
A RULE-BASED STRATEGY FOR A SERIES/PARALLEL HYBRID ELECTRIC
VEHICLE: AN APPROACH BASED ON DYNAMIC PROGRAMMING

Domenico Bianchi∗

Department of

Electrical and Information Engineering

Center of Excellence DEWS,

University of L‘Aquila

L‘Aquila, 67100 Italy

domenico.bianchi@univaq.it

Luciano Rolando∗

Dipartimento di Energetica

Politecnico di Torino

Torino, 10129 Italy

luciano.rolando@polito.it

Lorenzo Serrao

Center for Automotive Research

The Ohio State University

Columbus, OH 43212 USA

serrao.4@osu.edu

Simona Onori

Center for Automotive Research

The Ohio State University

Columbus, OH 43212 USA

onori.1@osu.edu

Giorgio Rizzoni

Center for Automotive Research

Department of Mechanical Engineering

The Ohio State University

Columbus, OH 43212 USA

rizzoni.1@osu.edu

Nazar Al-Khayat

Tung-Ming Hsieh

Pengju Kang

Cummins Inc.

Columbus, IN 47201 USA

nazar.al-khayat@cummins.com

pengju.kang@ge.com

tung-ming.hsieh@cummins.com

ABSTRACT

Dynamic programming (DP) provides the optimal global

solution to the energy management problem for hybrid electric

vehicles (HEVs), but needs complete a-priori knowledge of the

driving cycle and has high computational requirements. This ar-

ticle presents a possible methodology to extract rules from the

dynamic programming solution to design an implementable rule-

based strategy. The case study considered is a series/parallel

HEV, in which a clutch allows to switch from one configuration

to another. The strategy works according to a two layer policy:

the supervisory controller, which decides the powertrain config-

uration (either series or parallel), and the energy management,

which decides the power split. The process of deriving the rules

from the optimal solution is described. Then, the performance

of the resulting rule-based strategy is studied and compared with

the solution given by the dynamic programming, which functions

∗This work has been developed during a period of 7 months as Visiting

Scholar at Center for Automotive Research of the Ohio State University.

as a benchmark.

1 INTRODUCTION

Hybrid Electric Vehicles (HEVs) represent a powerful

means to save fuel and reduce CO2 emissions. Their perfor-

mance strongly depends on the energy management strategy on-

board of the vehicle. The HEV control problem involves the de-

termination of the optimal power flow and, namely, the power

split between the internal combustion engine and the electric

motors. Finding the sequence of optimal power split at each

time step to minimize the fuel consumption over a driving cy-

cle is the aim of the energy management control for HEVs. It

is known [1, 2] that the dynamic programming (DP) seeks for

the global optimal solution once there is complete knowledge of

driving cycle. However, the strategy is not implementable online,

for the need of a-priori knowledge of the driving cycle and the

elevated computational requirements. Therefore, other strategies
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are implemented, mostly based on empirical rules [3,4] or instan-

taneous minimization [5–7]. The strategy presented in this paper

belongs to the first family: it is a rule-based (RB) strategy, thus

easily implementable, and is derived from observation of the op-

timal solution obtained with dynamic programming, as initially

proposed in [8]. The motivation for a rule-based strategy for

this is to derive a quasi-optimal solution that requires the lowest

possible computational requirements, even lower than methods

based on instantaneous minimization. The RB approach, being

based on a relatively simple set of rules, does not involve min-

imization or table look-up and therefore is very fast computa-

tionally. The paper focuses on a series-parallel hybrid architec-

ture, in which a clutch allows to switch from one mode to the

other, as described in Section 2. The presence of a discrete mode

change makes the control problem more complex and introduces

the need to distinguish between supervisory controller and en-

ergy management controller. These concepts are illustrated in

Section 3, together with the formulation of the control problem.

An optimal solution to the problem is found using Dynamic Pro-

gramming, as illustrated in Section 5. However, since this al-

gorithm requires complete knowledge of the driving cycle in ad-

vance and is extremely requiring in terms of computational loads,

we illustrate in Section 6 a method to derive an implementable

controller based on its results. Section 7 provides simulation re-

sults comparing the rule-based strategy to the optimal solution

obtained by DP.

2 POWERTRAIN ARCHITECTURE

Hybrid electric vehicles (HEVs) are commonly classified on

the basis of their powertrain architecture, i.e. the way in which

the various powertrain components are arranged and the ratio

of maximum electrical to mechanical (engine) power on board

the vehicle. Traditionally, two main categories have been distin-

guished: series and parallel configurations. In series HEVs, at

least two electric machines are present: a motor and a generator.

