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ABSTRACT

This paper presents a detailed analysis of the optimal en-

ergy management problem for a plug-in hybrid electric vehi-

cle (PHEV) solved using the Pontryagin’s minimum principle

(PMP). The aim of this analysis is to study the relationships be-

tween the control parameters and the vehicle and driving char-

acteristics. In this study, a relationship between the state and

co-state trajectories with the battery characteristics has been de-

veloped which has not been explored in a similar fashion in prior

literature. Results from sensitivity analysis show a strong asym-

metry in higher and lower estimation of the initial value of the

co-state. A spatial domain analysis is also carried out which

shows quasi linearity of the optimal state of charge (SOC) with

respect to trip length for a combination of driving cycles. Knowl-

edge gained from this exercise enables us to develop an adaptive

energy management strategy.

INTRODUCTION

Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Elec-

tric Vehicles (PHEVs) have been recognized as a promising so-

lution to reduce exhaust emissions and fuel consumption in the

transport sector. In addition to the internal combustion engine

(ICE), HEVs and PHEVs have an electric machine (EM) to pro-

vide tractive energy. Electric energy for the EM comes from

the on-board battery. PHEVs differ from the HEVs as they

have a larger battery pack which can be recharged from an ex-

ternal power source. HEV battery packs are smaller and are

recharged through regeneration onboard. The presence of two

power sources leads to development of an Energy Management

Strategy (EMS) where both the energy sources need to be intel-
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ligently used during a driving event to minimize the operating

costs of the vehicle and emissions. This paper focuses on the

energy management problem in a PHEV. Unlike conventional

HEV, which sustains battery State of Charge (SOC) (”charge-

sustaining (CS)”) over a driving event, the PHEV has the ability

to deplete charge to its lowest allowable value (”charge-depleting

(CD)”) before it is recharged through the electricity grid. It is

desirable to use as much energy from the battery as possible in a

driving event. A traditional approach to tackling the PHEV-EMS

problem has been by the Charge Depleting-Charge Sustaining

(CD-CS) strategy which is implemented in the Chevrolet Volt.

This method involves driving the PHEV in all-electric mode (CD

mode) until a low SOC bound is achieved then the SOC is sus-

tained (CS mode) until the end of the driving event. Another

approach is a ’Blended’ strategy where both the EM and ICE are

used together throughout the driving event, intelligently deplet-

ing the battery SOC to reach its minimum bound at the end of

the driving event. Prior literature shows that the blended strat-

egy achieves better fuel economy compared to the CD-CS ap-

proach [1–3]. It enables efficient battery sizing [2]. As discussed

in [4], in CD-CS mode, the battery experiences higher discharge

currents. The blended strategy has lower battery C-rates and Ah-

throughput (almost 30%) than that in CD-CS mode. The dis-

advantage of the blended mode is that the optimal cost can be

achieved only when the driving event characteristics are known

sl a-priori. The CD-CS strategy on the other hand, does not re-

quire prior knowledge of the driving event. This disadvantage

can be addressed using Intelligent Transporation Systems (ITS),

on-board Global Positioning Systems (GPSs), and Geographical

Information Systems (GISs) that can provide critical informa-

tion about the driving event which can be used for development
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of an optimal control strategy based on the blended mode of op-

eration [1] [5]. It is clear that a blended strategy which takes

minimal information of the driving event and provides near op-

timal results is desirable. A study of the optimal SOC trajectory

under various driving conditions would provide valuable insight

of its behavior and can be used to develop rules for a near opti-

mal blended strategy. It is known that the global optimal solution

to the energy management problem can be obtained through dy-

namic programming (DP) [6–8]. However it is a non-causal ap-

proach. It requires a simulator that runs backwards i.e from the

end of the driving event to the beginning. Moreover, it has high

time and space complexity. An alternative numerical method is

the Pontryagin’s Minimum Principle (PMP) [9, 10]. The PMP

reduces the global optimization problem to a local minimiza-

tion problem of a function called the Hamiltonian. The PMP

solution has the advantage of being able to be run on a forward

simulator. It is also less numerically intensive than the DP. The

PMP provides a set of numerical necessary conditions for a so-

lution to be an extremal of the problem. It has been shown for

an HEV that both the DP and PMP solutions are equivalent [6].

It is also shown that these conditions become sufficient in spe-

cial cases and give the global optimal solution for both HEV

and PHEVs [11]. PMP has been applied in prior literature to

both HEV and PHEV energy management problems [8, 12–14].

Compared to prior literature, this work provides a more detailed

analysis on the selection of the initial value of the lagrangian pa-

rameter λ (λ0). An exclusive relationship has been established

between the SOC, λ trajectories and the battery characteristics.

