implementation was necessary.

2.2 New Model Design and Advantages

Using Object Oriented Software Engineering concepts, a
more robust, scalable, and reusable PHEV model was
designed and implemented. Because MATLAB’s program-
ming language is more suited to large scale simulation (as
opposed to Simulink’s graphical style), client implementors
of the base model will have an easier time extending
the model to include the necessary components for their
research.

The power of Object Oriented Programming (OOP) be-
comes extremely apparent when trying to architect an
OOP PHEV model. OOP allows for each component in
the vehicle, such as the Engine, to be a separate object
upon instantiation. These objects can be strung together
to create the overall vehicle system. In addition, each of
these objects can build on one another to create bigger
and more robust components while still retaining the basic
properties and actions (called ”methods”) that the base
object had. In this spirit, we create aVehicleComponent
class which can be inherited by all other components in
the vehicle, such as the Engine. The VehicleCompo-
nent class contains properties such as simulation step
size (defaulted to 10Hz) and debugging settings, and a
parameter loading method that is generic to all possible
vehicle components. Other classes include

• Battery Cell
• Battery Pack
• Battery Pack Controller (or Battery Management
System)

• Battery Severity Factor Calculator
• Battery System
• Control Strategy
• Driver
• Electric Machine
• Electric Machine Gearbox
• Engine (Diesel)
• Engine Gear Box

• Fuel Tank
• Gear Selector
• Torque Converter
• Vehicle Dynamics
• Wheels

It should be noted that the entire battery system is
broken out into individual objects. This allows for more
control over how the battery pack is configured. For the
simulations in this paper, we are using the cell model that
comes from Yurkovich and Guezennec (2009). In addition,

the MATLAB implementation of the model uses 1st and

2nd order backward-looking Euler methods.

As with all Object Oriented architectures, the model is
intended to be extended by others who may wish to
study specific parts of a vehicle in more detail such as
different control strategy implementations or specific en-
gine/electric motor configurations. The model architecture
gives a flexible and robust framework for vehicle simula-
tions.

When it comes to loading input parameters in a Simulink
model, there are only a certain number of ways to accom-
plish the task: (1) loading variables in from the MATLAB
workspace, or (2) embedding the parameters into the ac-
tual model. Neither method allows for much organization
and causes many headaches in debugging and extending
the model. By porting the implementation to MATLAB,
an eXtensible Markup Language (XML) Document Object
Model (DOM) can be utilized to assist in the organization
and specification of input simulation parameters. By spec-
ifying a XML DOM class that is responsible for loading
in simulation parameters, all parameters are able to be
stored in a human readable textual file that is organized
and easily scaled to include future extensions to the model.

In addition to providing an organized method for speci-
fying input parameters, the refactoring from a Simulink
implementation to a pure MATLAB implementation pro-
vides for a framework that is easily scalable. It is often
difficult to scale a Simulink model to support large scale
simulations. Refactoring the Simulink model to MATLAB
model allows for a much more streamlined process in scal-
ing the simulator to be run in a Monte Carlo-like fashion or
to be used in complex large scale simulations that utilizes
dynamic programming.

2.3 PHEV Model Example Input

Before we define an entire Monte Carlo simulation infras-
tructure that uses the discussed model implementation, we
must first verify that the PHEV model gives reasonable
output. We have chosen a PHEV model that roughly
simulates a PHEV Sports Utility Vehicle (SUV). Table
1 describes sample model input parameters. It should be
noted the ”charge sustaining mode” executes when a 30%
State of Charge (SoC) level of the battery pack is reached.

In addition, a 1st order battery model described as

V (t) = E0 − IR0 − Vc (1)

where E0 is the open circuit voltage of the battery, i is the
input current to the battery, R0 is the internal resistance of
the battery scheduled on temperature, SoC, and current,

Fig. 1. Example Velocity Profile

and Vc is an RC circuit also with parameters scheduled on
SoC, temperature and current is used to model the battery
cells in the pack (see Yurkovich and Guezennec (2009).

In order to show the complete operation of a single vehicle,
we have chosen an example velocity profile of about 60
miles simulating a combination of both urban and highway
driving. By simulating a profile that is around 60 miles
long, the charge sustaining mode will execute after the
battery pack SoC reaches a certain level. The velocity
profile is shown in Figure 1.

2.4 Example Model Results

The best way to first verify the validity of the simulation
results from the PHEV Model is by comparing the ex-
pected and actual velocities. From simulating the model,
we obtain that the simulated velocity tracks the expected
velocity well with an RMS error of less than 0.41%.

