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ABSTRACT
This paper proposes a new method for solving the energy

management problem for hybrid electric vehicles (HEVs) based
on the equivalent consumption minimization strategy (ECMS).
After discussing the main features of ECMS, an adaptation law
of the equivalence factor used by ECMS is presented, which, us-
ing feedback of state of charge, ensures optimality of the strategy
proposed. The performance of the A-ECMS is shown in simula-
tion and compared to the optimal solution obtained with dynamic
programming.

1 INTRODUCTION
Energy management of hybrid electric vehicles is now a ma-

ture field, with many papers devoted to optimal or quasi-optimal
control strategies (see the overview in [1]). Since its introduction
[2], the equivalent consumption minimization strategy (ECMS)
has been successful as an implementable algorithm that achieves
good results in terms of fuel consumption. Initially, the strat-
egy was conceptually justified by energy balance considerations,
while successive studies increased its theoretical bases by prov-
ing that the instantaneous minimization is in fact connected to
the Hamiltonian function of optimal control theory [3, 4]. Its
equivalence with Pontryagin’s minimum principle [5] proves that
ECMS can generate the optimal energy management for a given
cycle, provided that it is properly tuned by choosing the appropri-
ate value of equivalence factor. Since perfect tuning is possible
only with a-priori knowledge of the cycle, the current efforts are
directed towards online adaptation of ECMS, in order to achieve
quasi-optimal results even without a-priori tuning of the strat-

egy. Several versions of adaptive ECMS have been presented: [6]
uses driving cycle prediction and performs receding-horizon op-
timization, [7] uses pattern recognition to identify the driving
conditions, while the most recent and interesting approaches are
based on the feedback of the current state of charge value [8, 9],
and try to change dynamically the value of the equivalence factor
in order to contrast the SOC variation (and thus maintain its value
around the reference level). The approach proposed here is also
based on feedback of the state of charge, but it is conceptually
different because it relies on the concept of charge-sustaining
horizon, imposing charge-sustainability over a finite time hori-
zon. The paper is organized as follows: Section 2 introduces
and formalizes the optimal control problem for a generic HEV;
Section 3 reviews the basic concepts of the ECMS, pointing out
its intrinsic limitations, essentially due to the need for calibra-
tion. Section 4 proposes an adaptive ECMS strategy (A-ECMS),
i.e a method to automatically tune the ECMS based on state-
of-charge feedback. Section 5, finally, shows simulation results
demonstrating the effectiveness of the proposed strategy.

2 PROBLEM FORMULATION
The optimal control problem in a HEV consists in finding

the minimum fuel consumption during vehicle operation, while
respecting the design limitations of each component and the driv-
ability/performance specifications. The aim is to minimize a cost
function defined as an integral over a finite horizon. The finite
horizon typically corresponds to a complete regulatory driving
cycle or a short real-world trip. The optimization objective con-
sidered in this work is the fuel consumption during a trip, and the

1 Copyright © 2010 by ASME

Proceedings of the ASME 2010 Dynamic Systems and Control Conference 
DSCC2010 

September 12-15, 2010, Cambridge, Massachusetts, USA 

DSCC2010-4211 



constraints are:

- charge-sustainability: the battery SOC at the beginning and
the end of the trip should be equal;

- satisfaction of driver’s demand: at each instant, the to-
tal torque output of the powertrain should be equal to the
driver’s demand;

- actuator limitations: at each instant, the output of each ma-
chine in the powertrain (engine, motor, and generator) can-
not exceed its maximum torque/power rating; similarly, the
total battery power must remain within the acceptable limits
in both charge and discharge operation.