The motor is the only mean of providing power to the wheels; it

receives electric power from either the battery pack or from the

generator, run by an internal combustion engine. Thus, the bat-

tery and engine power are summed electrically. In parallel HEVs,

on the other hand, mechanical gearings allow the engine and one

or more electric machines to drive the wheels; in other words,

the power of the engine and the electric machine(s) is summed

mechanically at the transmission level.

More sophisticated architectures includes higher degree of free-

dom and greater opportunity for fuel economy. The architecture

considered in this article belongs to this category of powertrain

architectures. The application of this powertrain is towards com-

mercial trucks and composed of two electric machines (called

in the following motor and a generator), a Diesel engine and a

clutch.

The internal combustion engine is directly connected to the

generator GEN while the motor is connected to the powertrain.

When the clutch is open, the vehicle behaves as a series HEV,

since the engine velocity is independent from the vehicle speed

and only the electric motor is able to provide torque to the wheel.

However, the presence of the clutch gives some additional alter-

natives. When the clutch is locked, the engine and both electric

machines are connected to the powertrain, the vehicle behaves as

in a parallel HEV, summing the torque of the three machines. In

this configuration, the engine can drive the vehicle on its own or

be assisted by the electric motor.

This particular kind of hybrid powertrain is usually defined

combined series-parallel. The vehicle can operate in all-electric

mode, series-hybrid mode or parallel-hybrid mode, depending

upon which is most advantageous given the current operating re-

quirements. The increased flexibility allows to merge the advan-

tages of each architecture: the all-electric mode achieves zero-

emission driving for a limited range; the series mode tends to

be more efficient at low speed and in stop-and-go cycles, since

the engine speed is independent from vehicle speed (and thus

low-speed, low-efficiency operation can be avoided); the parallel

mode is more efficient at higher load and speed, where it elimi-

nates the double power conversion of the series mode.

With the combined series-parallel architecture, the HEV

controller must decide on how to share the total power de-

mand between the available machines and command the clutch

to switch between various modes of operation.

3 CONTROL PROBLEM FORMULATION

The optimal control problem in a HEV consists in finding

the minimum fuel consumption during vehicle operation, while

respecting the design limitations of each component and the driv-

ability/performance specifications. The aim is to minimize a cost

function (integral cost) defined as an integral over a finite hori-

zon. The finite horizon typically corresponds to a complete reg-

ulatory driving cycle or a short real-world trip. The optimization

objective, considered in this work, is the fuel consumption during

a trip and the constraints are:

- charge-sustainability: the battery SOC at the beginning and

the end of the trip should be equal

- drivability constraints: at each instant, the total torque out-

put of the powertrain should be equal to the driver’s demand;

- actuator limitations: at each instant, the output of each ma-

chine in the powertrain (engine, motor, and generator) can-

not exceed its maximum torque/power rating; similarly, the

total battery power must remain within the acceptable limits

in both charge and discharge operation.

In this vehicle architecture there are several control vari-

ables: the status of the clutch (open or locked) and the status

of the engine (on or off) are discrete control variables that de-

termine the operating mode of the powertrain; the torques of the

individual machines are continuous variables and determine how

the power request is shared between components. Formally, the

clutch status is represented as:
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C =

{

0 clutch open

1 clutch locked
(1)

and, similarly, the engine status is given by

E =

{

0 engine off

1 engine on
. (2)

The power split is defined by the values of the torques deliv-

ered by the two electric machines, TEM (motor torque) and TGEN

(generator torque). The four input variables are gathered in the

following control vector, defined for each time step k:

uk =
{

Tmc1,k, TGEN,k, Ck, Ek

}

(3)

The hybrid controller is divided in two layers: the value of

the variables C and E is determined at the supervisory controller

level, while TEM and TGEN are determined at the energy man-

agement level, respecting the constraints on powertrain opera-

tion. The remaining degree of freedom of the powertrain, i.e.

the transmission gear index gtr, is chosen by the transmission

controller, which is assumed to be external to the energy man-

agement and supervisory controller, and embedded in the trans-

mission; therefore, the gear index is treated as an external input

in this context. The vehicle velocity, the rotational speed of the

three machines, and the driver’s torque demand are also external

inputs.