As one can see in Figure 2, the control strategy of the
vehicle model begins in a pure-EV mode, and as soon
as the SoC of the battery reaches an SoC of 30%, the
mode of the vehicle changes to charge sustaining and
the engine starts, resulting in a battery SoC that hovers
around 30% by ±3%. This can also be seen in Figure 3
which shows the torque of the engine as zero before the
ECMS control strategy switches from a pure EV mode to
a charge sustaining mode.

The vehicle, since it is modeled after an SUV, obtains an
average mile per gallon rating of 32.4 mpg.

Keeping with a C-rate profile typical of a standard PHEV-
20 or PHEV-30, we see in Figure 4 that the average C-
Rate (defined as the rate at which a battery is discharged

Table 1. Sample Vehicle Parameters

Parameter Value

Max Engine Torque 325 Nm
Max Electric Motor Torque 325 Nm
Battery Pack State of Charge (SoC) Range 25% to 90%
Batteries in a String 90
Battery Strings in Parallel 25
Battery Pack Size 16.5 kWh
Battery Pack Nominal Voltage 288V
Vehicle Control Strategy ECMS

Fig. 2. Example State of Charge

Fig. 3. Example Engine Torque

relative to its capacity) over the entire operation of the
Vehicle for the prescribed velocity profile is 0.39C. From
the histogram, we can see that most of the output current
is clustered around 0C, and rarely rises above 2.5C in the
case of a discharge and -2C in the case of a charge. The
reason that the C-Rate skew favors the discharge current
should be obvious; the vehicle is in a pure EV-mode for the
first part of the trip, and therefore experiences a number
of situations that require a large amount of acceleration
which in turn result in a large current request, and
therefore discharge, from the battery pack. In addition,
the battery pack is really only charged on regenerative
breaking and therefore does not experience a large amount
of negative current over a typical drive cycle.

3. LARGE SCALE SIMULATION SOFTWARE
INFRASTRUCTURE

One of the main reasons for the development of such a
vehicle model was to provide a robust tool for large scale
simulation since large scale simulation cannot be easily
done using Simulink or other similar implementation tools.
By defining an example large scale simulation infrastruc-
ture, we hope to show the usage of such a tool that
will allow for the simulation of multiple different vehicles,
environments, and drive cycles. With results from these

Fig. 4. Example Current C-Rate Histogram

Fig. 5. Simulation Architecture Diagram

multiple different types of simulations, we can perform an
analysis of battery aging, study typical PHEV usage, and
achieve a better understanding of long-term PHEV usage
on a large scale.

3.1 Large Scale Simulation Architecture

In much the same way as the Vehicle model was designed,
the large scale simulation modeling uses Object Oriented
principles. By doing so, the simulation architecture can be
compartmentalized into discrete objects, thus allowing for
easier experiment design and organization.

Software System Architecture The system is designed
using Object Oriented concepts, thus allowing for straight-
forward implementation in MATLAB. In order to design
an experiment that will encompass a typical driving year
for an individual, we must define a User object. A User
is an individual who can own a Vehicle.

This User has certain driving habits, commutes to and
from work, as well as charging habits. In order to complete
a number of random different years, a Profile Configu-
ration (which can also be thought of as a year) class is
defined, which contains a number of Week objects. The
Week object, in turn, is made up of a number (usually
7) Day objects. A typical day for a user is made up of
a number of trips called an Event . An Event object
may represent a drive to work or home from work, an
errand, or a trip on the weekend. In addition, an Event
may also be a charging task. A graphical representation of
this description can be found in Figure 5.

Fig. 6. Example Urban No Traffic Drive Cycle

Each Event is made up of a number of driving cycles, each
of which is called a Driving Segment , that have been
generated using a Markov Chain approach.

3.2 Using a Markov Chain to Generate Drive Cycles

In order to meaningfully perform simulations on a large
scale, we must first generate a library of multiple different
driving cycles that a User could potentially perform
during a typical year (or Profile Configuration). There
are 6 different types of Driving Segment profiles that are
typical of the differentDriving Segment profiles that the
Markov Chain generates:

(1) Urban Traffic
(2) Urban No Traffic
(3) Freeway Traffic
(4) Freeway No Traffic
(5) Highway Traffic
(6) Highway No Traffic

EachDriving Segment cycle has different characteristics
that reflect the type of drive expected from an Urban,
Freeway, or Highway drive cycle. The Markov Chain model
for each of the typical driving profiles is used to generate
1000 different velocity profiles for each of the 6 different
Driving Segment profiles. Figures 6, 8, and 7 show
examples of a Highway No Traffic, Urban No Traffic, and
a Freeway No Traffic drive cycle. The Driving Cycles
were generated using a training set based on experimental
vehicle velocity traces.

