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ABSTRACT

Today’s driving patterns consume significant amount of useless

energy, especially, when the fuel consumptions while braking,

idling and re-accelerating at each traffic light are considered for

millions of vehicles. This makes a high level management of driv-

ing profile crucial. In this paper, an analytical solution to the fuel

consumption minimization problem with the existence of a single

traffic light is investigated. The analytical solution is important

for on-line implementation and sharing the information of the

estimated fuel consumption of the road ahead with other vehi-

cles. Pontryagin’s minimum principle is used to calculate the

optimal velocity profile. Prior to the calculations, it is assumed

that we have the knowledge of starting and ending points of the

trip, the position and the operation sequence of the traffic light.

In order to make the problem solvable, a simplified vehicle model

is used. Furthermore, Willans approximation is utilized for fuel

consumption calculations with addition of certain amount of idle

speed fuel cost. The vehicle is forced to operate between a fea-

sible torque and speed range. The optimization problem is simu-

lated for an SUV vehicle first on a level road, then on a level road

with the traffic light and finally on a road with grade. The results

have shown that in addition to operating the vehicle close to its

optimal point, it is possible to avoid the consumption of useless

fuel due to the braking, idling and re-acceleration phases of a

traffic light.

1 Introduction

The traffic networks become more complex as the number of

vehicles entering to the network increases. For such networks

more traffic lights are required to prevent congestion and direct

the vehicles to desired destination points in an optimal rate.

Unfortunately, the increased number of traffic lights causes more

fuel consumption rates with in the network. To illustrate, first

the vehicle needs to dissipate all of its kinetic energy by braking

until stopping, then it will need more energy to run the engine at

idle speed and finally the vehicle will need to accelerate to move

on its way. Nevertheless, especially when the traffic density is

not very high it might be possible to avoid waiting at the traffic

lights. In this paper, an analytical solution is developed in order

to minimize the fuel consumption of a vehicle given a traffic

light signal information, its location and the total distance to

be travelled. In addition the optimal velocity profiles will be

developed for roads with known grade information.

The optimization problem is divided into several parts. In the

first part the analytical solution is developed for the case without

traffic light. Then, using the information obtained, an algorithm

is developed for the optimization problem with the existence of

a single traffic light. Finally the optimization problem is solved

for the case with known road grade profile. All the important

points are summarized and the future works are discussed in the

conclusion part.

2 Analytical Solution for Fuel Consumption Optimiza-
tion

In order to find an analytical solution to fuel consumption mini-

mization problem, the vehicle and fuel consumption models are

required to be defined. Initially, the vehicle is assumed to move

at a constant gear and with no road grade. Then the general ve-

hicle model can be written as

C1 ·
dV

dt
=C2 ·Te −C3 ·V

2
−C4 (1)
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where

C1 = mv +

(

Jwh

R2
wh

+ Je

R2
wh

·λ2

)

Inertial terms

C2 =
ηtr

Rwh
·λ Engine torque to thrust force

C3 =
1
2
·ρa ·A f ·Cd Aerodynamic resistance

C4 = mv ·g ·Cr Rolling resistance

In the above equations mv is the mass of the vehicle, Jwh and

Je are the rotational inertia of the wheels and engine parts,

Rwh is the radius of the tires. λ represents the combination

of the gear and the differential ratios. ηtr is the transmission

efficiency. ρa is the air density, A f is the frontal area and Cd is

the drag coefficient of the vehicle. g is the gravitation force and

Cr is the rolling coefficient between the tires and the road surface.

Having determined the equation of motion of the vehicle, the fuel

consumption is required to be modelled for optimization calcula-

tions. The Willians Approximation is used for fuel consumption

modelling.

ṁ f uel = C5 ·V (t) ·Te −C6 ·V(t)+C7 (2)

where:

C5 =
λ

e(ωe)·HLHV ·Rwh

C6 =
Ploss(ωe)·Vd ·λ

e(ωe)·4π·HLHV ·Rwh

It is assumed that the global efficiency, e(ωe), and the loss term,

ploss(ωe) of the engine are constant, so by choosing an average

engine speed the constant values can be determined by interpret-

ing the fuel consumption engine map. Furthermore, to take into

consideration the idle speed fuel consumption, a constant term is

also added to the model which is denoted as C7.

