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Abstract— Lithium-ion batteries are central to the powertrain
transformation taking place in the automotive industry, but the
duration, cost, and complexity of experimental work for the
characterization of aging mechanisms drive the need for models
and model-based estimation approaches. This paper presents
a model-based nonlinear parameter estimation method for the
characterization of long-term capacity fade of Lithium-ion cells.
The proposed approach relies on a reduced-order model of a
LiC6/LiFePO4 cell, describing the mass and charge transfer in
the solid and liquid phase, and the governing electrochemical
principles. The model, validated with experimental data from a
battery cell at beginning of life, is used to conduct a sensitivity
analysis of the capacity to a subset of physicochemical param-
eters that are hypothesized to evolve throughout the battery’s
life. After isolating the most significant model parameters char-
acterizing the long-term capacity degradation, experimental
data from battery aging studies were used to solve a system
identification problem to identify the degradation trend for
the aging-related parameters. The developed tool is applicable
to model-based diagnostic algorithms for ascertaining battery
state-of-health and predicting the remaining useful life for
Li-ion cells subjected to relevant usage and environmental
conditions for automotive applications.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries are central to the powertrain
transformation taking place in the transportation industry
as a key technology for enabling the electrification of the
automobile. However, a lingering concern with this chemistry
is the overall durability, reliability and cycle life of the cells
when subjected to diverse usage and environmental factors.

Battery cell manufacturers and system integrators must
conduct extensive experimental activity in the design stage
of an automotive battery pack to obtain an assessment of the
aging process. Significant amounts of testing and validation
are necessary prior to the introduction of any new technology
for an automotive application, and Li-ion batteries are no
exception. The length, cost, and complexity of such experi-
ments drive the need for models and model-based estimation
methods that are able to describe the aging process of the
battery and predict the performance degradation.

In this scenario, predictive models based on electrochem-
ical principles can be an effective support to understanding
the underlying physicochemical mechanisms that cause ca-
pacity and power fade at the system level. While modeling,
estimation and control for electrochemical energy storage
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systems have been the subject of extensive research over
the past decades, there is still a lack of definitive, predictive
understanding of the physicochemical processes that lead to
the long-term degradation of the system, and in particular of
the relationship between the life and usage conditions.

From an automotive perspective, operating conditions vary
depending on the degree of hybridization of the vehicle [7].
With reference to plug-in hybrid electric (PHEV) or pure
electric (EV) vehicles, it is critical to characterize the battery
degradation phenomena resulting from sustained operation
in the low State of Charge (SOC) region, and compare the
aging that occurs under these conditions to studies conducted
at other operating points [2], [1].

Some authors have applied non-linear regression to fit a
subset of aging parameters to capacity test data at low rates
[14]. Recently published work regarding the LiC6/LiFePO4

couple empirically analyzed the capacity fade rate for charge-
depleting operation [6] and also examined the physicochem-
ical mechanisms [19] using experimental characterization
methods. A model-based analysis applied to characterize the
aging process of the LiC6/LiFePO4 couple subjected to an
automotive duty cycle may provide further opportunities for
online state-of-health (SOH) estimation and prognostics in
automotive applications.

With this goal in mind, this paper presents a model-based
approach for nonlinear parameter estimation, with the objec-
tive of monitoring the long-term capacity fade of Lithium-
ion cells. The proposed approach relies on a reduced-order
model of a LiFePO4/graphite cell, describing the mass and
charge transfer in the solid and liquid phase, and govern-
ing electrochemical principles. The model is validated on
experimental data from a battery cell at beginning of life
(BOL). The model is applied to solve a system identification
problem that identifies a degradation law for aging-related
parameters. Parameter estimation is performed following a
batch procedure using capacity test data from different stages
of battery life. A relationship is established between the
aging parameter set and the cell capacity, and validated using
additional experimental data gathered during assessment tests
of an aging campaign. The presented work is an initial step
towards developing the capability to estimate capacity fade
during automotive operating conditions.

