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Abstract: This paper proposes an experimentally validated capacity degradation model for
Li-Ion batteries deployed in plug-in hybrid electric vehicle (PHEV) applications. An aging and
characterization campaign aimed to mimic the real battery usage at low state of charge during
charge sustaining operation was conducted on six Lithium iron phosphate (LiFePO4) battery
cells. We present an analytical model, driven by experimental data, that relates the main aging
factors under which the battery cells have been tested to capacity fade. State-of-health (SOH)
and prediction of battery end-of-life (EOL) algorithms can be designed with the proposed model.
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1. INTRODUCTION

Vehicle electrification is one of the key thrusts of the
automotive industry today, driven by the goal to reduce
dependence on petroleum and CO2 emissions. the heart
of an electrified vehicle is the battery, and today elec-
trochemical energy storage is the single most important
barrier to the widespread introduction on electrified ve-
hicles, whether pure EVs plug-in hybrids (PHEVs) or
hybrids (HEVs), because of the life cycle cost of battery
systems. Understanding aging phenomena in batteries is
an important step towards reducing the cost of such energy
storage solutions in vehicles.

Among different battery chemistries, Li-ion based batter-
ies are today regarded as the most suitable technology
for hybrid and electric vehicles applications as they offer
greater power and energy density compared to the other
available battery chemistries, at least in the short and
medium term. Although Li-ion batteries technology seems
to be most suitable to better exploit all the advantages
of powertrain electrification, there are many aspects of
this technology that need to be improved before significant
PHEV and EV market penetration becomes possible. Key
issues are: battery cost, life, safety, and reliability. In
particular, a deeper understanding of battery aging will
provide key insights useful to improve the longevity and
reliability of batteries.

1 Fabio Todeschini conducted this work while he was a visiting
scholar at the Center for Automotive Research The Ohio State
University.
2 Corresponding author {e-mail: onori.1@osu.edu}.

Batteries age with use (Vetter et al. [2005], Schmidt et al.
[2010], Onori et al. [2011]) and battery aging manifests
itself through capacity loss and internal resistance in-
creasing, which, in turn, cause faster temperature rise in
operation, reduced charge acceptance, lower voltage, and
increased self-discharge. Much research has been carried
out to estimate those effects in batteries used in auto-
motive applications (Saha and Goebel [2009], Rubagotti
et al. [2009], Plett [2005], Plett [2004], X. Tang [2011]). In
particular, in this work we focus on studying the capacity
fade phenomenon in batteries used in PHEV applications.
We investigate and model the correlation between the so-
called stress factors and the degradation due to the cycle
aging for state-of-health assessment, remaining useful life
estimation and ultimately battery life extension. Stress
factors are factors that characterize the domain of opera-
tion of the battery, such as, temperature, state-of-charge,
depth of discharge, etc.

The paper is structured as follows. First, we describe an
experimental aging campaign conducted at The Ohio State
University Center for Automotive Research (OSU-CAR)
to replicate battery usage in charge-sustaining operation
in a PHEV, that is when the PHEV has depleted much
of the stored charge after providing EV range. The aging
results are presented in Section 2. Next, aging data is used
to develop a capacity degradation model that is presented
and validated in Section 3 and Section 4. Finally, in Section
5 we present some remarks and propose future work to
conclude the paper.
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Fig. 1. A123 Lithium iron phosphate (LiFePO4) battery
cell.

Table 1. Summary of aging campaign.

i Crate [ 1
h ] SOC [%] SOC [%] Tc [ min

cycle ] Ahc [ Ah
cycle ]

#1 2 0 10 6 0.46

#2 4 0 10 3 0.46

#3 8 0 10 1.5 0.46

#4 2 0 30 18 1.38

#5 4 0 30 9 1.38

#6 8 0 30 4.5 1.38

2. AGING CAMPAIGN EXPERIMENTS

The primary factors that influence battery aging (i.e. stress
factors) in PHEV applications are described in Onori et al.
[2012], Laboratory [2010]). They are:

• ∆SOC: State of Charge (SOC) range in which the
battery works;
• Crate: Current severity defined as:

Crate =
I

Qn
(1)

where I is the current and Qn is the nominal battery
capacity;
• T : battery skin temperature.