Sensitivity analysis of the fuel consumption to the parameter

λ0 shows asymmetry when the parameter is estimated higher or

lower than the optimal value. Apart from time domain analysis,

an analysis of the optimal SOC trajectory in the distance domain

has been studied and presented in this work. The paper is divided

into 5 sections. In the next section, we present the vehicle model

used in this study. Then, details of the development of the PMP

based EMS for the PHEV are provided. A detailed analysis of

the simulation results is done. Conclusions and further work are

discussed in the last section.

MODELING OF THE PHEV SIMULATOR

The simulator used in this study is modeled based off of

the simulator developed at the Center of Automotive Research at

the Ohio State University. It was primarily aimed at modeling a

Chevrolet Equinox HEV vehicle for Challenge X student compe-

tition [6, 12, 15–17]. The initial simulator was an experimentally

validated one. It has undergone modifications and improvements

for the purpose of this research. It is a forward simulator which

models a parallel through the road vehicle. The architecture is

shown in Fig. 1, where the front axle is powered by the ICE and

the rear axle by the EM1. The component properties are given in

Tab. 1. A driver model based on PID control enforces the vehicle

1From a control standpoint, any vehicle architecture can be considered. The

through the road hybrid architecture is under experimentation as a PHEV at Ar-

gonne National Laboratories [18] and in production by Peugeot [19] as an HEV.

Figure 1: PARALLEL THROUGH THE ROAD ARCHITECTURE.

Table 1: COMPONENT SIZING

Component Details

Battery Li-ion, 17kWh / 57.5Ah (10.24 kWh usable),

Cylindrical cells,cell radius 0.014m & length 0.065m

90 cells in series and 25 cells in parallel

Electric Motor Peak 43kW@1500RPM and 274Nm@1500RPM

IC Engine L4, 2.4Liter, Gasoline, 92.4kW@6500RPM,

176.5Nm@5000RPM

All-Electric Range 40 miles (64.3 km) (FUDS cycle)

Vehicle 1750 Kg, 2.86m wheelbase

to follow a given drive cycle by providing appropriate accelera-

tion and braking requests. These requests are used to calculate

the required torque at the wheels. The vehicle supervisory con-

troller decides on the optimal split between the ICE and the EM

to deliver the required amount of torque and also minimizes the

criterion.

Powertrain and Vehicle Dynamics Modeling

A brief description of the powertrain modeling approach and

the vehicle model is given in this section. A more detailed mod-

eling section can be found in [6, 15]. A quasi-static modeling

approach is adopted to model the powertrain components. The

ICE model is a static model which neglects crank angle dynamics

and torque oscillations. It is implemented using a torque-speed

map and a fuel consumption map. The torque-speed map pro-

vides physical torque limitations of the engine at different angu-

lar velocities. The fuel consumption map is a function of engine

torque and speed. The electric machine is modeled as a static

model where the motor efficiency is a function of motor torque

and speed. The motor torque is bounded by its physical limi-

tations similar to the ICE. A torque converter model is imple-

mented with a multiplication mode and lock-up mode. The mul-

tiplication mode is based of the Kotwicki model [20] and a sim-

ple lock-up logic is used. The engine torque is transmitted to the

wheels through a six speed automatic gearbox. The electric ma-

chine torque is transmitted through gearbox with constant gear

ratio. Both the gearboxes account for losses through a constant

efficiency. The vehicle dynamics model takes into account aero-

dynamic drag, road grade and rolling resistance of the wheels
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and give vehicle velocity resulting from the torque produced at

the wheels.

Battery Model A validated [21,22] zero order equivalent

circuit model is used to model the energy storage system. It is

characterized by Voc, the open circuit voltage, R0, the battery

internal resistance. VL is load voltage across the cell terminals.

The circuit output equation is given by:

VL =Voc(SOC)− IcellR0(SOC,θ) (1)

If Pcell is the power delivered by a cell then:

Icell =
Voc(SOC)−

√

Voc(SOC)2 −4 ·PcellR0(SOC,θ)

2R0(SOC,θ)
(2)

We consider the open circuit voltage Voc as a function of

SOC and the internal resistance R0 as a function of SOC and

temperature(θ). The battery temperature is a free independent

parameter. It is not involved in the control formulation and is

used to update the battery parameters. Equation (2) shows the

non-linear nature of the battery dynamics that exists due to the

dependence of the battery parameters on the SOC and θ. In the

rest of the paper due to cumbersome notation, the dependence of

these parameters is implied and the explicit notation is dropped.