2.1 Model Simplification

A number of differential equations are needed to be solved for

the analytical solution of the optimization problem. In order to

make the problem solvable analytically an additional simplifi-

cation is done. The equation 1 is simplified by linearizing the

model around an unknown velocity. This modification signifi-

cantly simplifies the solutions of the differential equations. The

simplified model which will be used for analytical solution cal-

culations takes the following form

C1 ·
dV

dt
=C2 ·Te −C3 ·Vlin ·V −C4 (3)

In equation 3, Vlin is the speed around which the model is lin-

earized. At this point a new parameter, C∗
3 is defined in order to

have simpler expressions for the rest of the calculations.

C∗
3 =C3 ·Vlin (4)

After having determined the simplified model, the total dynamic

state equations can be written as

ẋ = f (x,u) (5)

where:

ẋ =







Ẋ

V̇







, f (x,u) =







V

C2
C1

·Te −
C∗

3
C1

·V −
C4
C1







(6)

2.2 Analytical Solution: No Constrained Case

For no constraint case the aim is to find an optimal solution to

minimize the total fuel consumption during the trip. The total

cost function is given in equation 7.

J∗ = min
u∈U

∫ t f

0
ṁ f uel ·dt (7)

The Hamiltonian Function is defined as

H = ṁ f uel +λT
· f (x,u) (8)

From the Hamiltonian Function the optimal control is calculated:

∂H

∂Te

=C5 ·V (t)+λv(t) ·
C2

C1
= 0 (9)

Then the optimal control is:

u∗(x, t) =







Temax if C5 ·V (t)+λv(t) ·
C2
C1

< 0

Unknown if C5 ·V (t)+λv(t) ·
C2
C1

= 0

0 if C5 ·V (t)+λv(t) ·
C2
C1

> 0

(10)
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As given in above equation, the optimal control takes the two

extreme values if one of the inequality constraints are satisfied.

Nevertheless, for the equality of the condition(singular point

case) the control input, Te, can be any value between 0 and the

maximum torque.

For t0 −→ t1 Since we start at zero position and velocity, ini-

tially it will be assumed that:

u∗(x, t) = Temax −→ C5 ·V (t)+λv(t) ·
C2

C1
< 0

Then after certain time there is a point such that at t = t1:

C5 ·V(t)+λv(t) ·
C2

C1
= 0

Only after reaching the above condition (singular point) the con-

trol input will be changed. Having the information of X0 = 0 and

V0 = 0, the equations of the states and the Lagrange multipliers

between t0 to t1 are calculated as

V ∗(t) =−
1

C∗
3
· (C2 ·Temax −C4) · e

−
C∗

3
C1

t
+ 1

C∗
3
· (C2 ·Temax −C4)

X∗(t) = C1

(C∗
3 )

2 · (C2 ·Temax −C4) · e
−

C∗
3

C1
t
+ 1

C∗
3
· (C2 ·Temax −C4) · t

−
C1

(C∗
3)

2 · (C2 ·Temax −C4)

λ̇x(t) =− ∂H
∂x

= 0 −→ λx(t) = K1

λ̇v(t) =−
∂H
∂V

=−C5 ·Temax +C6 +λv ·
C∗

3
C1

−λx

λv(t) = K2 · e
C∗

3
C1

t
+ C1

C∗
3
(C5 ·Temax −C6 +K1)

(11)

In the above equations, K1 and K2 are the constants that are to

be determined by the boundary conditions at t = t f .

For t1 −→ t2 At time t1 the condition, C5 ·V(t)+λv(t) ·
C2
C1

= 0

is hit and the control becomes undefined. However, between t1
and t2 the equality condition holds.

λv(t) =−C5 ·
C1

C2
·V(t) (12)

In addition at the time interval, the time derivative of the condi-

tion should also be 0:

C5 · V̇ (t)+ λ̇v(t) ·
C2

C1
= 0 (13)

Then using the equations 11, 12 and 13 it is possible to show that

the velocity is constant at the value of:

V (t) =
C2 ·C6

2 ·C∗
3 ·C5

−
C4

2 ·C∗
3

−
K1 ·C2

2 ·C∗
3 ·C5

(14)

Since the velocity is constant its derivative should be zero then it

can be shown that:

Te(t) =
C6

2 ·C5
+

C4

2 ·C2
−

K1

2 ·C5
(15)