When running large scale simulations, a complete Event
can be constructed by choosing a predetermined sequence
of Driving Segment profiles at random and stringing
them together. For example, to make an Event that
exemplifies a typical user’s 14 mile drive to work during
rush hour, one Urban Traffic Driving Segment cycle can
be combined with 2 Highway Traffic Driving Segment
cycles chosen at random out of their respective pools. For
more information on the Markov Model, see Gong et al.
(2010).

Fig. 7. Example Freeway No Traffic Drive Cycle

Fig. 8. Example Highway No Traffic Drive Cycle

3.3 Example Monte Carlo Simulation Infrastructure

In order to show how this simulation infrastructure can be
used, we will create an example User to be simulated in
a Monte Carlo fashion. For our example purposes we will
only define a single User . It should be noted, however,
that the simulation architecture has the ability (and is
intended) to support a large number of users in order to
explore a number of different kinds of driving styles and
vehicles.

In true Monte Carlo fashion, the User that is defined will
have 100 Profile Configuration sets representing 100
different possible years that a user could drive that will be
simulated. Each of the Profile Configuration sets will
contain 4 Week sets, representing 4 season in each year:
Winter, Spring, Summer, and Fall. Each Week contains 7
days - 5 weekdays and 2 weekend days.

Each of the 5 weekdays contains a commute to and from
work, totaling a total of 29 miles both ways. Each commute
(both to and from work) is assumed to be made in traffic
and consists of an Urban Traffic Driving Segment , a
Highway Traffic Driving Segment , and another Urban
Traffic Driving Segment . Once at work, there is an
assumed mandatory Level 2 charge (220V at 32A, 7kW).
After work, there is a possibility of an errand composed

of 0 to 3 Urban No Traffic Driving Segment cycles. The
total distance of the errands have the possibility of being
between 0 miles and 6 miles. At night, it is assumed that
the User will always charge the Vehicle at Level 1 (110V,
12A, 1.3kW).

On the first day of the weekend, it is assumed that the
User will make a some sort of errand that can range
from 2 miles to 8 miles (1 to 4 Urban No Traffic Driving
Segment cycles). At night, there is again another assumed
Level 1 charge. On the second day of the weekend, there
will be a 2 mile commute (one Urban No Traffic) errand
and one long trip that will total 65 miles. The long trip
is composed of 2 Urban No Traffic, 6 Freeway No Traffic,
and another two Urban No Traffic cycles.

For every event, the location basis is assumed to be
Columbus Ohio. In order to get temperatures, a historical
weather archive was consulted to obtain average temper-
atures for each of the 4 seasons. In this example, only 4
temperatures are considered. In a larger simulation, more
temperature variation may want to be considered. The
infrastructure is capable of handling multiple temperature
variations over the course of a Day . The season temper-
atures that were decided upon are annotated in Table 2.

Table 2. Season Temperatures

Season Temperature

Winter 5o

Spring 23o

Fall 19o

Summer 29o

More input parameters for the Monte Carlo simulation are
shown in Table 3. It should be noted that there is only 1
”long trip” assumed per season. In addition, the distance
traveled per year is calculated by multiplying the distance
of 4 seasons by 13, which assumes 52 weeks in a year. As
it can be seen in Table 3, it is clear that 12,739 miles is a
reasonable mileage for a typical user that has a fairly long
commute to work.

Table 3. Simulation Example Parameters

Parameter Value

Average # of driving hours per weekday 1.21 hours
Average # of driving hours per weekend 1.36 hours
Average # Errands per Week 4
Average errand distance 4 Miles (max: 8mi)
Est. Distance Traveled per Year 12,736 miles
of charging events per year 624 Events
Total # Charging Hours 420
Vehicle Control Strategy ECMS

3.4 Running the Simulation

Since each Event of the Simulation Architecture requires
an insignificant number of seconds (20-30 sec) to simulate,
completing thousands of simulations linearly is not a prac-
tical option. Therefore, the simulations were dispatched on
a supercomputer.

The Ohio Supercomputer Center (OSC) in Columbus Ohio
was used to accomplish the parallelization task. OSC
boasts over 3000 Opteron processors and the ability to
perform 75 trillion flops per second. In addition, OSC also

has a software service that is called Remote MATLAB
Service (RMS), based on the pMALTAB implementation
from MIT. RMS allows for the OSC users to utilized the
OSC job manager to submit MATLAB applications and
scripts to the scheduler to be run. In this way, the PHEV
model was submitted to OSC to be run.