The specific expression of the constraints and the choice of
the control variables depends on the vehicle architecture consid-
ered. In general, the objective is to find the function u(t), t ∈
[t0, t f ], u(t) ∈ Rm such that

J (x(t0),u(t),x(t f )) =
∫ t f

t0
ṁ f (u(t))dt (1)

is minimized.
The system state x(t) is the battery state of charge; ṁ f (u(t))

is the fuel consumption, and u(t) is the control variable, which
depends on the powertrain architecture. For example, it may be
the engine torque in the case of a parallel HEV, or the engine
torque and speed for a series HEV; it may also include binary
variables, such as the engine status (on/off) if the powertrain
architecture allows more operating modes. Note that the fuel
consumption ṁ f (u(t)) does not depend explicitly on the state of
charge.

The nonlinear state equation is:

ẋ(t) = f (x,Pbatt) (2)

where Pbatt(t) is the electrical power delivered by the battery. An
explicit form of Eq. (2) is obtained using a simple circuit model
composed of a voltage source and a resistance:

The battery is normally very complex to represent. In this
case, in order to obtain a reasonably simple simulator, no tem-
perature dependency is considered, hysteresis and dynamics are
neglected, and a simple circuit model (represented in Fig. 1) is
used to compute the state of charge variation as a function of the
power at the terminals and of the circuit parameters.

The state of charge variation represents the state equation of
the energy management problem, and can be written as

ẋ(t) =− I(t)
Qmax

(3)

where I(t) is the current flowing through the battery (positive
during discharge) and Qmax is the battery charge capacity. In
order to make this relation implementable in the framework of
the model described here, it is necessary to express the current
in terms the battery power. The first step is to write the balance
equation for the equivalent circuit:

VL =Voc− I ·Req, (4)

+

Voc

Req

VL

Figure 1. Battery circuit model.

where Voc =Voc(SOC) is the open circuit voltage, VL the voltage
at the battery terminals and Req is the equivalent internal resis-
tance. Multiplying each side of the eq. 4 by the terminal current
it is possible to find the battery power:

Pbatt =VL · I =Voc · I +Req · I2. (5)

Solving Eq. 5 with respect to I yields:

I =
Voc +

√
V 2

oc−4 ·Pbatt ·Req

2 ·Req
(6)

with I > 0 when discharging and I < 0 charging. The SOC dy-
namics is therefore:

ẋ(t) =− 1
Qmax

Voc(x)+
√

V 2
oc(x)−4Req(x)Pbatt(t)
2Req(x)

= f (x,Pbatt).

(7)
The optimization is also subject to the following constraints:

Ppwt(t) = Pdem(t) ∀t ∈ [t0, t f ] (8)

0≤ PICE(t)≤ PICE,max(t) ∀t ∈ [t0, t f ] (9)

Pem,i,min(t)≤ Pem,i(t)≤ Pem,i,max(t) ∀t ∈ [t0, t f ] (10)

Pbatt,min(x)≤ Pbatt(t)≤ Pbatt,max(x) ∀t ∈ [t0, t f ] (11)

xmin ≤ x(t)≤ xmax ∀t ∈ [t0, t f ] (12)

x(t0) = x0, x(t f ) = x0 (13)

where Ppwt is the total power delivered by the powertrain,
Pdem is the power demand (e.g. generated by the driver), PICE
is the engine mechanical power, and Pem,i is the power of the
ith electric machine (there may be more than one machine). The
subscripts max and min refer to the maximum and minimum lim-
its of each variable. Equation (8) means that the range of oper-
ating conditions considered at each instant must be such that the
powertrain delivers the amount of power (or torque) that is de-
manded by the driver. Therefore, the sequence of power demand
Pdem(t) is an essential information for the solving the optimiza-
tion problem.
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3 THE EQUIVALENT CONSUMPTION MINIMIZATION
STRATEGY
A global optimal solution can only be found if Pdem(t) is

known in advance for all the optimization horizon. A method of-
ten used to this purpose is dynamic programming (DP) [10, 11],
which is capable of determining the optimal solution to the dis-
cretized problem. This solution is generally sub-optimal for the
continuous problem, because of the approximation introduced
with the discretization; however, if the grid is fine enough, the ap-
proximation is negligible. The DP algorithm can only be solved
off-line, because it requires the driving cycle to be completely
known a-priori, and therefore it is not implementable online (un-
less perfect prediction of the cycle is available). Furthermore, the
high computational load makes the DP optimization prohibitive
on typical onboard micro controllers.