To understand how the aging process is affected by the
stress factors, an aging campaign was conducted on a set of
A123 ANR26650 cylindrical Li-Ion Cells (Fig. 1) at OSU-
CAR. The battery cell characteristics are as follows:

• Nominal capacity: Qn = 2.3Ah
• Nominal Voltage: Vn = 3.3V
• Max continuous discharge current Imax,c = 70A
• Operative Temperature: Top = −30◦ C ÷ 60◦ C

Each cell was aged under different load conditions that
consisted of varying the (Crate) and SOC range (∆SOC =
SOC − SOC) at a fixed temperature of 55◦C. The aging
temperature of 55◦C was chosen to accelerate the aging
experiments. These conditions are summarized in Table 1.

The aging experiments were designed to emulate the
charge-sustaining mode of operation in PHEV applica-
tions, to understand and ultimately quantify the degrada-
tion when the battery operates at low SOC and through
a shallow DOD. Starting from SOC = 0 % 3 each cell was
aged up to 10%, 20% and 30% SOC at three different
Crate, namely 2C, 4C and 8C. The design of experiment
gives rise to the matrix of 9 experiments summarized in
Table 1.

3 The choice of cycling the battery starting from operating SOC =
0% was made to: 1. accelerate the aging; 2. have a more stable way
to control the SOC of operation, as the threshold of zero SOC can
be determined by simply monitoring the voltage.
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Fig. 2. Zoom of current profile (Crate ≈ 2 1
h ) and SOC

(SOC = 0 %, SOC = 10 %) during experiment #1.

Each battery was aged via a square-wave current profile,
which results in triangular SOC profile between SOC and
SOC (Fig. 2), where SOC = 0% and SOC is 10%, 20%
and 30% SOC, respectively.

Assessments tests were performed periodically during the
aging activity of each cells at the same temperature of
the aging. These included: capacity tests, electrochemical
impedance spectroscopy (EIS) measurements and high-
power pulse tests (HPPT) (see Laboratory [2010] for more
detail).

In particular, capacity tests were performed by first fully
charging the battery at a current rate of Crate = 1 1

h , then,
letting the battery rest for an hour, and finally, discharging
it at Crate = 1 1

h . Every capacity test was performed at a
controlled temperature of T = 55◦C. The battery capacity
under each test condition is calculated according to:

Qi(nk) = tdisch · Idisch (2)

where tdisch and Idisch are the discharge time and the
discharge current during the capacity test and Qi(nk)
represents the battery capacity after nk aging cycles, for
the i− th battery cell (see Table 1).

As a new estimate of battery capacity is obtained after
each capacity test, the aging cycling profile is periodically
updated after each capacity test, and the time interval in
which the battery is charged (tup, see Fig. 2) is decided
from the most updated capacity experiment as a function
of tdisch:

tup,k =
tdisch · ∆SOC

100
I

Inom

(3)

where ∆SOC and I take values on the given experiment
and Inom is the nominal battery current of 2.3A (corre-
sponding to Crate = 1 1

h ).

In summary, the aging protocol for each experiment i
consists of the following steps:

1 Perform an initial capacity assessment test on a new
battery (the initial capacity Q(n0) is obtained);

2 Age the battery with the square-wave discharge/charge
protocol of Fig. 2. Starting with the battery com-
pletely depleted (0%SOC), the battery is charged
with a given Crate current for tup,k seconds, until it

reaches SOC (see Table 1); then the discharge phase
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takes place (at the same Crate of the charge phase);
when the voltage drops below 2.5 [V ] ( 0%SOC) an-
other aging cycle is executed.