The problem is formally defined as finding the control law

uk, k = 1, ...,N that minimizes the cost

J =
N−1

∑
k=0

m f (uk,k), (4)

where m f ,k is the fuel mass flow rate at time k, subject to the

constraints:

0 ≤ PICE,k ≤ PICE,max ∀k = 0,1, ...,N −1 (5)

PEM,min ≤ PEM,k ≤ PEM,max ∀k = 0,1, ...,N −1 (6)

PGEN,min ≤ PGEN,k ≤ PGEN,max ∀k = 0,1, ...,N −1 (7)

Pbatt,min ≤ Pbatt,k ≤ Pbatt,max ∀k = 0,1, ...,N −1 (8)

SOCmin ≤ SOCk ≤ SOCmax ∀k = 0,1, ...,N −1 (9)

where PICE is the engine mechanical power, PEM is the motor

electrical power, PGEN is the generator electrical power, Pbatt is

the battery power. The subscripts max and min refer to the max-

imum and minimum limits of each variable. An additional con-

straint is, of course, the dynamic equation of the state of charge,

described in Section 4.

4 MODEL OF THE HYBRID ELECTRIC VEHICLE

Two different approaches to the HEV modeling can be

adopted: backward or forward (with respect to the physical

causality principles) [9]. In the forward approach the vehicle

speed is a consequence of a torque delivered by the powertrain,

in response to the demand generated by the driver model (usu-

ally a PID controller that compares the actual velocity with the

desired value). In the backward approach, instead, no driver is

necessary, since the vehicle speed is supposed known and the

torque necessary to obtain it is computed by the model.

In this paper a backward, quasi static simulator is used to

implement the dynamic programming algorithm, because it al-

lows to treat the vehicle speed as an external input rather than a

dynamic state. The vehicle speed, defined by the driving cycle, is

used to calculate the vehicle loads; then, through the powertrain

model, both fuel consumption and battery SOC are computed.

The vehicle loads block contains all the parameters needed to

compute the power demand. Starting from the driving cycle in-

puts, it is possible to calculate the tractive force at the wheels as:

Ftrac = Finertia +Froll +Faero +Fgrade. (10)

From Ftrac and the wheel speed ωwheel , with transmission

efficiencies and ratios, it is possible to compute both the power

and torque request upstream of the gearbox, as well as the speed

of the gearbox input shaft.

Since the transmission ratio is assumed to be independent

from the HEV powertrain controller and is considered as a pa-

rameter, the torque, speed and power at the gearbox input repre-

sent the request that the hybrid propulsion system must satisfy.

If the system is in the series configuration, both the engine

and the generator are isolated from the gearbox since the clutch

is open; therefore the engine torque can be written as:

TICE =−TGEN +Taux,m (11)

where Taux,m is the torque requested by mechanically-driven aux-

iliary loads. The engine speed is an additional degree of freedom

that can be chosen by the energy management strategy. In par-

ticular, it was decided to keep the engine working on its best

efficiency line, in order to minimize the fuel consumption:

ωICE = ωICE,opt (TICE) . (12)

When the hybrid powertrain works in parallel, all the ma-

chines are connected to the gearbox and balance the resisting

torque. In this case there are two degrees of freedom because

the speed is fixed by the external conditions, while the controller

must set two of the three torques (the third is then defined by

difference with the total).

Using the electric machines torques as the control variable of

the energy management strategy, the engine torque can be written

as:
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TICE = Tgb +Taux,m −TEM −TGEN , (13)

while the speed of all the machines is identical:

ωgb = ωice = ωEM = ωGEN . (14)

At this point, regardless of the powertrain configuration, the

operating points of all the machines are available and can be used

as inputs of the efficiency maps of each component. Quasi-static

maps are used to compute the engine fuel consumption and the

power demand of the electric machine, given torque and speed.

Another significant variable is the battery power Pbatt , which

can be easily computed as:

Pbatt = PEM,e +PGEN,e +Paux,e (15)

where PEM,e and PGEN,e are the electric power of the motor and

the generator and Paux,e the power of the electrical auxiliary

loads.

The battery is normally very complex to represent. In this

case, in order to obtain a reasonably simple simulator, no tem-

perature dependency is considered, hysteresis and dynamics are

neglected, and a simple circuit model is used to compute the state

of charge variation as a function of the power at the terminals and

of the circuit parameters.