An alternative method to solve the optimal control problem
is to apply Pontryagin’s minimum principle [4, 5, 12]. This theo-
rem states that, if the control law u∗(t) is optimal, the following
conditions are satisfied:

1. u∗(t) minimizes at each instant the Hamiltonian of the opti-
mal control problem:

H(x,u,λ)≥ H(x,u∗,λ), ∀u(t) 6= u∗(t)

where the Hamiltonian is defined as

H (x,u,λ) = λ(t) · f (x,u)+ ṁ f (u) (14)

with λ(t) an auxiliary variable called co-state of the system.
2. the co-state variable satisfies the following dynamic equa-

tion:

λ̇(t) =−∂H
∂x

=−∂ f (x,u)
∂x

(15)

The conditions given by the minimum principle are neces-
sary, not sufficient. Every solution that satisfies the necessary
conditions is called an extremal solution. If the optimal solution
exists, then it is also extremal. The opposite, however, is not true:
a solution may be extremal without being optimal. However, if
the problem has a unique optimal solution, and the application
of the minimum principle gives only one extremal solution, then
this is the optimal solution.

The minimum principle can be used to find solution candi-
dates by computing and minimizing the Hamiltonian function at
each instant. This generates, by construction, extremal controls.
If the Hamiltonian is a convex function of the control, then there
is only one extremal solution, which is therefore optimal.

The Hamiltonian function (14) has the physical meaning of
an equivalent fuel consumption: in fact, it is the sum of the ac-
tual fuel consumption and of a term that is dimensionally the
same as a fuel consumption, but is proportional to the battery
SOC variation and therefore accounts for the virtual fuel con-
sumption associated to the use of the battery. The co-state λ(t)
defines the equivalence between fuel use and battery use. For a
more intuitive formulation, an a-dimensional equivalence factor

can be introduced, defined as s(t) =−λ(t) · Qlhv

Ebatt
, where Ebatt is

the energy capacity of the battery and Qlhv the fuel lower heating
value, i.e. its energy density (per unit of mass). With this defini-
tion, the Hamiltonian – or equivalent fuel consumption – can be
rewritten as

H (x,u,λ) = ṁeqv(x,u,s) = s(t) · Ebatt

Qlhv
· f (x,u)+ ṁ f (u) (16)

As pointed out in [5], this formulation is fundamentally sim-
ilar to the original ECMS formulation [2], in which the authors
proposed to minimize an equivalent fuel consumption defined in
the same way as Eq. (16), with the exception that the battery
power appeared instead of the product Ebatt · f (x,u). This term,
in fact, has the physical dimension of a power, but the presence
of the function ẋ = f (x,u) accounts implicitly for the losses and
nonlinearities in the battery, thus giving a quantity proportional
the net variation of the state of charge (electrochemical power).

The original formulation of ECMS derived from impressive
engineering intuition and was proved to work well, even without
formal proof of optimality. The derivation from the minimum
principle adds to the intuition in two ways: it provides a theoret-
ical background and proof of optimality, and introduces a slight
reformulation that makes the ECMS more effective and easy to
tune. In fact, in the original ECMS formulation the equivalence
factor represents the chain of efficiencies through which fuel is
transformed into electrical power and vice-versa, and it changes
for each operating condition of the powertrain. In Eq. (16), in-
stead, the equivalence factor is an optimization variable that acts
as a single tuning parameter, as it is going to be explained now.