In addition, at t = t1, the first equation in 11 and 14 must be

equal, so it is possible to calculate t1 as:

t1 =−
C1

C∗
3

· ln

(

1+
K1 ·C2 +C4 ·C5 −C2 ·C6

2 ·C5 · (C2 ·Temax −C4)

)

(16)

From equation 12, the Lagrange multiplier is calculated:

λv(t) =−
C1 ·C6

2 ·C∗
3

+
C1 ·C4 ·C5

2 ·C2 ·C
∗
3

+
K1 ·C1

2 ·C∗
3

(17)

From equations 11 and 17 it is possible to show that:

K2 =

[

−
C1 ·C6

2 ·C∗
3

+
C1 ·C4 ·C5

2 ·C2 ·C
∗
3

+
K1 ·C1

2 ·C∗
3

−
C1

C∗
3

(C5 ·Temax −C6 +K1)

]

· e
−

C∗
3

C1
t1 (18)

If K1 is known all the unknowns given above can be calculated.

K1 will be calculated in the following part.

For t2 −→ t f At the end of the constant velocity region , t = t2
the following condition must hold to satisfy terminal boundary

conditions:

C5 ·V (t)+λv(t) ·
C2

C1
> 0 (19)

Then from optimal control, equation 10, the optimal torque value

is determined.

Te = 0 (20)

By using equation 20 and the boundary conditions at t = t2, the

state and the Lagrange multiplier trajectories are calculated be-

tween the time interval t2 to t3.

V ∗(t) =

[
C2 ·C6

2 ·C∗
3 ·C5

+
C4

2 ·C∗
3

−
K1 ·C2

2 ·C∗
3 ·C5

]

· e
−

C∗
3

C1
·(t−t2

−
C4

C∗
3
(21)
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Similarly;

λv(t) =

[
C1 ·C6

2 ·C∗
3

+
C1 ·C4 ·C5

2 ·C2 ·C
∗
3

−
K1 ·C1

2 ·C∗
3

]

· e
C∗

3
C1

·(t−t2)

−
C1 ·C6

C∗
3

+
C1 ·K1

C∗
3

(22)

There are three boundary conditions at t = t f . Obviously the

speed of the vehicle at the end of the trip is zero. Furthermore,

since the terminal time is free the Hamiltonian Function should

be zero at t = t f . Finally, the position of the vehicle should be

the desired travel distance at the final time:

V (t f ) = 0

H(t f ) = 0 =C7 −λv(t f ) ·
C4
C1

−→ λv(t f ) =
C7·C1

C4

x(t f ) = x f inal

(23)

Using the three boundary conditions 23, it is possible to

calculate the three unknowns t2, t f and K1. Since the equations

get complex, these calculations are performed in a software

environment. Note that the parameter Vlin is selected such that it

coincides with the velocity at the constant speed region(t1 → t2).

By this way, although the aerodynamic resistance forces are over

estimated during the acceleration and the braking phases, it is the

exact value for the constant velocity region. This degrades the

bad effect of linearization. In fact although the characteristics

of the acceleration and deceleration phases would be different,

the value of the constant velocity should be the same of the case

without linearization.

After the unknown parameters are calculated, the simulation is

performed for the vehicle. In figure 1, the simulation results are

presented.

Having determined the optimal solution for the case with zero

initial velocity, the optimal velocity profiles of the cases with

non-zero initial velocities are also point of interest. This infor-

mation will be helpful for optimization calculations with the ex-

istence of a traffic light. In order to do, a set of initial condi-

tions are determined and the simulations are performed using the

equations of the analytical solution. The two optimal velocity

profiles, one with an initial velocity lower and one with an ini-

tial velocity higher than the constant velocity are determined and

the results are presented in the figure 2. The simulation results

show that whatever the initial speed is, the optimal velocity pro-

file tries to reach a certain speed by initially applying either max-

imum or minimum torque, Temax or 0, respectively, and remains

at the constant speed until the vehicle is a certain distance away

from the destination point. As soon as it reaches that certain dis-
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Figure 1. The simulation results of the case without traffic light and

grade.
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Figure 2. The simulation results of the case without traffic light and grade

having different initial velocities.

tance, the applied torque becomes zero, vehicle starts coasting

and stops at the destination point.

2.3 Analytical Solution: With Traffic Light

For the case with a traffic light additional considerations are

needed for the calculation of the minimum fuel consumption.

