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Abstract — The problem of adapting the equivalence factor of the Equivalent Consumption Mini-

mization Strategy (ECMS) to achieve a real time implementable sub-optimal solution of the problem

of energy management in hybrid electric vehicle (HEV) has been the object of extensive research over

the last decade. Contributions in the open literature range from methods based on prediction of driving

cycle to driving pattern recognition to feedback from state of charge. In this paper, we first propose a

classification of the methods that have been proposed to design an Adaptive-ECMS (A-ECMS) controller

and then we carry out a comparative analysis in simulation of three adaptation laws falling into the class

of algorithms of adaptation through feedback of SOC. Simulation results are performed on a parallel

hybrid vehicle and show the performances of the three adaptation laws as compared to the optimal

ECMS (a suitable proxi for the global optimal solution given by the dynamic programming algorithm).
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INTRODUCTION

The goal of this paper is to provide an overview of the avail-

able approaches to online energy management strategies for

HEVs, implemented according to the structure of Adaptive-

ECMS controllers. The paper begins with a reminder of

the derivation of ECMS from Pontryagin’s Minimum Prin-

ciple, then provides a review of the available approaches to

online implementation of this strategy, followed by a section

comparing simulation results of three strategies.

1 HEV OPTIMAL CONTROL PROBLEM

It is well-known that Pontryagin’s minimum principle can be

applied to the HEV energy management problem to derive

its optimal solution [1,?], in the form of the ECMS. Consider

a hybrid vehicle following a prescribed driving cycle. If all

fast dynamics in the powertrain are neglected, as well as

the thermal phenomena, the vehicle can be described as a

system in which the battery state of charge (SOC) x is the

only state variable. The system state equation is then

ẋ(t) = f(x, u, t) = −
1

Qbatt

Ibatt(x, u, t) (1)

where Ibatt is the battery current and Qbatt the battery

charge capacity.

The control variable u(t) represents a measure of the

power split between the two forms of energy storage systems

on board (fuel and battery); for instance, the ratio of the

engine power to the total power demand.

The optimal control problem solved by the energy man-

agement module consists in the minimization of the perfor-

mance index

J(u) =

∫ tf

0

L(u, t)dt. (2)

In the case fuel consumption minimization is the only opti-

mization objective, the instantaneous cost is the fuel flow
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rate, or the power equivalent to it:

L(u, t) = Pfuel(u, t) = Qlhvṁf (u, t) (3)

(Qlhv being the constant fuel energy density).

The optimization problem is extended to the time inter-

val [0, tf ] and is subject to several constraints. These

include:

Initial conditions and system dynamics:

x(0) = x0 (4)

ẋ(t) = f(x, u, t) (5)

Instantaneous constraints:

umin(t) ≤ u(t) ≤ umax(t) ∀t ∈ [0, tf ] (6)

xmin ≤ x(t) ≤ xmax ∀t ∈ [0, tf ] (7)

Global constraints:

x(tf ) = xf (8)

1.1 Optimal control solution

The global optimal energy management control problem

which consists in minimizing (2) subject to (1), (4), (6),

(7) and (8) is reduced to an instantaneous minimization

problem on the Hamiltonian function H .

The Hamiltonian is written as [2]

H(x, u, t) = Pfuel(u, t)− λ(t) ·
1

Qbatt
Ibatt(x, u, t). (9)

From [2] the co-state is decoupled into two factors, one

constant (the battery total energy (1) Ebatt) and the other

dimensionless (the term s(t)), as:

λ(t) = −Ebatts(t) = −Voc,maxQbatts(t). (10)

When λ is replaced with this expression, the Hamiltonian

function can be interpreted as an equivalent power

H(x, u, t) = Pfuel(u, t) + s(t) · Pech(x, u, t) (11)

where s(t) represent the equivalence factor, i.e. a weighting

factor that transforms the battery power into fuel power.

Pech(ξ, u, t) = Voc,maxIbatt(ξ, u, t) is the electrochemical

power, i.e. the power that corresponds to the effective bat-

tery discharge. The term equivalence factor comes from the

fact that in charge-sustaining HEVs, where all energy comes

ultimately from the fuel, the battery charge or discharge

are translated respectively into equivalent fuel consumption

or equivalent fuel savings (by replacing use of fuel energy

with use of electrochemical energy). In fact, Eq. (11) was

1. The battery energy is the product of its charge capacity
and open circuit voltage at full charge: Ebatt = QbattVoc,max.

originally derived from intuitive considerations on energy

balance, which resulted in the equivalent consumption min-

imization strategy or ECMS [3].