The SOC dynamics equation for the battery is given by:

˙SOC =−
Icell

Qcell(θ)
(3)

where, Qcell (amp-second) is the nominal charge capacity of the

cell and is a function of temperature. The cells considered have

2.3Ah capacity and 3.3V nominal voltage. There are 90 cells

in series and 25 such modules in parallel which cast together

to give a total of 17Kwh (10.24 KWh usable) capacity at 297

volts. The internal resistance while charging and discharging

and the open circuit voltage and have been calibrated against

experimental data from Li-ion iron phosphate battery. The re-

sistance (R0(SOC,θ)) is taken as a function of SOC and battery

temperature. The open circuit voltage (Voc(SOC)) is a function

of SOC [21, 22].

OPTIMAL CONTROL PROBLEM FORMULATION
The objective of the EMS is to minimize the total fuel costs

in a driving event while fulfilling the torque demanded on the

road by the driver. This can be formulated as a constrained op-

timization problem, where the mass of fuel consumed, m f , is to

be minimized over a given driving cycle, subject to dynamic and

static constraints, i.e.
min

u
J =

∫ t f

0
ṁ f (t,u)dt (4)

s.t. ˙SOC =−
Icell

Qcell

(5)

SOCmin 6 SOC 6 SOCmax (6)

Pbattmin
6 u(t)6 Pbattmax

(7)

u is the control input which is the power delivered by the bat-

tery (Pbatt ), SOCmin and SOCmax are the minimum and maximum

allowable state of charge, t represents time and t f is the total

duration of the driving event. The physical limitations on the

components are incorporated:

Temmin
(ωem)6 Tem 6 Temmax(ωem) (8)

Ticemin
(ωice)6 Tice 6 Ticemax(ωice)

Here, Temmin
and Temmax are the minimum and maximum possible

torque values at a given angular velocity for the electric machine.

Similarly, Ticemin
and Ticemax are the limits of torque at a given ICE

angular velocity for the ICE. The SOC dynamics equation is in

the form:

ẋ = f (x,u, t) (9)

where x = SOC and u = Pbatt . Unlike a conventional hybrid, for

PHEV operation, it is required that the SOC go from a maximum

level to minimum on completion of a driving event as given in

Eq. (6). In this case, the minimum state of charge is taken as

30% and the maximum as 90%. The PMP [9] provides with a set

of necessary conditions for the optimal control trajectory u∗(t).
The Hamiltonian function is given by:

H = ṁ f (t)+λ(t)ẋ(t) (10)

Here, λ(t) is the co-state which varies with time. The necessary

conditions that must be satisfied by the optimal control trajectory

u∗(t) are:

λ̇∗(t) =−
∂H (x∗(t),u∗(t),λ∗(t), t)

∂x

ẋ∗(t) =
∂H (x∗(t),u∗(t),λ∗(t), t)

∂λ

x∗(0) = x(0) (11)

x∗(t f ) = SOCmin

H (x∗(t),u∗(t),λ∗(t), t)6 H (x∗(t),u(t),λ∗(t), t)

SOCmin 6 x∗(t)6 SOCmax

The ∗ denoting optimal policy is dropped as we consider only

the optimal control policy in the remaining formulation. From

Eq. (3), (10), (11):

λ̇(t) =
1

Qcell

λ(t) ·
∂Icell(u(t),Voc(x),R0(x,θ))

∂x
(12)

λ0 needs to be calibrated. λ0 is tuned iteratively for each of the

driving cycles considered and for varying trip lengths so that the

SOC reaches the minimum SOC value at the end of the driving

event. Logically, this method is non-causal as the entire driving

event is to be known sl a-priori. Within the operating range of the

SOC and a nominal temperature of 250C, the battery resistance

is relatively flat and the partial derivative of R0 with respect to x
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can be assumed zero. Consider Eq. (12),

λ̇ =
1

Qcell

λ ·
∂Icell

∂Voc

∂Voc

∂x
(13)

From Eq. (2),

∂Icell

∂Voc

=
−Icell

√

V 2
oc −4 ·PcellR0

(14)

Consider λ̇
ẋ
. From Eq. (3), (13), (14),

λ̇

ẋ
=

λ
√

V 2
oc −4 ·Pcell ·R0

·
∂Voc

∂x
(15)

From Eq. (15), it is seen that the ratio of λ̇ and ẋ is strongly

related to the battery characteristics: the partial derivative of Voc

with x and the battery internal resistance variation with respect to

SOC. Just to ensure that the final SOC does not violate the global

constraint in a real time application, a penalty can be added to

the cost functional. This penalty is formulated as an integral

constraint as shown in [8]. The integral constraint φ(x(t)) and

piecewise penalty function w are given by:

φ(x(t)) = w(x) ·
∫ t f

0
ẋ(t) (16)

w(x) =







K if x < SOCmin

−K if x > SOCmax

0 else

Here, K is a constant that is iteratively determined to ensure that

the cost of using the battery is high enough or low enough to keep

the SOC trajectory within the global SOC constraints. It is also

possible to implement a smooth penalty function with the same

behavior. φ(t) is added to the criterion function to give:

J =
∫ t f

0
ṁ f +w(x) · ẋ(t)dt (17)

The constraint appears an an additive function to the cost func-

tional. Within the operational range of the state of charge (90%

to 30%), the value of w(x) is zero and does not change the origi-

nal formulation.

ANALYSIS OF THE SIMULATION RESULTS

The PHEV simulator was run for different cycles with dif-

ferent metrics. Table 2 shows the different drive cycles along

with some of their properties. FUDS is the Federal Urban Driv-

ing Schedule, FHDS is the Federal Highway Driving Schedule,

MAN is a Manhattan driving cycle, US06 is a high acceleration

aggressive driving schedule, WVUinter is a West Virginia inter-

state drive cycle and WVUsub is a West Virginia suburban cy-

cle [23, 24]. The optimal SOC trajectory for repeated cycles is

quasi-linear as shown in Fig. 2. It is piecewise quasi-linear for a

driving event consisting of a combination of different drive cy-

cles. If the optimum value of λ0 is chosen, it is observed that the

Table 2: DRIVING CYCLE STATISTICS

Cycle Vrms Vmean arms Tractive Energy per mile

(m/s) (m/s) (m/s2) (MJ/km)

FUDS 11 8.8 0.63 0.29

FHDS 21.9 21.4 0.30 0.20

MAN 4.4 3.0 0.60 0.44

WVUinter 17.9 15.1 0.26 0.12

WVUsub 21.6 7.1 0.42 0.24

US06 24.1 21.41 0.98 0.35
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Figure 2: OPTIMAL TRAJECTORY OF SOC FOR DIFFERENT

DRIVE CYCLES
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Figure 3: REPEATED FUDS: x AND λ TRAJECTORIES WITH TIME

SOC hardly ever violates the global constraints in Eq. (6). The

value of λ0 is tuned iteratively to reach SOCmin at the end of the

driving event.

State and co-state trajectories analysis

A look at state x and co-state λ variation with time for a case

of repeated FUDS cycle shows that the shapes of λ(t) and x(t)
are very similar (see in Fig. 3). The ratio of ẋ and λ̇ is compared

to ∂Voc

∂x
in Fig. 4 with respect to the SOC. λ̇

ẋ
follows the shape of

∂Voc

∂x
over the driving cycle for FUDS. In Fig. 4, the similarity in

the shape is also observed for 5 different driving events: 5 FUDS

cycles, 4 FHDS cycles, 3 WVUinter and a combined drive cy-

cle consisting of a MAN cycle, WVUinter, WVUsub, FUDS cycle

and another MAN Cycle. On the x-axis is the state of charge as

it depletes during the driving event from 90% to 30%. Figure 4

confirms the result from Eq. (15), that the ratio of λ̇ and ẋ is di-

rectly related to the battery characteristics viz. the battery open

circuit voltage variation with respect to SOC. The battery internal

resistance in this case is almost flat in the operating range of the
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Table 3: PERCENTAGE CHANGE IN KMPL TO CHANGE IN λ0

Change in λ∗

0

Drive -10% -5% -1% 1% 5% 10% kmplconv

Cycle

FUDS -3.3 -2.5 -0.6 -6.3 -21.4 -36.5 -61.7

FHDS -4.8 -3.3 -0.9 -11.7 -47.3 -59.1 -61.3

WVU -4.9 -3.1 -0.9 -12.2 -41.5 -51.6 -59.7

Comb1 -2.8 -2.1 -0.4 -7.1 -36.7 -52.0 -53.1

SOC and does not have a major effect on the ratio. The similar-

ity in shape remains across the different drive cycles indicating

independence of the shape from the drive cycle.