II. DESCRIPTION OF THE ELECTROCHEMICAL
MODEL

The proposed model structure follows from the single
particle principle, which has been applied to both Li-ion and
NiMH previously [4], [13], [15], [17]. The main modification
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Fig. 1: Schematic of modeled unit cell showing linear diffusion in
liquid phase and spherical diffusion in a representative particle.

to this structure is the inclusion of a time-varying resistance
that accounts for the resistive reactant nature of the LiFePO4

electrode [18]. This resistive reactant effect causes an in-
creasing resistance with respect to depth-of-discharge during
a current pulse response.

The model description begins with the output voltage
(V (t)) definition,

V (t) =(Up(t)− Un(t))− Vr(t)− (φe(Lc, t)− φe(0, t))
− (ηp(t)− ηn(t))−RcI(t)− Vh(t)

(1)

which states that the system is modeled by subtracting the
overpotential that arises from various electrochemical phe-
nomena from the time-varying open circuit voltage (OCV).
The functional form of OCV for LiC6 (Un(t)) and LiFePO4

(Up(t)) is reported in [12], and good agreement is found for
the system of this work.

As discussed in [11], a significant path dependence of the
open circuit voltage for both LiFePO4 and LiC6 has been
observed, leading to hysteresis. This phenomenon is modeled
as a first order system with gain (H) and time constant (τh)
that depend on SOC and temperature (T ) [5]

dVh
dt

= τh(T )|I| (H(SOC, sign(I), T )− Vh) (2)

The three main forms of overpotential are ohmic, kinetic,
and concentration, and these can occur in the solid or liquid
phase. First, the overpotential associated with the solid phase
is discussed. While ohmic overpotential may be neglected
in the negative electrode due to the high conductivity of
LiC6 (>100 S/m), it is a significant loss in the positive
electrode. The increasing resistance with depth of discharge
of the LiFePO4 electrode arises due to selectively charging
or depleting the active material in an ohmically dominated
fashion, such that the current density moves from areas with
higher content of carbon coating to lower. This effect is
accounted for with a resistance (Rr(t)) that increases with
respect to depth of discharge, related to the conductivity of
LiFePO4 (σp) and the empirically defined conduction length
(Lcond(t)) which increases in time with rate proportional to
the current

Rr(t) = σpLcond(t) (3)

The ohmic loss from this resistance, along with a similar loss
due to contact resistance (Rc) between the active material

and current collector, are quantified as Vr(t) = Rr(t)I(t)
and Vc(t) = RcI(t) respectively.

Concentration overpotential in the solid phase occurs due
to the limited ability of lithium ions to diffuse through
the active material. It is modeled by solving the diffusion
equation describing transport within a representative active
material particle

∂cs,i
∂t

=
Ds,i

r2
∂

∂r

(
r2
∂cs,i
∂r

)
(4)

The surface value of lithium concentration (cs,i(Ri, t)) gov-
erns electrochemical behavior in lithium-ion batteries. Con-
centration overpotential results from the variation between
the mean concentration and the surface value.

The kinetic overpotential is governed by the Butler-Volmer
law. The intercalation current density (j(x, t)) is assumed
constant with respect to space (x) in this work,

ji(x, t) = ji(t) =
I(t)

ALiεi
(5)

where ALi denotes the electrode volume and εi is the
active material volume fraction of the electrode. Inverting
the Butler-Volmer law leads to the expression for kinetic
overpotential

ηi =
R̄T

αF
sinh−1

(
ji(t)

2aiki
√
cs,i(Ri)ce(cmax,i − cs,i(Ri))

)
(6)

Increased values of the kinetic rate constants (ki) will lead
to decreased kinetic overpotential. As the surface concen-
tration approaches the saturation value (cmax,i), the kinetic
overpotential increases.