The equivalence factor s(t) in (11) is proportional to the

co-state λ(t) and evolves, in principle, according to

ṡ(t) = −s(t)
∂Pech(x, u, t)

∂x
. (12)

Eq. (12) is often neglected because the actual variation of

s is very small, thus ṡ(t) ≈ 0 and s(t) = s0.

The solution obtained is really optimal only in off-line

implementation, since it depends on the value of the co-state

s, which is obtained using iterative search in order to find

the only value that generates a charge-sustaining solution, in

which SOC(tf ) = SOC(t0). The iterative search is possible

thanks to the fact that there is a direct and bi-univocal

relation between the value of the co-state and the value of

SOC reached at the time tf (as shown in Figure 1).
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Figure 1

Effect of s on final SOC value. Note the correlation
between the type and length of driving cycle and the
effect of s0 on the final ∆SOC

2 ADAPTIVE ECMS METHODS

ECMS can generate the optimal energy management solu-

tion for a given cycle, provided that the strategy is prop-

erly tuned by choosing the appropriate value of equivalence

factor. The equivalence factor plays a crucial role in the

charge sustaining ECMS; it trades off chemical against elec-

tric power.

As shown in Figure 1, if the equivalence factor is very

large, then the ECMS tends to recharge the battery in

almost all operating points. If the equivalence factor is very

small, then the ECMS favors pure electric driving.
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Since perfect tuning is possible only with a-priori knowl-

edge of the cycle, research efforts have been directed towards

online adaptation of ECMS, in order to achieve quasi-

optimal results even without a-priori tuning of the strategy.

Although all these methods were named A-ECMS, they

inherently differ from each other for the method used to

update the equivalence factor.

We recognize three categories of methods we can group

the different approaches to design A-ECMS. They are:

A. adaptation based on driving cycle prediction;

B. adaptation based on driving pattern recognition;

C. adaptation based exclusively on feedback from SOC.

Combinations of the methods have also been proposed. In

particular, SOC feedback is always necessary for online

implementation, and therefore it is used methods A and

B as well, even if it is not the main adaptation variable.

Method A uses information about the future (predicted),

while methods B and C only use current/past information.

In the following a description of the methods falling into

each of three groups is given, highlighting their main char-

acteristics.

In general, the three categories above do not represent

stand alone methods for A-ECMS implementation, but

rather a framework to design the update and adaptation

of the equivalence factor; their accuracy can be improved if

used together with other techniques.

2.1 Adaptation based on driving cycle prediction

The driving principle behind this class of methods is: when

no information on future driving conditions is available,

optimal fuel economy cannot be guaranteed. Thus, this fam-

ily of algorithms aim at using any sort of future information

to feed the ECMS control module with the more suitable

value of equivalence factor.

Historically, this was the first adaptation approach. In

fact, A-ECMS was first proposed in [4] (and [5,?] by the

same group of authors). In this series of papers, the term A-

ECMS was coined and conceived as a real-time energy man-

agement strategy obtained adding to the ECMS framework

an on-the-fly algorithm for the estimation of the equivalence

factor according to the driving conditions. The main idea

being a periodical refresh of the control parameter according

to the current road load, based on prediction of driving con-

ditions. The identification of the driving mission combined

with past and predicted data are used to determine the

optimal equivalence factor over the optimization segment.

The ECMS module is effectively augmented with a device

able to relate the control parameters to the current velocity

profile. The reference SOC is kept constant in this A-ECMS

prediction scheme.

In [6], the online estimation of the equivalence factor is

based on a look-ahead horizon defined in terms of energy

at the wheels, thus measurements are used to determine at

each instant the most likely behavior (charging or discharg-

ing) in the near future.

In [7] instead, an adaptation scheme similar to [4] is

presented which uses a predictive reference signal generator

(pRSG) in combination with a SOC tracking-based con-

troller (implemented in the form of feedback from SOC) for

the battery SOC. The pRSG computes the desired battery

SOC trajectory as a function of vehicle position such that

the recuperated energy is maximized despite the constraints

on the battery SOC. To compute the SOC reference trajec-

tory, only the topographic profile of the future road seg-

ments and the corresponding average traveling speeds must

be known.

In [8], the authors use a Model Predictive Control (MPC)

based strategy and utilize the information attainable from

Intelligent Transportation Systems (ITS) to establish a pre-

diction based real-time controller structure. A constant

reference SOC is considered and A-ECMS implemented as

in [4] is compared with a MPC type controller based on the

prediction of future torque demand. The performances of

the two controllers are very similar, indicating that A-ECMS

with driving mission prediction is somehow equivalent to

MPC. What emerges from the paper is also the importance

of information provided by ITS and the impact of the accu-

racy of ITS information on HEV energy consumption.