Sensitivity of Fuel Consumption to λ∗

0

Table 3 shows the percentage variation in kilometer per liter

(kmpl), consumption for sub-optimal choices of λ0 compared to

the optimal km/l value for a trip. Comb1 is a combination of

manhattan and FHDS driving cycles. The table is developed for

a driving event of around 80 km (50 miles). The driving distance

was increased by repeating the driving cycle. Clearly, a value

lower than the optimal λ0 for a trip has a better performance than

a higher estimate. For a lower estimate the penalty function is

enforced when the global constraints are violated and the SOC

slides along the lower boundary (30%). For a higher estimate,

the split of power selected by the control strategy leads to greater

use of the ICE and more fuel consumption while the battery does

not discharge as much causing the km/l to be very high. kmplconv

is obtained from a conventional vehicle. It shows that a high es-

timate of λ0 leads to km/l values comparable to the conventional

vehicle. For long driving cycles ( 160 km), it has been seen (see

Tab. 4) that a 10% higher estimate of λ0 is less costly compared

to similar estimate for 50 miles. Also, the kmpl loss becomes less

sensitive to the driving cycle. Table 4 shows a 4% loss in kmpl

for -10% estimate of λ0 for the four driving cycles considered

and almost 25% for a +10% estimate.

Optimal co-state variation with driving distance

The variation of the optimal λ0 after tuning for different

driving cycles is shown as a function of distance driven and RMS

acceleration of the trip for different driving cycles in Fig. 5. λ∗

0

is seen to be a monotonically increasing function of the distance

traveled. As the distance traveled increases, the slope tends to de-

Table 4: PERCENTAGE CHANGE IN KMPL TO ±10% λ0 VARIA-

TION FOR LONG DRIVING DISTANCES

Drive Cycle -10% 10%

FUDS -4.13 -24.82

FHDS -3.97 -26.49

WVU -3.92 -23.54

Comb1 -4.05 -24.21
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FOR REPEATED FUDS CYCLE

crease for each of the drive cycles. To determine the relationship

between different drive cycles and the optimum λ0 various met-

rics of the driving cycles like mean velocity, RMS-acceleration

and tractive energy are considered. It is seen in Fig. 5 that the

distance traveled is a stronger metric than RMS acceleration and

RMS acceleration is not a sufficient metric. This was observed

with other metrics as well.

Distance domain analysis

Distance to be traveled is something that can be obtained be-

fore the driving event using GPS devices. Logically, we extend

the analysis from time into distance domain. The state and co-

state trajectories for a repeated FUDS cycle is provided in Fig. 6.

Quasi-linearity in the optimal SOC trajectory is obtained in the

distance domain as well. The co-state trajectory is also shown.

As observed in Fig. 4, λ̇∗ is greater at the ends compared to ẋ∗

because of the nature of ∂Voc

∂x
. Simulations have been done for

5 Copyright © 2012 by ASME



Table 5: LEGEND FOR DIFFERENT DRIVING CYCLES

Number Cycle Number Cycle Number Cycle

1 FUDS 4 US06 7 Freeway

2 FHDS 5 MAN 8 Test

3 WVUsub 6 WVUinter 9 Test2
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Figure 7: x∗ TRAJECTORY VS DISTANCE FOR DIFFERENT COM-

BINATIONS OF DRIVE CYCLES

combinations of driving cycles. Each number denotes a driving

cycle (see Tab. 5) and the order of the numbers gives the com-

bination. Figure 7 shows that for the various combinations, the

optimal state trajectory remains quasi-linear with respect to the

distance covered. Though the state trajectory has a piecewise lin-

ear property for different driving cycles (Fig. 2) with respect to

time, it remains quasi-linear in the distance domain.

CONCLUSION AND FURTHER WORK
This paper has presented an analysis of an EMS based on

PMP applied to a PHEV. PMP introduces a design parameter:
the Lagrangian multiplier, λ. The mathematical and simulation
analysis shows that there is a strict co-relation between the bat-

tery characteristics and the trajectory of λ. The shape of λ̇
SȮC

is

the same as ∂Voc

∂SOC
. This is seen to be independent of the driving

cycle or travel distance. The initial value of λ, λ0, is identified
as a critical calibration parameter. Various simulations were run
for different travel distances and different driving scenarios and
the optimal λ0 was found iteratively. At distances around 80 km,
the fuel consumption rate turns out to be very sensitive to λ0 es-
pecially when the estimate is higher than the optimal λ0 value.
This asymmetry indicates that it is always better to have a lower
estimate of λ0 when it comes to minimizing fuel consumption.
The optimum value of λ0 is a monotonically increasing function
of the distance traveled. As the distance traveled increases, the
dependence of λ0 on optimality gradually decreases. An analysis
in the distance domain showed that the optimal SOC trajectory
is quasi-linear for a repeated cycle and remains quasi-linear with
respect to distance driven for a combination of different driv-
ing cycles. All simulations in this work were performed with
zero road grade. Changes in road grade are being considered
which show piecewise-linearity of optimal SOC trajectory with
distance [25]. The results of this analysis will be used to develop
an online practical strategy.
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