The liquid phase contains ohmic and concentration sources
of overpotential. The governing equation of transport within
the liquid is [9]

∂ce
∂t

= De
∂2ce
∂x2

+ j(x, t) (7)

where the intercalation current is piecewise constant, defined
by Eq. (5) in the positive and negative electrode and taking
a value of zero in the separator region. The potential is
dependent upon the concentration according to

∂φe
∂x

= − ie
κ

+
R̄T (1− t+0 )

F
(1 + β)

∂ln(ce)

∂x
(8)

The activity coefficient (β) is treated as a tunable constant
parameter. The potential at x = 0 is set to zero, which im-
plies only potential differences are considered relevant. Then
Eq. (8) may be integrated directly to obtain the potential
difference between x = 0 and x = Lc after solving Eq. (7).

Finally, the cell capacity (Q) predicted by the model is
defined as the sum of charge removed from the cell within
specified voltage limits:

Q =

∫ tf

0

I(t) dt (9)

where the total time of discharge tf is determined based on
elapsed time when the lower cell voltage limit is reached.
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TABLE I: Discharge capacity sensitivity summary.

Parameter S(Q)
z0 1.01× 100

y0 0
εn 1.01× 100

εp 2.92× 10−4

z0 ∪ εn 1.92× 100

z0 ∪ y0 1.01× 100

z0 ∪ εp 1.01× 100

εn ∪ y0 1.01× 100

εn ∪ εp 1.01× 100

εp ∪ y0 2.92× 10−4

z0 ∪ εn ∪ y0 1.92× 100

z0 ∪ εn ∪ εp 1.92× 100

z0 ∪ εp ∪ y0 1.01× 100

εn ∪ εp ∪ y0 1.01× 100

z0 ∪ y0 ∪ εn ∪ εp 1.92× 100

III. SENSITIVITY ANALYSIS

A sensitivity study was conducted to examine the main
factors and factor interactions that could contribute to ca-
pacity fade, based on the described model. The parameter
subset is chosen as the active material volume fractions in
the positive and negative (εp and εn, respectively), and the
initial amount of cyclable lithium in the positive (y0) and
negative (z0) normalized by the saturation value. These four
parameters have been deemed significant by prior work [8].
To compute the sensitivity, the model capacity prediction is
determined using the nominal parameter set and a parameter
set perturbed by 10% (∆P ). The sensitivity of capacity with
respect to each parameter is

S(Q) =
∆Q/Q

∆P/P
(10)

Table I summarizes the results of the sensitivity study when
including factor interactions for discharge capacity.

Based on this preliminary analysis, it appears that the
discharge capacity is not correlated to the positive electrode
parameters. While these parameters have a noticeable effect
on the charge capacity, they are effectively unobservable
during discharge due to the two-phase nature of the LiFePO4

electrode and the cell composition ranges. For this rea-
son they can be removed from the parameter identification
process, but devising methods for identifying the aging
properties of the positive electrode will be the subject of
future work.

IV. EXPERIMENTAL ANALYSIS AND MODEL
VALIDATION

In order to evaluate system-level capacity and power fade,
a battery aging campaign was conducted at the Center of
Automotive Research (CAR), using LiFePO4 cells produced
by A123. Table II summarizes the main specifications for the
cell considered in the study.

The cell terminal voltage, current, and temperature have
been recorded using a sample frequency of 10 Hz. The aging
campaign conducted on the cells consists of charge/discharge
cycling while controlling the cell surface temperature at
55◦C using a Peltier junction. This elevated temperature is

TABLE II: ANR26650 cell specifications.

Cathode Active Material LiFePO4

Anode Active Material LiC6

Nominal Capacity 2.3 Ah
Nominal Voltage 3.3 V

Internal Impedance 8 mΩ
Maximum Continuous Discharge 70 A

Maximum Pulse Discharge (10 seconds) 120 A

TABLE III: Specifications for aging characterization of the cells
considered in this work.

Factor Cell 1 Cell 2 Cell 3
Cell Surface Temperature 55oC 55oC 55oC

SOC Range 0 - 30% 0 - 10% 0 - 20 %
Current Rate 2C 2C 2C

chosen to accelerate the degradation process while ideally
maintaining the same degradation mode as typical auto-
motive operating conditions. Depth-of-discharge and current
rate are varied using a full factorial design-of-experiments
approach to investigate the effect of each factor on the
performance degradation rate. State of charge information is
obtained by post-processing the measured current throughput
of the cell, and the duty cycle current is controlled to produce
a triangular SOC waveform between selected maximum
(SOC) and minimum (SOC) values. For this study, data from
three Li-ion cells are used with aging protocols summarized
in Table III. An example of the input current profile used
for the aging cycles of Cell 1 and the calculated SOC are
plotted in Fig. 2.