3 Perform periodic assessment tests during the aging to
originate new estimates of battery capacity, Q(nk),
as the battery ages. (Note that capacity tests were
performed roughly every two weeks).

4 From the newly assessed capacity values Q(nk) the
discharge time tdisch is updated, and used in Eq. 3
to compute tup,k which is in turn used in the aging

cycling to control the SOC.

The process described above is repeated for each battery
until the end-of-life criterion is reached, which corresponds
to a drop in capacity of 20% with respect to its nominal
value 4 . A complete aging experiment could last from 3 to
6 months.

During the experiments, current (I), voltage (V ) and
temperature (T ) were acquired with a sample frequency
fs = 10Hz.

The dark grey curve in Fig. 2 illustrates an aging cycle
consisting of a charge current (negative by convention) fol-
lowed by a (positive) discharge current. The total ampere-
hours (Ah) throughput corresponding to each aging cycle
is:

Ahc = Q(nk) ·∆SOC · 2 (4)
where, Qi(nk) is the last update of capacity value, and the
period (in minutes) each aging cycle lasts is given by:

Tc =
Ahc
I
· 60 (5)

where I is the aging current used for a given experiments.
As the battery capacity decreases with aging, the two
quantities, Ahc and Tc, will also decrease over battery
lifespan. In the next section, we present the data collected
during the aging campaign and propose a new model to
predict capacity degradation.

3. EXPERIMENTAL DATA ANALYSIS

Capacity data collected from the 6 battery cells are shown
in Fig. 3. The capacity degradation measured after nk
aging cycles for the generic experiment i, is defined as:

Ci(nk) =
Qi(nk)

Qi(n0)
· 100 (6)

where Qi(n0) = Qi(0) is the measured capacity at begin-
ning of life and the index k indicates the k-th capacity test
(k = 0, . . . , N , where N represents the number of capacity
points obtained foe each experiments). For instance, the
capacity assessed at the first capacity test done after 300
aging cycle for battery cell #2 is:

C2(n1) =
Q2(n1)

Q2(n0)
· 100 (7)

with n1 = 300.

The capacity degradation can be correlated to either the
total ampere-hours throughput, defined as:

Ah(t) =

∫ t

0

|I(τ)|dτ (8)

4 The choice of 20% capacity degradation is in keeping with auto-
motive industry standards, wherein a battery is considered no longer
suitable for automotive use when 20% of its life has been depleted.
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Fig. 3. Capacity points and corresponding fitting curves
for the six aging experiments.

or the total number of aging cycles, defined as follows:

n =
Ah

2 ·∆SOC ·Q(nk)
(9)

The one-to-one relationship between total ampere-hours
throughput to total number of aging cycle allows to express
the capacity degradation either as a function of Ah or as
a function of n.

In this work we choose to express capacity degradation as
a function of n, using the following power law fitting curve:

Cf,i(n) = ai · nbi (10)

where the coefficients ai and bi are fitting parameters
related for experiment i. This choice is in agreement with
the cumulative aging law proposed in Serrao et al. [2009].

The capacity degradation points obtained for each of the
six experiments are fitted with the model of Eq. 10 thus
obtaining the continuous curves shown in Fig. 3.

The goodness of the fit is evaluated through the root mean
square (RMS) error:

RMSi =

√√√√ N∑
k=0

(Ci(nk)− Cf,i(nk))2 (11)

where Cf,i(nk) is the value of the capacity estimated from
the fitting data of the i-th battery after nk aging cycles
whereas Ci(nk) is the actual capacity data point.

The low mean RMS error,

RMS =

∑6
i=1RMSi

6
= 0.24 % (12)

shows good performance of the proposed model structure.