The problem can be divided into two parts, as shown in figure

3, the first part is the region until the vehicle reaches where traf-

fic light is located. The second part is the region from traffic light

to the destination point. The aim is to find the minimum fuel con-

sumption until the destination point. However by benefiting from

the results of unconstrained case, the minimum fuel consumption

will be optimized for the first part (until traffic light), then the

fuel consumption corresponding to the second part will be added

as a terminal cost. After further inspection it is possible to say

that if there were no traffic light then the vehicle would continue

with the constant speed as it is found in unconstrained case (the

red line in the figure 3). So it is better idea just to find the de-

viation of the fuel consumption of actual velocity profile at the

second phase from the optimal one, (difference between the blue

and red dashed lines), and add this deviation to the optimization

problem as the terminal cost. Then the total fuel consumption

4 Copyright © 2012 by ASME



Figure 3. The sketch describing the division of the problem into two

phases.

can be shown as:

J = h(x(tl), tl)+
∫ tl

0
ṁ f uel ·dt (24)

where tl is the time when traffic light is reached and x(tl) is the

position of the traffic light. h(x(tl), tl) is the deviation of the

fuel consumption from the optimal one for the region after traffic

light. h(x(tl), tl) is defined as:

h =
∫ t f ,1

tl

ṁ f uel ·dt −

∫ t f ,2

tl

ṁ f uel,opt. ·dt (25)

=
∫ tl+t1PH2

tl

(C5 ·Te−C(6)) ·V (t) ·dt −

∫ t f ,2

tl

(C5 ·Tec −C(6)) ·Vc ·dt

+C7 · (t1PH2
− t f ,2)

= (C5 ·Te−C(6)) ·
∫ tl+t1PH2

tl

V (t) ·dt (C5 ·Tec −C(6)) ·
∫ t f ,2

tl

Vc ·dt

+C7 · (t1PH2
− t f ,2)

In the equation above, the integration should be performed until

the vehicle velocity reaches to the optimal constant velocity cal-

culated in unconstrained case. The time required for the vehicle

to reach this speed is denoted as t1PH2 and the integration is per-

formed from tl to tl + t1PH2. On the other hand for the optimal

velocity profile, the time to reach the same point will be different

since the velocity profiles are different. However the travelled

distances should be the same. Because of the fact that the actual

and optimal driving profiles operate at constant torque values,

we can take all the constant terms out of the integration and we

end up with the integration of the speed which gives us the dis-

tance travelled. Then, the terminal cost takes the form given in

equation 26.

h(x(tl), tl) =C5 · (Te−Tec) ·

∫ tl+t1PH2

tl

V (t) ·dt +C7 · (t1PH2
− tm)

(26)
For the calculation of the distance travelled the velocity profile
after the traffic light is required. Using the vehicle dynamics
relation (equation 3) and the boundary condition V (tl) at t = tl ,
which is unknown yet, the equation of velocity is calculated and

shown in equation 27.

V ∗(t) =−
1

C∗
3

· (C2 ·Te −C4 −C∗
3 ·V (tl)) ·e

−
C∗

3
C1

t
+

1

C∗
3

· (C2 ·Temax −C4)

(27)
In the equation Te can either be 0 or Te,max depending on the

speed at the traffic light,V(tl). Combining the equations 26 and
27, the terminal cost takes the following form:

h = C5 · (Te −Te,c)

[

C1

(C∗
3)

2
· (C2 ·Te −C4 −C∗

3 ·V (tl )) ·

(

e
−

C∗
3

C1
t1PH2

−1

)

+
1

C∗
3

· (C2 ·Te −C4) · t1PH2

]

(28)

The required time, t1PH2, until the speed reaches the optimal ve-
locity is determined and shown in the equation 29.

t1PH2 = −
C1

C∗
3

·

[

ln

(
C6 ·C2

2 ·C5 ·C
∗
3

−
C4

2 ·C∗
3

−
K1 ·C2

2 ·C5 ·C
∗
3

−
1

C∗
3

(C2 ·Temax −C4)

)

−ln

(

−
1

C∗
3

(C2 ·Temax −C4)+V (tl)

)]

(29)

Since we know all the constants, Vc, Tec and since t1PH2 is a

function of V (tl), then the terminal cost, h, depends only on

V (tl).