2.2 Adaptation based on driving pattern recognition

In [9] an approach for A-ECMS based on driving pattern

recognition is presented. In this research, a driving pattern

recognition method is used to obtain better estimation of

the equivalence factor in different driving conditions. While

the vehicle is running, a time window of past driving condi-

tions is analyzed periodically and recognized as one of the

representative driving patterns, according to the scheme of

Figure 2.

A finite number of possible driving patterns is recognized,

each corresponding to a pre-defined value of the equiva-

lence factor (pre-computed from offline optimization). The

battery SOC management is also maintained using a PI

controller to keep the SOC around a nominal value (thus

using feedback from SOC). Differently from the methods

seen before, such control algorithm does not require the

knowledge of future driving cycles and has a low compu-

tational burden but higher memory requirement. Results

obtained in this research show that the driving conditions

can be successfully recognized and good performance can

be achieved in various driving conditions while sustaining

battery SOC within desired limits.

2.3 Adaptation based on feedback from SOC

The most recent and interesting approaches developed to

design A-ECMS are based on the feedback of the current
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Figure 2

A-ECMS scheme based on pattern recognition ([9]).

SOC [10,11,12]. All these methods try to change dynami-

cally the value of the equivalence factor in order to contrast

the SOC variation (and thus maintain its value around the

reference level). In all these methods the SOC reference is

considered constant.

Conceptually, these approaches differ in that, while

[10,11] update the equivalence factor at each time instant,

[12] relies on the concept of charge-sustaining horizon,

imposing charge-sustainability over a finite time horizon. If,

on one hand these methods are easy to implement, robust

and computationally cheap, on the other hand their perfor-

mance relies on a suitable tuning of the parameters. This

operation, most of the time very tedious, represents the

only weakness of these methods. The prediction of driving

mission can definitely help to find better guesses of those

parameters thus improving optimality, as well as speed of

convergence and robustness.

3 COMPARISON OF ADAPTATION METHODS BASED

ON SOC FEEDBACK

As mentioned, in this class of methods the equivalence factor

s(t) is corrected with a feedback on the system state, in

order to reach the reference value at steady state, according

to the scheme of Figure 3.

In this section we review three ways to achieve adaptation

of the equivalence factor through SOC feedback. The first

approach was suggested by Chasse et al. [11], who proposed

a method based on a simple proportional controller of the

form:

s(x, t) = s0 + kP
(

xref − x(t)
)

(13)

The second method was proposed in [10] and [13] and

consists in the following adaptation law, based on a PI

Adaptation 

law
Δ!"#!

!

!"#$ !"#%&'ECMS(%&' Vehicle)$%&'

Figure 3

adaptation law block diagram based on SOC feedback.

controller:

s(x, t) = s0 + kP
(

xref − x(t)
)

+ kI

∫ t

0

(

xref − x(τ )
)

dτ

(14)

In the following, Eqs. (13) and (14) are referred to as con-

tinuous A-ECMS (P) and continuous A-ECMS (PI), respec-

tively. In practice, in (14) the integral action is added to the

proportional one used in (13), in order to guarantee better

performance when tracking a constant reference value, at

the price of having three tuning parameters (s0, kP , kI)

instead of two (s0, kP ). The adaptation is performed at

each time instant.

The third adaptation law considered in this paper is a

discrete time function proposed in [12]:

sk(x, T ) =
sk−1 + sk−2

2
+ k

d
P

(

xref − x(T )
)

(15)

hereafter called discrete A-ECMS. Eq. (15) is in the form

of autoregressive moving average (ARMA) model, with two

autoregressive terms and one moving average term. The

key feature of (15) is that the adaptation takes place at

regular intervals of duration T , rather than at each time

instant. This allows for large excursion of SOC as opposed

to a quasi-constant SOC trend obtained when using (13)

and (14), as also shown in the simulation results.

The adaptation methods based on driving cycle predic-

tion or pattern recognition can also be cast into the formal-

ization provided by (14), because they can be interpreted

as methods for tuning s0 and/or xref during the vehicle

operation, using external information to provide a better

estimate of the baseline equivalence factor or the reference

SOC profile.

4 SIMULATION RESULTS

In this section, the three A-ECMS strategies based on SOC

feedback are compared in simulation, being applied to the

same vehicle model. The test case is a simple parallel hybrid

vehicle with the characteristics shown in Table 1. The driv-

ing cycles are part of the Artemis family: Urban, Extra-

urban and a composition of the two.