The control obtained by minimization of the Hamiltonian
function (16) depends, obviously, on the co-state variable s(t),
which is unknown, and whose initial condition s(t0) is free. On
the other hand, the state of charge x(t) must satisfy an initial and
a final constraint, given by Eq. (13). Since the evolution of x(t)
depends on the value of s(t), it is possible to find an appropriate
initial value s(t0) of the equivalence factor, such that the final
state value x(t f ) reaches the prescribed condition. In other words,
there is a value of s(t0) for which the solution is perfectly charge-
sustaining [5, 9]. This is defined as the optimum equivalence
factor for the driving cycle, and is effectively a tuning parameter
for the strategy.

The optimal value of s(t0) depends on the driving cycle; this
is obvious looking at the original, intuitive derivation of s as
the fuel-equivalent cost of battery discharge, because the amount
of fuel needed to recharge the battery depends strongly on the
amount of energy available for regeneration (or free energy, as
defined in [13]).

The biggest problem from an implementation point of view
is that the optimality of the ECMS solution is extremely sensitive
to the value of the equivalence factor, which can be tuned appro-
priately only if the driving cycle is known a priori. In real-world
conditions, this is not feasible because driving conditions are not
repetitive nor completely predictable; therefore, some kind of
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Figure 2. An example of ECMS penalty weight

online adaptation or auto-tuning of the equivalence factor is nec-
essary to provide robustness and, ideally, to obtain results close
to the optimum.

A method, proposed already in [2], consist to introduce a
penalty weight p(x) based on the current value of the state of
charge. This correction function, an example of which is shown
in Fig. 2, modifies the value of the equivalence factor when the
SOC is close to its maximum or minimum acceptable levels, in
order to avoid over-charging or over-discharging the battery. The
cost of discharging the battery is increased at low SOC to prevent
further discharge, and it is decreased at high SOC to encourage
discharge. This method improves the robustness of the strategy,
but does not actually adapt the base value of the equivalence fac-
tor (the value at nominal SOC). In other words, the long-term
value of s which remains a constant for all driving conditions,
and therefore is not optimal for any of them, taking necessarily a
compromise value.

4 ADAPTIVE ECMS
Adaptive ECMS strategies, in which the equivalence factor

is changed during the driving cycle, were proposed by several
authors. In [6], a Kalman filter was used to predict future values
of vehicle speed, and the optimal equivalence factor was found
by online optimization over a receding horizon; the method gave
good results but was computationally demanding. In [7], instead,
it was proposed to categorize each driving pattern in one of four
categories: urban, suburban, extraurban, and highway. For each
of these categories, an optimal equivalence factor is found a-
priori; a pattern recognition algorithm then detects at each instant
the category of the current driving conditions, and applies the
appropriate equivalence factor. This provides a better baseline
value of s, while the penalty function p(x) is present to provide
practical robustness, and also includes an integral term that cor-
rects prolonged SOC deviations from the reference value. In [8]
and [9], instead, a feedback controller is used, and the value of
the equivalence factor is updated at each instant to account for the
deviation of the state of charge from its reference value x0. The

Time

SOC Optimal

Actual

No adaptation

With adaptation

Optimal

Actual

No adaptation

With adaptation

0 T

s

2T

Figure 3. Adaptive ECMS concepts

idea behind this is that the instantaneous correction of the equiv-
alence factor allows to counteract the deviation of SOC from its
reference. In fact, the proportional part of this correction has the
same effect as the penalty weight of Fig. 2, and is equivalent to
a linear function p(x).

The adaptive ECMS method proposed in this paper is also
based on SOC feedback, which is useful to ensure robustness of
the strategy; however, it is conceptually different from the previ-
ous work because the adaptation is not done continuously at each
time step, but only at regular intervals of duration T . In fact, it
is normal that the SOC deviates from the reference value during
the vehicle operation, but the charge sustainability constraint re-
quires that the value of SOC at the end of the cycle is equal to the
reference value. Since in real-world conditions the duration of
the driving cycle is not known a priori, the charge-sustainability
condition is enforced on shorter time frames. The horizon during
which there should be no SOC variation is chosen in such a way
that at least two charge/discharge cycles are allowed, to let the
vehicle make use of the available energy buffer.