Although we have determined a terminal cost which depends on

the speed at the point of traffic light, we still did not ensure how

to find the optimal velocity profile to minimize the fuel consump-

tion with the existence of the traffic light. To do so, first we need

to model the traffic light.

2.3.1 Modelling of the Traffic Light The traffic light that

will be used for further calculations is modelled with some basic

assumptions. First of all it is assumed that the light operates in

50 percent duty cycle. This means that the time for red light

on is the same as the time for green light on. In addition the

period is assumed to be 60 seconds, so for the first 30 seconds

the red light is to be on and for the other 30 seconds the green

light is to be on. The operation of the model is represented in

the figure 4. For optimal velocity profile it is intuitive that the

vehicle should reach to the traffic light when the green light is

on. Otherwise, the vehicle needs to stop at the light, wait until

green light turns on and then accelerate to reach a reasonable

speed. These sequence of actions would consume too much

energy compared to the constant speed case. So the best way to

avoid these energy losses is to reach the traffic light when it is

green. In order to ensure this to happen another terminal cost

should be applied. Nevertheless, it is still not clear at which

cycle the vehicle should reach to the traffic light. That is why a

more comprehensive terminal cost should be selected.

The convex cost function given in the equation 30 is chosen as

the terminal cost to ensure the vehicle reaches the traffic light

when the green light is on.

φ(tl) = A · (tl − 45− 60 · k)2 (30)
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Figure 4. Graphical Representation of the Traffic Light.

The terminal cost function given in equation 30, enforces the

vehicle to reach the traffic light when the green light has been on

for 15 seconds and is going to be on for another 15 seconds. The

parameter, k, determines the number of cycles after which the

vehicle should reach to the traffic light. Finally the parameter

A, grades the punishment level as the vehicle deviates from the

center of the green light on range.

After the addition of the terminal cost for traffic light, the general

cost function takes the final form given in equation 31.

J = φ(tl)+ h(x(tl), tl)+
∫ tl

0
ṁ f uel ·dt (31)

In the following sections using the traffic light pattern shown in

figure 4 and the given cost function, an optimal driving profile

will be investigated to minimize fuel consumption, but first the

boundary conditions should be defined.

2.3.2 Boundary Conditions Five boundary conditions

are necessary to find the solution of four differential equations,Ẋ,

V̇ , λ̇V , λ̇X , and the time, tl , when the vehicle reaches the traffic

light. The boundary conditions are listed below:

X(0) = 0

V (0) = 0

X(tl) = Xlight

H(tl) =−
∂φ(t)

∂t

λV (tl) =
dh
dV

The first three boundary conditions are obvious, the initial

conditions for velocity and position are assumed to be zero, in

addition the position of the traffic light is assumed to be known.

In the unconstrained case the Hamiltonian function at t = t f was

zero, because there were no fixed terminal time. Although for

the case with the traffic light we still do not have a fixed terminal

time, we do have a terminal cost as a function of time. This cost

function was defined in the equation 30. Then the Hamiltonian

Function at t = tl can be written as 32

H(tl) =−
∂φ

∂t
=−2 ·A · (tl − 45− 60 · k) (32)

From boundary condition 5, the derivative of the terminal

cost,h(x, t) with respect to velocity at t = tl is required. The

equations for terminal cost has been given in 28 and 29. Then

the derivative of h(V(tl), t1(V (tl))) with respect to velocity is:

dh

dV
=

∂h

∂V
+

∂h

∂t1
·

dt1

dV
(33)

where;

∂h
∂V

=C5 · (Te −Te,c) ·
(

−
C1
C∗

3

)

·

(

e
−

C∗
3

C1
t1
− 1

)

∂h
∂t1

=C5 · (Te −Te,c)

[

−1
C∗

3
· (C2 ·Te −C4 −C∗

3 ·V (tl)) · e
−

C∗
3

C1
t1

+ 1
C∗

3
· (C2 ·Te −C4)

]

dt1
dV

= −C(1)
C(2)·Te−C(4)−C(3)·V(tl)

(34)