The state of charge variation represents the state equation of

the energy management problem, and can be written as

SOC (k+1) = SOC (k)−α ·
I(k)

Qmax

(16)

where I(t) is the current flowing through the battery (positive

during discharge), Qmax is the battery charge capacity, and α is

a correction factor that accounts for the charge losses (coulom-

bic efficiency). In order to make this relation implementable in

the framework of the model described here, it is necessary to ex-

press the current in terms of the battery power; using a simple

circuit model including the open circuit voltage and the internal

resistance, the following relation is found:

I =
(1−b) ·Voc +

√

[(1−b) ·Voc]
2
−4 ·Pbatt ·Req

2 ·Req

(17)

where Voc(SOC) is the open circuit voltage, Req the equivalent

internal resistance, and b(Voc) is a coefficient depending on the

open circuit voltage [10]. The current I is positive when dis-

charging and negative for charging.

The battery power in (17) can be expressed in terms of the

torque/speed of the electric machines using (15).

These are the main physical relations used in the vehicle

model and they were implemented using a Matlab function.

5 DYNAMIC PROGRAMMING

Dynamic programming (DP) generates a numerical solution

to the optimal control problem defined in Section 3. It gives

sufficient conditions for the global optimality (see [11] or [2]).

To implement the DP algorithm on described hybrid archi-

tecture, an open-source Matlab code developed at ETH-Zurich

[12] was exploited. This function solves discrete-time optimal

control problems using Bellman’s dynamic programming algo-

rithm. The model equation can include several state variables

and input variables. Furthermore, the equations can be time vari-

ant (like in this case) and include time-variant state and input

constraints. The user has to provide the number of controls that

he needs to optimize, the states of the system that have to be

monitored and the limits for each of them. Then the code pre-

processes this information in order to arrange all the possible

input values into multi-dimensional matrices. Then, the controls

are applied, step by step, to a vehicle model that generates a grid

of possible SOC values, each corresponding to a certain pattern

of control inputs, as shown in Figure 1. Thus, given driving cy-

cle, the DP provides the optimal combination of control inputs.

TEM

Driving Cycle

Vehicle

Dynamic Programming

Powertrain

speed, gear

Tdmd

C ETGEN

FC SOC

Figure 1. Flowchart of the Dynamic Programming Controller.

The DP solution is computed for several driving cycles, rep-

resentative of the range of operating conditions for the vehicle

considered.

6 RULE-BASED STRATEGY

The control based on a set of rules is computationally effi-

cient for an embedded CPU, but it is based on empirical laws

that, usually, have results quite far from the optimality. Its cal-

ibration, in addition, could be quite difficult. The dynamic pro-

gramming, on the contrary, provides the optimal solution on each

driving cycle. Therefore, analyzing its control actions, some

rules can extracted that try to reproduce the optimal behavior,

and, unlike DP control signals, are implementable. This ap-

proach is known (see, e.g., [8]), but it is now applied to a com-

plex architecture in which the dynamic programming is used to
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determine not only the hybrid power split, but also the vehicle

operating mode.

The starting point for deriving a rule-based strategy (RB)

from DP is an extensive set of simulation in which the optimal

driving strategy is found for several driving cycles, covering an

ample range of urban and suburban driving conditions. The re-

sults are then studied and analyzed in order to find common pat-

terns in the algorithm decisions, that are then replicated by ap-

propriate rules.

The control results are represented in order to emphasize

any dependency from significant input variables, such as gear-

box power Pgb, gearbox speed ωgb, and battery state of charge

SOC.

As mentioned in Section 3, the powertrain controller can be

divided in two parts: the supervisory control which decides the

best operating mode and the energy management which shares

the torque among the machines in order to satisfy the overall

demand. Therefore the analysis of the DP results has to be per-

formed at two levels: mode selection (engine and clutch status),

and torque split. The extraction of rules for each of these two

levels is described the following sections.

6.1 Supervisory Control

To understand the behavior of the supervisory control, the

operating mode chosen by DP over all the analyzed driving cy-

cles was plotted as function of the gearbox input power and

speed, as shown in Fig. 2. Three main areas can be identified:

A. at low speed and torque, the powertrain works either in se-

ries or in pure electric (EV) mode - i.e., the clutch is open

(C = 0) and the engine is either on or off (E = 1 or E = 0);

B. this area is limited by engine idle speed and positive gear-

box torque: here only the parallel configuration is present.

Actually there are also a few points of series operation, but

they are only used to limit engine speed to its maximum.

C. the third area includes all the points with a negative torque:

here the supervisory always switches off the engine in order

to save fuel since the vehicle is decelerating. Actually in this

situation the engine can also be on, but fuel injection is cut

off, which in the simplified model is treated as engine-off.