Using the voltage and current data from the aging exper-
iments, the electrochemical cell model was validated. The
initial parameter values were identified at the beginning of
battery life using a combination of current pulse data and
applying the estimation techniques described in this section
to a BOL capacity test. The model prediction compared with
experimental data is given in Fig. 3.

The relaxation dynamics after the lower voltage limit is
reached are not captured accurately due to an unknown
and difficult to characterize amount of hysteresis as SOC
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Fig. 2: Current and SOC profile during aging campaign of Cell 1.
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Fig. 3: Comparison of predicted voltage (line) and experimental
data (points) during cycling. Current input is from Fig. 2.
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Fig. 4: Detailed comparison of predicted voltage (line) and experi-
mental data (points) showing onset of voltage knee and relaxation
following charge interval.

approaches zero. However, good agreement is obtained dur-
ing the relaxation following the charge current pulse and
throughout the discharge phase. Furthermore the onset of the
voltage knee that effectively limits the discharge capacity
is predicted well, and prediction of voltage during charge
converges as SOC increases. Fig. 4 displays these aspects in
greater detail.

During the aging campaign, capacity assessment tests were
periodically recorded beginning with battery BOL and at
specified current throughput intervals. The capacity assess-
ment tests were conducted by first charging the cell using
a constant current of 1C, followed by a 45 minute constant
voltage hold at 3.6 V as specified by the manufacturer. Then,
a complete discharge is performed on the cell at a constant
current of 1C until the lower voltage limit of 2.5 V is reached.
During each assessment, the cell surface temperature was
maintained at 55oC.

V. NONLINEAR ESTIMATION OF CELL AGING
PARAMETERS

A nonlinear estimation procedure was defined based on the
reduced-order electrochemical model to obtain the evolution

TABLE IV: Bounds for parameter estimation algorithm.

Parameter Upper Bound Lower Bound
z0 0.5 0.9
εn 0.2 0.7
σp 0 0.5
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Fig. 5: Capacity degradation and results of parameter estimation
process (data from Cell 1).

of the aging parameter set throughout the cell life. Based on
the preliminary sensitivity analysis and results available in
the literature [14], [19], [10], the normalized initial lithium
concentration in the anode, z0, and the active volume fraction
εn were considered as the parameters that mostly affect
the capacity degradation. In addition, the conductivity σp
of the positive electrode is included in the parameter set to
account for the noticeable increase in slope of the normally
flat discharge curve for the batteries used in this work. The
conductivity decrease during aging is expected and most
likely has a role in power fade as well.

A nonlinear least square procedure is implemented based
on the trust region reflective algorithm [3], [16]. The algo-
rithm consists of finding the optimal set of parameters ~P ∗ =
[z∗0 , ε

∗
n, σ

∗
p] minimizing the cost function in Eq.(11), where

the error ~e is a vector of differences between the experimental
data and the predicted voltage (ê(t) = Vexp(t)− V (t)). The
nonlinear least square problem is cast as:

~P ∗ = argmin
[z0,εn,σp]

(
1

2
(∆~P )T

∂2~e

∂ ~P 2
(∆~P ) + (∆~P )T

∂~e

∂ ~P

)
(11)

The gradients of Eq. (11) are computed using a finite-
difference approach. The adaptation of the aging parameter
vector is based on Eq. (12)

If ~e(~P + ∆~P ) < ~e(~P ), ~P = ~P + ∆~P

Else ~P = ~P
(12)

The trust region reflective algorithm is particularly advan-
tageous because it allows for bounded estimation and the
aging parameters in question have physical boundaries. The
applied parameter bounds are summarized in Table IV.