The algorithm can be explained with the help of Fig. 3. Dur-
ing the first section of the cycle (0–T), an initial guess is made
for the equivalence factor, which is obviously different from the
optimal value (the one that would give charge-sustainability at
the end of the section). If equivalence factor is too low, as in the
example, the battery tends to be discharged, and it would be de-
pleted if s were kept at the same level (dashed lines). If, instead,
at time t = T the value of s is modified to account for this fact,
the trend can be reversed and the overall solution results charge-
sustaining.

The adaptation law is implemented by setting a new value
of equivalence factor every T seconds:

sk+1 = sk + cP · (x0− x(t)) , t = k ·T, k = 1,2, ... (17)

where sk+1 represents the new value of the equivalence factor,
which will be used in the time interval t ∈ [kT, (k + 1)T ]; sk
is the previous value, and (x0− x(t)) is the difference between
the reference SOC x0 and the actual value, at the instant of the
adaptation. cP is the proportional gain of feedback controller and
is a tuning parameter for the strategy.
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Figure 4. Adaptive ECMS concepts

This basic formulation is still imperfect. In fact, it is not cor-
rect to look at the SOC differences between two generic points
separated by a fixed time T , because they may be two completely
different driving conditions: for example, the SOC should be
lower during acceleration transients and higher after regenera-
tive braking; if the comparison in (17) is made between these
two points, it leads to wrong behavior. The solution is to make
T ”stretchable”, i.e., apply the adaptation only when the vehicle
has reached the same conditions at which s was previous adapted
(for example, at vehicle stopped). This can work if there is the
certainty that the same conditions will be verified very often, im-
plying a limited stretching of T . Since this strategy has been
developed for an urban bus, it is very reasonable to wait for the
vehicle to stop before adapting s.

Furthermore, to improve the stability of the solution, the
adaptation law implemented is modified as:

sk+1 =
1
2
(sk + sk−1)+ cP · (x0− x(t))). (18)

The reason of this modification comes from an engineering
intuition and can be explained considering the situation in Fig. 4.
When a first-tentative equivalence factor is used in the first adap-
tation interval (k = 1), the battery SOC decreases; therefore, at
the beginning of the following interval (k = 2), the adaptation
law (17) corrects the value of the equivalence factor by increas-
ing it, thus generating a SOC profile with an increasing trend,
which will need to be corrected in the opposite direction at the
next interval. If the driving cycle were the same in each interval,
and the correction (17) brought ∆x2 to zero at the end of interval
2, while ∆x1 < 0, then the optimal value of s0 for the follow-
ing section (k = 3) would be the average between the previous
two. Eq. (17), instead, would not apply any correction and let
s0 remain the same. In order to improve the performance of the
adaptation, then, the feedback law is modified as in (18) so that,
if the SOC is increasing and then increasing in two successive
intervals, the value of equivalence factor in the third interval will
tend to generate a charge-sustaining solution.

Table 1. Main characteristics of the vehicle

Vehicle mass 1800 kg

Engine max. power 100 kW

Motor max. power 25 kW

Battery energy capacity 1.5 kWh (5400 kJ)

5 SIMULATION RESULTS
The adaptive ECMS strategy described in Section 4 is tested

in simulation using a simple case study, a pre-transmission par-
allel HEV with the characteristics shown in Tab. 1. The vehicle
is represented using a backward, quasi-static model, which ac-
counts for the efficiency of the motor and the engine using their
maps; the battery model is an electrical circuit composed of a
voltage source and a resistance. For comparison, the optimal
solution obtained with dynamic programming (DP) is also in-
cluded. The DP solution was obtained using the code described
in [14].

Three driving cycles are presented in the following sections,
starting from an ideal case and then moving to more realistic
examples.