Fig. 2, nevertheless, is not able to show any dependence

on the state of charge. In particular, it was not possible to find

any clear correlation between the state of charge and the mode

selection in region A. Therefore, a simple threshold was set to

distinguish between EV and series mode at lower speed.

The supervisory control rules are therefore implemented as

follows:

A. When the gearbox input torque is positive (Tgb ≥ 0) and

the gearbox input speed is below engine idle speed (ωgb ≤

ωidle), the clutch is open (C = 0); the status of the engine

is determined by the SOC values. The vehicle is either in

EV or series mode. The speed condition ωgb ≤ ωidle is not

a result of the optimization, but a physical constraint of the

powertrain: the engine cannot be connected to the driveline

unless the speed is above idle.

B. When Tgb ≥ 0 and ωgb > ωidle, the clutch is locked (C = 1)

and the engine is on (E = 1), i.e. the vehicle is in parallel

mode.

C. When Tgb < 0, i.e. during regeneration, the clutch remains

engaged (C = 1), and the engine maintains its previous state,

but fuel is cut off.

6.2 Energy Management

Depending on the powertrain mode decided by the super-

visory controller, the power split among the three machines is

determined in different ways.

6.2.1 Parallel Mode All the machines can directly act

on the gearbox input shaft to overcome the resistance torque

given by the vehicle. The energy management decides what frac-

tion of the torque is generated by the electric machines and by

the engine. The data analysis shows a linear relation between

the gearbox input torque Tgb and the sum of the electric machine

torque Telec. Then, from a simple torque balance, it is possible to

compute the fraction given by the engine. In order to split Telec

between the two machines, each of the torques computed by DP

is related to Telec. As a results, two linear correlations can be

observed again. An example of these laws defining the parallel

torque split is represented in Fig. 3. In the controller implemen-

tation only one of these two will be used, while the third torque

will be obtained by difference from the others.

−2000 −1500 −1000 −500 0 500 1000
−1500

−1000

−500

0

500

1000

Total EM torque, T
EM

 + T
GEN

 [Nm]

T
 [

N
m

]

 

 

T
EM

T
GEN

Figure 3. Dependence of the electric machine torque from the total elec-

tric request.

This fact allows to match the request in all cases (which

would not be possible if all three torques were computed in-

dependently). The generator (GEN) is chosen as the computed

variable because preliminary tests showed better performance in
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Figure 2. Hybrid Mode as a function of gearbox input torque and speed.

comparison with the dual case in which TEM was the one com-

puted by regression.

6.2.2 Series Mode In this configuration, an approach

based on the torque balance it is not suitable because the engine

and the generator are disconnected from the gearbox, thus the

entire torque request must be satidsfied by the motor. On the

other hand, the electric power demand should be split between

the generator and the battery. The total electric power is the sum

of the motor electric power and the power needed by the electri-

cal accessories. Following an approach similar to the torque split,

the total power request can be correlated with the battery power

computed by DP, as shown in Fig. 4. The power fraction that

is not supplied by the battery is provided by the motor-generator

group. The engine torque TICE is computed imposing that the

engine operates at the speed of maximum efficiency given the

power output.

6.3 State of charge control

The state of charge of the battery has to be considered not

only in the supervisory decisions but also in the energy manage-

ment. The torque split should change depending on the energy

stored in the battery, but the effect of SOC is not present in all

the empirical rules derived from DP and presented in the previous

sections. Therefore, these laws needs to be modified to achieve

charge-sustainability. One simple way to proceed is to shift up

or down the linear laws that compute the electrical loads both in
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Figure 4. Dependence of the battery power from the total electric power.

parallel (as described in section 6.2.1) and in series (as described

in section 6.2.2). To reach this target, a correction function is in-

troduced in the linear correlations, using an additional coefficient

p(SOC) that multiplies the intercept of the regression lines.

It is now necessary to choose the shape of this correction

function p(SOC). The correction has to be minor for small de-

viation from the reference state of charge SOCre f , and increase

smoothly when the correction needs to be stronger. A cubic poly-

nomial is a suitable function for this purpose; the correction func-

tion is thus defined as:

p(SOC) =−µ · x3
SOC +1 (18)
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where xSOC measures the distance of the state of charge from the

reference value:

xSOC =
SOC−SOCre f

(SOCmax +SOCmin)/2
. (19)

The parameter µ in (18) defines the amount of correction

for the achievement of the charge sustaining condition; a higher

value of µ makes the solution more robust, penalizing more the

variation of state of charge, but also introduces some deviation

from the optimal solution.