The parameter identification results and measured capacity
for the entire cycle life of the cell are in Fig. 5.
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Fig. 6: Discharge curves obtained during BOL, EOL, and two
intermediate capacity tests, comparing experimental measurements
(points) and model estimates (lines). Data from Cell 1

The normalized amount of cyclable lithium is roughly
constant for the cell examined in Fig. 5. Both the active
material volume fraction and conductivity have a decreas-
ing trend with respect to charge throughput; however, the
decrease in conductivity is noticeably larger. The decrease
of active material is in agreement with experimental studies
from literature [19] which state that active material loss
in the negative electrode can be a significant source of
performance degradation in the LiC6/LiFePO4 system. Note
that even though the normalized amount of cyclable lithium
is constant, the decreasing amount of active material implies
that the actual amount of cyclable lithium is also decreasing.
Further detailed analysis is needed to identify the mecha-
nisms underlying these trends.

Fig. 6, compares the model voltage prediction to the
capacity test data from BOL, two intermediate stages of
testing, and end of life (EOL). As expected, the cell capacity
progressively decreases as aging cycles continue towards
EOL. For clarity, results from four capacity assessments
are plotted, though data were recorded for several more
intermediate stages between BOL and EOL.

As Fig. 6 shows, good agreement is obtained at all stages
of cell life, with maximum error of approximately 20mV
between model prediction and experimentally measured volt-
age. From a system standpoint, the apparent close correlation
between the active material volume fraction and the cell
capacity suggested by Fig. 5 is quite useful. Fig. 7 examines
this correlation in greater detail, while also displaying a
plotted linear fit

Q = 0.953εn + 0.034 (13)

Recall that the conductivity was included only to reduce
the RMS error between experimental and model voltage
prediction. Therefore, even though it does tend to decrease
during aging, it is not included in the capacity regression.

To validate the correlation between the active material
volume fraction and the cell capacity, the process is repeated
for a two additional cells from the broader aging campaign,
whose test specifications are summarized in Table III. First
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Fig. 7: Cell capacity measured experimentally during assessment
test versus active material volume fraction of the negative electrode,
as identified from the estimation procedure (data from Cell 1).
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Fig. 8: Comparison of measured and estimated cell capacity from
εn versus charge throughput (left-axis), and estimation error versus
charge throughput (right axis). Data from Cell 2.

the active material volume fraction (and the other aging pa-
rameters) are estimated using the process applied previously.
Then Eq. (13) is used to give an estimate of the capacity
measured during each assessment test for the second cell.
Finally the estimated capacity and experimentally measured
capacity are compared in Fig. 8 to provide evidence for the
utility of the correlation.

The predicted capacity is generally within 0.1 Ah of the
actual value using this approach, which is useful considering
cell-to-cell capacity variations are always present as well.

The utility of this finding lies in the fundamental sig-
nificance of capacity versus that of the active material
volume fraction. Capacity is a concept defining the amount
of charge contained in an electrochemical energy storage
device between specified voltage limits. The volume fraction
is an actual physical parameter which effects the electrical
dynamics of the cell, and as such it may be possible to
estimate its value from voltage and current measurements.
Combined with an open loop model for capacity fade,
accurate online estimation of cell capacity may be possible.
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VI. CONCLUSIONS AND FUTURE WORK
In this paper, a reduced-order model has been presented

and used to solve a non-linear parameter estimation problem
for characterization of capacity fade in lithium ion batteries.
After conducting a sensitivity analysis of the discharge
capacity with respect to several model parameters, a set
of aging parameters were identified, namely describing the
active material volume fraction, and the initial amount of
cyclable lithium.

The result of the parameter estimation is that capacity
is correlated to a physical parameter that is observable
from the cell output voltage. This suggests it is possible
to perform estimation of capacity from the battery current-
voltage dynamics without performing a distinct capacity test,
a result that is significant for the estimation of battery SOC
and SOH for hybrid electric vehicle applications. Future
work will focus on developing estimation algorithms for
SOH and investigating prognostics methods.
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