Although OSC’s RMS tool is very usable, it does not
give adequate feedback as to the progress of the simula-
tions as they are run on the supercomputer. In the case
of the PHEV model, the simulation takes a number of
hours (or possibly days) to complete, and without proper
feedback from the simulation, very little is known as to
whether or not the simulation was actually successful in
completing its task. Therefore, as an extension to the
Monte Carlo Simulation Infrastructure, a Representational
State Transfer (REST) web service with a complimentary
MATLAB/Java and Python API to report in real time
that status of PHEV Model (such as velocity, battery pack
SoC, etc) was designed and implemented. A front-end web
and mobile application was also developed to allow for easy
analysis the status of the simulations.

Using the REST web service and front-end reporting web-
site in conjunction with the PHEV model and Monte Carlo
Simulation Infrastructure allows for seamless completion
and analysis of the simulations.

4. DEVELOPMENT OF METRICS FOR ANALYZING
THE EFFECT OF DRIVING ON BATTERY PACK

In order to quantify the effect that PHEV driving has on
the battery pack in terms of battery life, we must first
define a metric that describes the severity that certain
types of driving and environment has on the battery pack.
We will call this the Severity Factor.

4.1 Severity Factor

The Severity Factor is defined as a metric that measures
the effect that the acts charging and discharging has
on a battery based on Battery SoC, Battery Depth of
Discharge, and Battery Temperature. As one can see in
Figure 9, the severity factor is more severe in points
of extreme temperature (both hot and cold) and high
depth of discharge. The trick for maintaining optimum
battery life, then, is to operate the battery in the ”sweet
spot” where there is mild temperatures and low depth of
discharge. For more information on how the severity factor
map is derived, see Onori et al. (2012).

4.2 Weighted Amp Hour vs. Amp Hour

The severity factor map and the SoC from a vehicle
simulation can be used to obtain the ”weighted amp hour.”
The weighted amp hour is a measurement of the amp
hours used over a simulated drive cycle with the previously
defined severity factor applied.

Using the concept of a weighted amp hour, a metric can
be defined to show the difference between a normal amp
hour usage over a drive cycle compared to a weighted amp
hour usage. The equation

λ =
AW −AN

AN
(2)

Fig. 9. Severity Factor Map based on Temperature and
DOD

where AW is the Weighted Amp Hour of the battery, and
AN is the Normal Ampere Hour of the battery defines a
way of normalizing the difference between a normal amp
hour measurement and an amp hour measurement where
a severity factor is applied.

Using the comparison described in Equation 2, we can
look at how different environments, vehicle configurations,
and PHEV users effect the aging of a battery pack over a
number of years of PHEV operation.

5. RESULTS

Although the specific results of Monte Carlo simulations
is not the main focus of this paper, it is important to
show some results to motivate how such a tool can assist
in the analysis of PHEV operation. Even from the smaller
number of Profile Configuration sets and only oneUser
, we are able to draw some meaningful conclusions about
how the driving of the PHEV effects battery life.

Firstly, we can analyze the SoC Band distribution over
the different seasons. In Figure 10, it can be seen that the
majority of SoC range over all operation of the vehicle is
around 80% to 90% SoC. This is expected since there are
so many opportunities for the PHEV User to charge the
battery pack, and the pack is recharged after every PHEV
usage. In addition, we see that there is a significant amount
of SoC clustering in the 60% band. This is to expected
since it is around the 60% SoC range that the battery pack
reaches on a drive to work and a drive from work to home.
Along that same reasoning, there is an SoC clustering
around 30% which is to expected, since the ECMS puts
the mode into charge sustaining and therefore keeps the
battery pack charge around 30% SoC.

In Figure 11, we see the majority of the C-Rates con-
gregate around zero, which also is expected, since the
charging C-Rates for Level 1 and Level 2 are 0.2C and 0.5C
respectively. In addition, we see that there is a larger skew
towards the positive C-Rates (discharging), and can easily
be explained by they fact that the only charging C-Rates
that the pack would experience would be from regenerative
breaking. Therefore, we would expect a significant skew in

Fig. 10. Battery Pack SoC Band Distribution

Fig. 11. C-Rate Histogram for All Events

the discharging direction on the histogram resulting from
PHEV battery pack usage.

Figure 12 shows some interesting trends in the how the
different seasons, and therefore temperatures, can effect
the battery pack of a PHEV. Recalling from Table 2,
we know that the Summer Week in our simulation has
the highest temperature. Therefore, knowing what we
know about the severity factor map as shown in Figure
9, higher temperatures have the greatest severity impact
on a battery pack. Thus, as Figure 12 shows, the most
significant severity factor can be found in the Summer
Week of the simulations (a factor of almost 1.8). As
described before, the higher the severity on the battery
pack, the worse the aging effects are.