It was observed that µ depends on the driving conditions.

The lowest value of µ for which the strategy achieves the charge

balance is different for each cycle, and guaranteeing robustness

under all conditions requires a compromise in terms of perfor-

mance. This is one of the main drawbacks of a rule based ap-

proach: this type of energy management requires a careful cali-

bration of all its parameters, which have to be defined by a com-

promise among different driving cycles.

7 SIMULATION RESULTS

The rules described in Section 6 were implemented on the

simplified model described in Section 4. In this section, the re-

sulting rule-based strategy is compared to the dynamic program-

ming.

The Manhattan bus cycle, representative of real-world driv-

ing condition for an urban bus, is here considered to illustrate the

performance of RB vs DP. The parameter µ is tuned to the opti-

mum value as described in section 6.3. Figure 5 shows both the

overall SOC profile obtained by both strategies and the choices

of the supervisory controllers. The SOC profiles are close to each

other in terms of shape, which means the power split is similar

(the offset is due mainly to punctual differences), and the choices

of the supervisory controller (i.e. the vehicle mode in the bottom

plot) are also very similar, as expected.

Figure 6 shows the comparison of the torque split. The dif-

ferences in the electric motor torque (TEM) are quite small, while

the generator behavior shows that the rule-based tends to gener-

ate more energy to be stored in the battery. Figure 6 also shows

that the torque of the electric motor obtained with the RB strat-

egy is smoother in comparison with the DP, which is more ”ner-

vous”. These discrepancies in the torque may also determine

differences in state of charge profile and in fuel consumption. As

Fig. 5 demonstrates, the SOC is quite similar but the rule-based

is characterized by an higher mean value which leads to a higher

final SOC.

The results obtained on several driving cycles are in Table 1,

which also includes validation cycles, i.e. cycles not used for the

rule extraction. The fuel consumption results listed in the table

include the correction for the SOC imbalance present in the RB

results.
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Figure 5. Comparison RB-DP: state of charge profile and mode selec-

tion on the Manhattan cycle

Table 1. Comparison of RB and DP over various driving cycles

Fuel consumption ∆SOC [%]

DP RB DP RB

Manhattan* 100 108 0 6

WVU-suburban* 100 102 0 1

WVU-inter* 100 102 0 3

APTA* 100 100 0 -8.3

UDDS 100 106 0 -3

HTUF 100 110 0 -6

*: cycles used to extract the rules

8 CONCLUSION

The dynamic programming algorithm provides the optimal

solution to the HEV energy management problem, and serves as

a benchmark to assess the minimum fuel economy achievable

along a driving mission. Both the need for a-priori knowledge

of the mission profile and the high computational requirements

make this strategy unrealistic to implement, since an on-board

real time controller has to operate with limited computational

and memory resources.

A rule-based strategy, on the other hand, is suitable for on-

line implementation, due to the simple set of if-then-else rules.

A demanding calibration phase is required though, for making

the strategy charge-sustaining with respect to a wide variety of

driving cycles.

In fact, rule-based parameters can be strongly affected by

the driving conditions. The approach proposed in this paper is

to study the results given by the dynamic programming in or-
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Figure 6. Comparison RB-DP: torque split on the Manhattan cycle (de-

tail). Top: vehicle speed; middle: TEM ; bottom: TGEN

der to find some common pattern in its decisions, and extract

rules that can be implemented in an ”sub-optimal” rule-based

controller. This article presents a possible methodology to han-

dle this problem. The DP analysis provided some rules which

are able to quickly minimize the fuel consumption. A great num-

ber of simulations has been performed to test the robustness of

the RB algorithm. This phase is very time consuming while the

rule extraction is relatively straightforward. The obtained con-

troller has only one calibration parameter that is tuned in order

to satisfy the charge balance. Both fuel consumption and state of

charge profile are very close to the optimal, as demonstrated in

Section 7.

The study perfomed has shown that the RB controller is de-

pendent on both the powertrain components and vehicle archi-

tecture. If these change, the controller needs to be redesigned.

A future improvement to the work presented could be looking

at the different decisions taken by DP as powertrain components

change so as to make the rule-based strategy less dependent on

those parameters.

REFERENCES

[1] Brahma, A., Guezennec, Y., and Rizzoni, G., 2000. “Op-

timal energy management in series hybrid electric vehi-

cles”. Proceedings of the 2000 American Control Confer-

ence, 1(6), pp. 60–64.
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