2.3.3 Calculation of Optimal Velocity Profile The ana-

lytical solution equations of the minimum fuel consumption op-

timization problem with traffic light case is exactly the same as

the problem with unconstrained case. The only difference be-

tween the two is the boundary conditions and the engine torque

is not necessarily zero for the time range of t2 to tl . This means

that the equations from 8 to 18 are also valid for the traffic light

case. Due to uncertainty of the torque value between t2 to tl ,

some slight modifications are needed for the equations 21 and

22. The modified equations are given in 35 and 36.

V ∗(t) =
[

−
C2·Tetl

C∗
3

+ C2·C6
2·C∗

3 ·C5
+ C4

2·C∗
3
−

K1·C2
2·C∗

3 ·C5

]

· e
−

C∗
3

C1
·(t−t2)

+C2·Tetl−C4
C∗

3

(35)
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Similarly;

λ∗
v(t) =

[

−
C1·C5·Tetl

C∗
3

+ C1·C6
2·C∗

3
+ C1·C4·C5

2·C2·C
∗
3
−

K1·C1
2·C∗

3

]

· e
C∗

3
C1

·(t−t2)

+C1
C∗

3
· (C5 ·Tetl −C6 +K1)

(36)

The analytical solution to the equations 8 to 18 and 35 and 36

with five boundary conditions as defined in previous section, is

very hard to find. Instead numerical solution is investigated. For

the chosen numerical solution a value for the speed at the traffic

light, Vtl , is assumed then all the other parameters are calculated.

According to the estimation of the position of the traffic light,

xlight , new update for the Vtl is performed. The detailed descrip-

tion of the algorithm is given in the following section.

Numerical Solution Algorithm Before starting to describe

the algorithm, the value k used in 30 is first defined. As it was

mentioned before the parameter k determines the number of

cycle after which the vehicle should reach to the traffic light.

Then the numerical calculations follow the steps listed below:

Step 1: First an initial value for Vtl is selected

Step 2: Using the selected Vtl , the torque value after the traf-

fic light is anticipated. For the unconstrained case the con-

stant speed at phase 2 is found to be around 10.74 m/s, so if

Vtl is larger than this constant speed value the torque should

be zero, otherwise it should be Temax. After determining

the torque value using the equation 29, the time needed for

actual speed to reach optimum constant speed is calculated.

Then using the equations 33 and 34 the derivative of the ter-

minal cost of vehicle speed with respect to velocity, dh
dV

, is

calculated.

Step 3: After calculating dh
dV

, using the fifth boundary condi-

tion, λV (tl) =
dh
dV

, and the equations 35 and 36 it is possible

to determine the parameter K1 and the term e
C∗

3
C1

·(tl−t2) by as-

suming Tetl to be 0 (in step 6, the calculations are redone

with the assumption Tetl = Temax).

Step 4: Using the calculated parameter K1 and the term

e
C∗

3
C1

·(tl−t2), and using the equations 8, 14, 16 and 32 it is pos-

sible to calculate the parameters t1, tl , t2, and Vc for phase 1

(the profile before traffic light).

Step 5: After determining all the parameters, xlight is esti-

mated. If it is the same as the actual distance of the traffic

light the calculations are stopped. If not first the selected

torque value,Tetl , at time range t2 to tl is checked. If it is 0

then the algorithm goes to step 6, if it is Temax then it goes

to step 1.

Step 6: This step is reached when the torque, Tetl , was as-

sumed to be 0 for the time range t2 to tl in last case. Now

the torque is assumed to be Temax for the time range t2 to

tl . Then the parameter K1 and the term e
C∗

3
C1

·(tl−t2) are deter-

mined and the calculations are re-performed from step 4.

The algorithm continues until the estimated xlight exactly equals

to the actual distance of the traffic light from the starting position.

This algorithm calculates the optimal velocity profile for the se-

lected k parameter. For example when the parameter k is selected

as 2, the optimal velocity profile is calculated by enforcing the

vehicle to be at the traffic light at the time 225 seconds. Notice

that at t = 225 sec, the green light has been on for 15 seconds

and will continue to be on for the next 15 seconds. However, we

do not know if the selected k parameter is the optimal one. So

all the reasonable k values should be tested in order to find the

global optimum velocity profile for minimum fuel consumption

with the traffic light case.

2.3.4 Simulation Having implemented the algorithm, the

simulation is performed. For the chosen cycle the total distance

is assumed to be 5000 meters. The traffic light is located at

the middle of the road. Initially the vehicle is assumed to be

at position 0, and it starts from rest. Although for this test

simulation a number of k parameter values are tested in order

to find the global minimum, it will be discussed later that there

is no need to test all the k values. It will be possible to select

reasonable k values, so testing only a few of them will be

sufficient to find the global optimum.