5.1 Ideal conditions
If the driving cycle is composed of repetitions of identical

sections and the adaptation period T is chosen to coincide with
the duration of the sections, the adaptation strategy (18) con-
verges to the optimal value of s for the section. As an example,
consider the short section shown in Fig. 5, of duration T = 120 s.
Several curves are shown. The charge-sustaining solution is ob-
tained by applying DP or the optimal ECMS, which is the ECMS
with constant equivalence factor, tuned for the specific cycle us-
ing an iterative method, which is only possible offline. The op-
timal ECMS and DP are essentially coincident, which means
that the ECMS would be capable of providing the optimal so-
lution, if optimally tuned. Both these strategies, however, rely
on complete knowledge of the driving cycle. The non charge-
sustaining solutions, instead, are generated by ECMS with equiv-
alence factors different than the optimal value sopt . In particular,
the solution is charge-increasing solution if s > sopt , and charge-
depleting if s < sopt .

To demonstrate the behavior of proposed adaptation strat-
egy, the same section is repeated 20 times. The initial value of s
is set to one of the ”wrong” values of Fig. 5, but then it is cor-
rected every T seconds by applying the adaptation law (18). T is
equal to the section duration. The SOC value and the evolution
of the equivalence factor are shown in Fig. 6, demonstrating the
convergence towards the optimal value.

5.2 Real-world driving cycle, uniform
In real-world cases, the driving cycle sections are not iden-

tical to each other. However, it can be assumed that the differ-
ences between subsequent sections are not too large, i.e. that the

5 Copyright © 2010 by ASME
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Figure 6. Adaptive ECMS applied to 10 repetitions of the driving cycle
section shown in Fig. 5.

optimal equivalence factor does not change substantially from
on section to the next, except for some isolated events. Radical
changes of driving pattern do, in fact, occur in real-world: for
example, the vehicle can move from urban areas to the highway.
These isolated changes typically separate two relatively large and
uniform portions. The scope of the adaptation is react to these
changes and converge, within a few adaptation periods, to the
optimum value for the current driving conditions. In this section,
simulation results relative to a long, uniform urban cycle are pre-
sented. The cycle is not the repetition of identical sections, but
it presents similar characteristics for its entire duration. The re-
sults are shown in Fig. 7, which shows the A-ECMS solution
compared to the optimal reference given by DP (or the optimally

tuned ECMS). Unlike the other two strategies, The A-ECMS has
no a-priori knowledge of the driving cycle, and only relies on the
SOC feedback implemented with Eq. (18). Despite this, it main-
tains the SOC in the acceptable range and remains close to the
optimal solution.
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Figure 7. Comparison of the A-ECMS with the optimal solution, for an
urban driving cycle. Top: speed profile; middle: SOC; bottom: equiva-
lence factor

5.3 Real-world driving cycle, non-uniform
To test the ability of the proposed strategy to deal with vary-

ing driving conditions, a test composed by urban, highway and
suburban conditions is used. The results are shown in Fig. 8, and
demonstrate that the adaptive strategy behaves correctly in this
case as well.

A comparison of fuel consumption values for the two cycles
shown is reported in Tab. 2.

6 CONCLUSION
This paper has presented a new energy management strategy

for HEVs based on the on-line adaptation of the equivalence fac-
tor used by the ECMS. The adaptation is performed via feedback
of state of charge and it is implementable on-line at low compu-
tational burden. The solution proposed achieves results close to
the optimal global solution obtained from dynamic programming
on different driving cycles.
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Table 2. Comparison of fuel consumption. All values are corrected for
final SOC variation and are normalized to the DP results

Driving cycle DP optimal
ECMS

A-ECMS

2 Artemis urban 100% 100% 101%

Urban - Highway -
Suburb.

100% 100% 101.5%

3 FUDS 100% 100% 101.3%

3 NEDC 100% 100% 107.1%
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