As it emerges from Fig. 3, the capacity degradation behav-
ior strongly depends on the way the battery is aged, i.e.,
Crate and on ∆SOC of operation, and in principle, the
fitting parameters will depend on these as well. A closer
look at the dependence of the fitting coefficient bi on the
operating conditions shows that the exponent of the power
law is practically constant, as one can notice on Fig. 4.
For this, an average value of the fitting exponents, i.e.,
b = (b1 + b2 + . . .+ b6)/N) was chosen as exponent of the
proposed power law model of Eq. 10 leading to the form:

Cf,i(n) = ai · nb = ai · n1.36 (13)
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Hence, the model suggested in Eq. 10 indicates that the
dependence of capacity degradation on the stress factors
is contained in the fitting parameters ai, as Fig. 6 and
Fig. 7 show, where variations of the coefficient ai are shown
as a function of different aging conditions. Moreover,
the ai coefficients represent the initial rate at which the
degradation occur as a function of different aging factors.

Figure 6 shows an almost linear trend of coefficients ai
with respect to ∆SOC, while from Fig. 7 the dependency
between the coefficient ai and Crate is such that the higher
the Crate the higher the degradation (as one could expect).
This latter relationship is modeled through an exponential
function.

4. CAPACITY DEGRADATION MODEL

The analysis carried out in the previous section leads to the
formulation of the following capacity degradation model:

C∆SOC,Crate(n) = a(∆SOC,Crate) · n1.36 =

=
(
α+ β ·∆SOC + γ · eCrate

)
· n1.36

(14)

which gives the actual capacity value after n aging cycles,
knowing the condition at which the battery is operating,
namely ∆SOC and Crate. In particular, a least square
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Fig. 7. Coefficient ai parametrized in terms of ∆SOC.

based optimization study is used to identify the coefficient
α, β and γ in the model, which are found to be: α = −5.31 · 10−5

β = 8.36 · 10−6

γ = 2.69 · 10−8
(15)

The curve fit procedure outlined above results in an rms
error of 1.48 · 10−5.

The fitted surface that expresses the dependence of ai
with respect to ∆SOC and Crate is shown in Fig. 8. This
function, named severity factor map is used to quantify
the degradation, in terms of capacity decrease, occurring
to the battery when the environmental conditions or
stress factors are known. It is used in the battery aging
model developed in Onori et al. [2012] to predict battery
remaining useful life.

5. CONCLUSION

In this paper we have proposed a capacity degradation
model for state-of-health assessment in automotive batter-
ies. The model links battery current severity or Crate) and
∆SOC with the capacity degradation behavior. The model
obtained can be used for various purposes. For instance:

• It can provide general usage guidelines to minimize
battery aging. The model predicts battery degrada-
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tion in charge sustaining mode of operation in PHEV
applications.
• Given the knowledge of actual stress factors (which

are usually known in automotive applications), the
proposed aging model can be used to assess battery
state-of-health and predict battery end-of-life.
• the model could also give general usage guidelines

for HEV and EV applications. In order to do this,
the model should be validated around different SOC
ranges, using a similar procedure as that described in
this paper.

6. FUTURE WORK

In this work we correlated stress factors to capacity fade.
It is well known, though, that aging manifests in batteries
in two different ways: power fade and capacity fade. The
first one is caused by a resistance increase, the second by
a capacity decrease. Capacity fade is the more important
effect in PHEVs and EVs applications. This because an
aged battery pack cannot store and deliver the energy
needed to satisfy the desired electric cruising range.

A similar approach can be adopted to also evaluate
changes in resistance due to aging. A procedure for esti-
mating such resistance using measured voltage and current
waveforms (Fig. 2) is presented in (Spagnol et al. [2010],
Suttman [2011]).

Following the approach used to model capacity fade, one
can define battery end of life (EOL) to correspond to a
given increase in its internal resistance, for example 100%
of its initial value.

A method for incorporating both capacity fade and re-
sistance increase into a single aging index is proposed in
Serrao et al. [2009].

Future work will include further investigation of the cor-
relation between capacity fade and resistance increase, to
determine whether one of the two factors may be sufficient
to estimate battery EOL.

Finally, future work will include temperature effects in the
aging model.
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