Table 1. Simulation results for varying k parameter.

k 2 3 4 5 6

t1,PH2 [sec] 12.3 0.49 8.3 11.6 13.5

t1 [sec] 33.4 22.4 17.4 14.2 12.0

t2 [sec] 133.5 218.9 265.8 325.5 386.2

tl [sec] 164.9 224.9 284.9 344.9 404.9

Vc [m/s] 17.36 11.70 9.14 7.47 6.32

Vtl [m/s] 12.56 10.81 6.39 4.72 3.70

Tetl [Nm] 0 0 0 0 0

TePH2 [Nm] 0 0 200 200 200

FC [gr] 134 126 130 131 132

#o f Iter. 22 20 17 15 19

7 Copyright © 2012 by ASME



In the table 1, the simulation results for different k values,

changing from 2 to 6, are presented. As the k parameter

increases there is more time for vehicle to reach to the point

where traffic light stands. That is why the velocity values tend to

decrease. In the unconstrained case the optimal constant speed

has been found to be 10.74 m/s. It is also possible to notice

that as the average speed of the vehicle differs from the optimal

constant speed value the fuel consumption tends to increase.

Finally the number of iterations for the algorithm described

above are presented. Since only a few analytical calculations

are performed in each iteration, the calculation times are not too

long.

The variation of the fuel consumption with respect to the pa-

rameter k is plotted in the figure 5. From the figure it is clear

that the global optimum fuel consumption is obtained at the k

value of 3. Here in the simulations in order to show all the steps
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Figure 5. Fuel consumption values with respect to the parameter k.

more clearly the global optimal point is found by calculating fuel

consumptions for all k parameters. However, that number of cal-

culations would take significant time. Indeed, it is unnecessary.

There is more rigorous way to find the optimal k value. In the

unconstrained case we have shown that if there is no traffic light

then the vehicle moves at constant speed during most of its trip.

This constant speed is found to be 10.74 m/s for selected vehicle

and trip parameters. The easiest way of calculating the optimal k

parameter is to find the required time (let’s denote it by topt) un-

til the vehicle reaches the traffic light from initial state assuming

there is no terminal cost and then we need to find the nearest tl
value obtained by the equation tl = 45+ 60 · k . It is possible to

say that the k parameter which leads to minimum error between

the tl and the topt is in the very close vicinity of the optimal k

value. After finding this k parameter we may need to calculate

the fuel consumption with +/-1 values of k, to be sure which one

is the global optimum. This method can be expressed mathemat-

ically as follows:

kvic =
(
xlight/Vopt − 45

)
·

1

60
; (37)

For example for our case xlight = 2500m and Vopt = 10.74m/s,

then:

kvic = (2500/10.74− 45)·
1

60
= 3.13

(38)

Then by simply trying k=3 and k=4 we could have found the

global optimal k value. In fact as it has been shown earlier the

global optimal k is found to be k=3.

The simulation results with the optimal parameter, k, are pre-

sented in the figure 6.
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Figure 6. The Simulation Results for Traffic Light Case.

In order to show clearly the state of the vehicle at the traffic

light a more detailed plot is presented in the figure 7, where the

optimal velocity profile is plotted with respect to the distance

travelled. In addition the traffic light signal is presented. As can

be seen in the optimal case, the vehicle reaches to the traffic

lights when the green light is on, so it avoids unnecessary fuel

consumptions due to stopping, idling, re-accelerating phases of

the traffic light.

2.4 Analytical Solution: With Grade
In this section, the analytical solution to the optimization prob-

lem with known grade information of the road is investigated.

8 Copyright © 2012 by ASME



Figure 7. The optimal velocity and the traffic light.

Firstly, a road profile with grade is determined and it is shown in

the figure 8. As can be seen in the figure 8, the road profile with a

1000 2000 3000 4000 5000 meters

Grade

Road

α α

Figure 8. The Road Grade Profile

length of 5 km, is divided into five equidistant regions. The first,

third and fifth regions are level roads, while at the second region

there is a positive grade and at the fourth region there is a nega-

tive grade. Later on the positions of 1000, 2000, 3000, and 4000

meters are referred as x1, x2, x3 and x4. The dynamical equation

of the velocity of the vehicle needs to be slightly modified for the

regions with grade. With the modifications the general equation

of motion takes the form given in 39.