Figure 13 shows the normal amp hour vs. the weighted
amp hour measurement over the entire 100 Profile Con-
figuration sets resulting from applying the severity factor
to the normal amp hour. Noting that the normal amp
hour is linear, we can again see that the effects of seasonal
temperature effect battery operation in a large way. As we

Fig. 12. Severity Factor Distribution for All Events

Fig. 13. Severity Factor Distribution for All Events

would expect, the most moderate temperatures (in Spring)
are closest to the normal amp hour. In addition, from
our analysis of the severity factor in Figure 12, we would
expect that the Event set that occurred in the summer
would show the greatest effect on battery aging due to the
higher temperatures. This analysis shows that in using this
model tool, we can actually quantify the specific severity
that the battery pack experiences in normal operation.
This analysis could be extended in future simulations
to include temperature variation over a number of days
based on historical temperature data, instead of just a few
constant temperatures.

From the data shown in Figure 13, we can apply the
normalization metric defined in Equation 2 to see the
trends in the effect that driving has on the battery pack.
By normalizing the data in Figure 13, we find that the
most significant λ value of 0.5 belongs to the summer
months as seen in Figure 14. In fact, the effect that of
the temperature in the summer months is magnified in
the summer months in a large way.

With larger simulations sets using the defined tool such
as more User definitions, more Profile Configuration
sets per PHEV owner, and different vehicle configurations,

Fig. 14. Distribution of Weighted vs. Normal Ah - λ

even more information can be gathered that can be used
to quantify how varied parameters effect battery aging.

6. CONCLUSION

In this paper, a Plug In Hybrid Electric Vehicle modeling
and simulation infrastructure and model implementation
was introduced that is capable of providing and extend-
able and resulable tool as well as simulating parallelized
PHEV operation on a massive scale. By performing large
scale simulations using the tool, analysis of how PHEV
operation and the environment can effect the life of the
on-board battery pack can be completed.

In addition to presenting the tool, an example Monte Carlo
simulation infrastructure was defined and simulated in
order to motivate the tool and provide some initial insights
into the effects of PHEV operation on the battery pack.

Future work will include the simulation of more PHEV
users to gain a better understanding and quantify the
effects that different locations, temperatures, vehicle con-
figurations, velocity profiles, and driving habits impact the
life of the PHEV battery pack.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Ohio Super-
computer Center and the The Center for Automotive
Research at The Ohio State University.

REFERENCES

Gong, Q., Midlam-Mohler, S., Marano, V., and Rizzoni,
G. (2010). An iterative markov chain approach for
generating vehicle drive cycles. SAE International.

Guzzella L., S.A. (ed.) (2007). Vehicle Propulsion Systems
- Introduction to Modeling and Optimization. Springer
Verlag, 2nd. Ed.

Kroeze, R. and Krein (2008). P. electrical battery model
for use in dynamic electric vehicle simulations. J. Am.
Chem. Soc., 1336–1342.

Miller, J. (ed.) (2003). Propulsion systems for hybrid
vehicles. IEE Power and Energy Series.

Moura, S.J., Fathy, H.K., Callaway, D.C., and Stein, J.L.
(2011). A stochastic optimal control approach for power
management in plug-in hybrid electric vehicles. IEEE
Transactions on Control Systems Technology, 19(3),
545–555.

Onori, S., Spagnol, P., Marano, V., Guezennec, Y., and
Rizzoni, G. (2012). A new life estimation method for
lithium-ion batteries in plug-in hybrid electric vehicles
applications. Int. J. Power Electronics, 4(3).

Plett, G. (2004). High performance battery pack power
estimation using a dynamic cell model. IEEE Transac-
tions on Vehicular Technology, 1336–1342.

Tulpule, P., Marano, V., and Rizzoni, G. (2010). Energy
management for plug-in hybrid electric vehicles using
equivalent consumption minimization strategy. Int. J.
Electric and Hybrid Vehicles, 2(4).

Tulpule, P., Stockar, S., Marano, V., and Rizzoni, G.
(2009). Optimality assessment of equivalent consump-
tion minimization strategy for phev applications. Pro-
ceedings of Dynamic Systems and Control Conference.

Yurkovich, B. and Guezennec, Y. (2009). Lithium ion
battery pack modeling and simulation for automotive
applications. Proceedings of Dynamic Systems and
Control Conference.