The vehicle model is purely longitudinal and quasi-static,

including vehicle inertia and the standard representation
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Figure 4

Comparison of the strategies: evolution of SOC and equivalence factor, with initial condition s0 > sopt. Left: Artemis
Urban cycle (2 repetitions); right: sequence of Artemis Urban / Extra Urban / Urban).

TABLE 1

Main characteristics of the vehicle

Vehicle mass 1800 kg

Engine max. power 100 kW

Motor max. power 25 kW

Battery energy capacity 1.5 kWh (5400 kJ)

of road load based on rolling and aerodynamic resistances.

The backward simulation approach is used, i.e. the torque

demand is computed from the prescribed vehicle speed and

acceleration. This allows for completely fair comparison of

the strategies, since in all cases the total power delivered at

the vehicle is exactly the same. The battery model is repre-

sented by a purely resistive circuit, with both open-circuit

voltage and resistance dependent on the state of charge.

The simulation time step is set at 1 second, which is

coherent with the modeling hypotheses.

In the continuous A-ECMS (P and PI) the equivalence

factor is updated at each time step. The value of the propor-

tional feedback gain is set to kP = 5 following the suggestion

in [11], while the integral gain was set to kI = 0.005 after

some manual tuning.

As for the discrete A-ECMS, the adaptation period is

set to T = 120 s, which is deemed to be a time long enough

for the imposition of charge-sustainability, but short enough

to allow the correction of the equivalence factor before the

SOC limits are reached. The value of the feedback gain is

tuned manually to kdP = 3.

The solution obtained from ECMS when optimally tuned

with constant equivalent factor, denoted as ECMS opt, is

used as benchmark in our study (it is equivalent to the opti-

mal solution obtained with dynamic programming, as shown

in [14]). This optimal solution is obtained by performing an

iterative search of the constant value of s that generates

∆SOC = 0. Figure 4 shows a comparison of the three

adaptation strategies to the ECMS opt. The results are

presented for two driving cycles. In both cases, the initial

value of equivalence factor is higher than the optimum. It

is possible to observe that – as expected – the introduction

of the integral feedback in the continuous A-ECMS allows

for the equivalence factor to converge towards the optimal

value, and the SOC variation to converge towards zero.

On the other hand, the P-only case shows some residual

error and is less effective. The discrete A-ECMS allows by

design more ample SOC variation than the continuous coun-

terparts, thanks to the less frequent correction; its ability

to reduce the SOC difference at the end of each cycle is

comparable to the continuous PI version. All strategies

are very close to each other and to the optimal ECMS

solution in terms of corrected fuel consumption (i.e fuel

consumption accounting for differences between initial and
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Figure 5

Comparison of the strategies with synthetic metrics: SOC variation over the cycle and fuel consumption (corrected with
SOC variation). Left: Artemis Urban cycle (2 repetitions); right: sequence of Artemis Urban / Extra Urban / Urban).

final SOC). Overall, it appears that this kind of feedback-

corrected strategies are capable of generating a solution

which is both robust (SOC does not deviate excessively)

and quasi-optimal (fuel consumption is very close to the

optimal result). The continuous PI appears visually to be

more stable (smaller SOC deviation), while the discrete A-

ECMS allows for more ample use of the battery. Synthetic

metrics comparing all strategies are shown in Figure 5, in

which two cases are considered for the initial equivalence

factor: either higher or lower than the optimal value. From

these results, the continuous PI method appears to provide

the solution with the lowest SOC variation at the end of the

cycle, while all the methods are fairly close to the optimum

in terms of the corrected fuel consumption (the difference is

in the order of 1-2 %).

5 CONCLUSION

This paper proposed an overview and comparison of

Adaptive-ECMS strategies for HEVs. We presented a com-

parative analysis of three A-ECMS algorithms belonging to

the family of methods which use feedback from SOC to

perform the adaptation of the equivalence factor for online

energy management. The results show that methods exclu-

sively based on SOC feedback and accounting for cumulated

error (continuous PI or discrete A-ECMS) provide solutions

that are robust and very close to the optimum, which means

that more advanced adaptation methods, based for example

on driving cycle prediction, would not significantly improve

the overall results. This conclusion is valid for the cases

shown here, in which the SOC does not reach the boundary

values, but it may not be true for vehicles with very small

batteries, of for more extreme driving cycles, e.g. including

important altitude variation: in that case, the ability to

predict a substantial change in power demand may make the

difference between reaching or not the SOC boundaries, and

therefore may allow to improve the overall results. There-

fore, future work will also include comparison of A-ECMS

methods based on driving cycle prediction, for driving cycles

including altitude and/or a smaller battery.
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