V̇ = C2
C1

·Te −
C∗

3
C1

·V −
C4
C1

· cos(α)− C8
C1

· sin(α)

where







α = 0 f or x0 ≤ x < x1

α = 1◦ f or x1 ≤ x < x2

α = 0 f or x2 ≤ x < x3

α =−1◦ f or x3 ≤ x < x4

α = 0 f or x4 ≤ x < x5

(39)

The Hamiltonian function also requires to be modified using

the equation 39. All the other equations including system

dynamics and the boundary conditions are same as the ones of

unconstrained optimization which has been discussed in section

2.2.

The only difference for the case with varying road grade is the

fact that at the points of change in grade, some optimality con-

ditions [1] should be satisfied. These optimality equations are

given as

λT (t1−) = λT (t1+)+πT
·

∂N

∂x(t1)
(40)

H(t1−) = H(t1+)−πT
·

∂N

∂t1
(41)

where the function N(x(t), t) is the interior boundary condition.

From the optimality equations it is possible to observe that there

is discontinuity in λx(t) but not in λv(t). Then by finding the

variations in λx(t) at each road grade change point, and using

the equations derived in section 2.2, it is possible to combine the

optimal solutions of the regions with different grades.

Calculation of λx(t) at a Road Grade Change Point

Here, the calculations are performed for the point x = x1, and the

for the other interior boundary points exactly the same procedure

is followed. The interior boundary condition at x1 is defined as:

N(x(t), t) = x(t)− x1 = 0 (42)

Then from equation 41, the λx between the region x1 to x2 can be

written as

H(t1−) = H(t1+)−πT ·
∂N

∂t1
︸︷︷︸

0

λx(t1+) = λx(t1−)+
(

C5 +
λv(t1)
V (t1)

·
C2
C1

)

· [Te(t1−)−Te(t1+)]

+ λv(t1)
V (t1)

·
C8
C1

· sin(α)− λv(t1)
V (t1)

·
C4
C1

· (1− cos(α))

(43)

2.4.1 Simulation Results Having determined all of the

variations in λx(t) and by solving the analytical equations,

the simulations are performed for the given road profile. The

simulation results are presented in the figure 9.

The figure 9, clearly illustrates that although there are changes

in the road grade, this does not effect optimal velocity profile

unless the applied torque values exceed the limits. On the other

hand, the changes in grade leads the influence function λx,

9 Copyright © 2012 by ASME
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Figure 9. The Simulation Results for the Road Profile with Grade.

the Hamiltonian Function and torque values to be piecewise

continuous.

2.4.2 Discussion The analysis performed so far depends

on the assumption that the torque values at singular points do

not exceed the torque limits (0 ≤ Te ≤ Temax). If at any of the

singular points like at positive grade or negative grade regions

the torque limits are exceeded then special considerations are re-

quired. In fact, the equations derived above will not be optimal

solutions.

3 Conclusion

The aim of this research is to develop an analytical solution

to the optimization problem of finding the minimum fuel

consumption of a vehicle given the road and possibly the traffic

light information. In order to find the analytical solution first

the vehicle and the fuel consumption is modelled. However,

soon it is realized that the modelled vehicle results in complex

equations which makes the calculations very hard to solve.

Then the model is simplified in a reasonable way such that it

was possible to find the analytical solutions to the optimization

problem. First, the solution is performed assuming there is no

traffic light and no grade. The solution of the unconstrained

problem, helped to solve the same problem but this time with

the existence of the traffic light. Since for the constrained

problem the analytical equations become more demanding a

numerical solution algorithm is developed and presented in

detail. To decrease the number of iterations, a logical way of

finding the optimal k parameter which determines at which

cycle the vehicle should reach to the traffic light is presented.

Then by extending the knowledge gained, the optimal solution is

determined for the case with known road grade information. Fi-

nally the simulation results for all cases are shown and discussed.

The results clearly show that by some certain simplifications it

is possible to find the optimal velocity profile given all the in-

formation about the vehicle and the trip. Furthermore since the

solution is analytical, the calculations can be performed in rela-

tively short time. As a future work the results are to be compared

with the results obtained from a numerical algorithm in order to

determine the sensitivity of the simplifications made.
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