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ABSTRACT 
Lithium-ion batteries are a growing source for electric power, 

but must be maintained within acceptable operating conditions to 

ensure efficiency and reliability.  Therefore, a robust fault 

detection and isolation scheme is required that is sensitive enough 

to determine when sensor or actuator faults present a threat to the 

health of the battery.  A scheme suitable for a hybrid electric 

vehicle battery application is presented in this work.  The 

diagnostic problem is formulated as a nonlinear parity equation 

approach, but is modified for the considered application.  Sliding 

mode observers are designed for input estimation, while the 

output voltage estimation is performed using an open loop model.  

The selection of optimal thresholds given a maximum allowable 

probability of error is also considered.  An assessment of the 

design using real-world driving-cycle data leads to the conclusion 

that the estimation error of the observers determines a lower 

bound on the minimum detectable fault magnitude. 

NOMENCLATURE 
SOC State of charge (0 – 1) 

fs  Fan setting (0,1,2,3) 

I  Current (A) 

V  Voltage (V) 

T  Temperature (˚C) 

ri  Residual (i = fs,I,V) 

mc  Battery heat capacity (kJ∙˚C
 -1

) 

R  Battery internal resistance (Ω) 

R0C0 Electrical time constant (s) 

E0  Open circuit voltage (V) 

INTRODUCTION 
Batteries continue to gain momentum as an energy storage 

method for vehicle propulsion applications.  In particular, the 

number of hybrid electric vehicles (HEVs) on the road is steadily 

increasing because they offer superior fuel economy and reduced 

emissions as compared to conventional vehicles.  In order to 

ensure efficient, reliable operation of the battery pack, it must be 

regulated to an acceptable range of operating conditions.  For 

instance, operation at low SOC or high temperatures will 

significantly shorten the life of the battery.  In addition, battery 

failure due to thermal runaway has the potential to cause injuries 

to vehicle passengers.  Therefore, battery systems must be 

designed to maintain safe and efficient operation [1], which 

requires online estimation of a number of battery properties.  In 

turn, accurate estimation requires definitive knowledge of whether 

sensor faults are present, a problem which is often neglected when 

designing battery management algorithms [1-3].  This paper is 

concerned with fault detection and isolation (FDI) within the 

battery management system of a representative HEV Lithium-ion 

(Li-ion) battery pack.  A high-level schematic of the considered 

system is shown in Fig. 1. 
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In a system with this level of sophistication, and therefore 

complexity, there are several places where faults may adversely 

affect performance.  This fact drives the need for a (FDI) system 

whose key objectives may be summarized as follows: 

 use available measurements to determine faulty 

components; 

 minimize the probability of error, both from false alarms 

and  missed detections; 

 pass fault information to the control system to enable 

fault tolerant control. 

Of these three main objectives, the first two are considered in 

the design of the FDI scheme presented in this paper.  The last 

objective is considered outside the scope of this work, though it 

motivates many of the presented results.  

 

 

FIGURE 1.  SCHEMATIC OF BATTERY SYSTEM SHOWING 

SYSTEM INPUTS AND OUTPUTS. 

 

In order to aid in the design of FDI schemes, a nonlinear 

electro-thermal battery model has been developed.  This model is 

presented in the next section, along with an introduction to the 

fault modes.  Then, the FDI strategy is discussed.  A number of 

nonlinear FDI methods are surveyed in [4].  The nonlinear parity 

equation residual generation (NPERG) scheme [5] is chosen for 

this study because it is general enough to diagnose many 

permutations of faults.  This arises from the limitless number of 

faults that may be hypothesized, though the complexity of the 

scheme obviously increases as well.  NPERG has been used 

effectively in internal combustion engine and chassis system FDI 

[6-7] and due to its versatility it may also be applied to battery 

systems.  A modified method is proposed specifically for the 

model structure presented here.  The design of the observers and 

thresholds is detailed thereafter.  Finally the results, conclusions, 

and areas of future work are discussed. 

MODEL DEVELOPMENT 
Here the equations that constitute the electro-thermal battery 

model [8] are presented.  We use an equivalent circuit model 

structure that has been experimentally validated for a number of 

battery chemistries, including the Li-ion chemistry considered 

here.  The first-order equivalent circuit model has parameters 

scheduled based on state-of-charge (SOC), temperature, and 

current direction.  This model captures the dominant transient 

processes that are neglected by a zero-order model, while avoiding 

the computational and calibration complexity of higher-order 

lumped or first-principle based models.  The model structure may 

be divided into three coupled sub-models, namely the electric, 

thermal, and state-of-charge dynamics. 

Electric Dynamics.  Figure 2 depicts the electric model 

framework.  The simple first-order model is able to adequately 

compute the voltage-current relationship of the battery over a wide 

range of operating conditions due to the scheduling of the open 

circuit voltage (OCV) E0, internal resistances R and R0, and 

capacitance C0.   

 

 

FIGURE 2.  FIRST-ORDER EQUIVALENT CIRCUIT MODEL 

OF BATTERY ELECTRIC DYNAMICS. 

 

The electrical model equations obtained using Kirchoff‟s 

current law are reported in Eq. 1 and Eq. 2.   
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The input to the electric sub-system is the current, I, and the 

output of the sub-system is the battery terminal voltage, V.  The 

state of the sub-system is the voltage across the capacitor, Vc.  

Note that in this model the total pack voltage is obtained by 

scaling a single cell voltage by the number of cells. 

Thermal Dynamics.  The battery is modeled as a lumped 

thermal mass with uniform temperature T throughout the entire 

pack.  We understand more detailed thermal models such as those 

discussed in [9] could be applied here, and validation of the 

current methodology with such a model may become an area of 

future work.  Nevertheless, the thermal sub-system consists of the 

energy balance in Eq. 3. 

 

 )TT(hARI  Tmc 2
  (3)  

 

The effective heat capacity mc and the ambient temperature 

T∞ are fixed constants.  The energy balance accounts for heat 

generation due to Joule heating and heat dissipation from 

convection.  It has been assumed that the internal resistance R is 

solely responsible for Joule heat generation.  This assumption is 
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supported by calculations showing it accounts for at least 90% of 

the total heat generation for the current profiles considered here.   

It is important to note that the effective heat transfer coefficient hA 

varies depending on the type of convection.  A fan is incorporated 

into the system to increase the rate of cooling during times when 

the temperature rises above specific thresholds.  It modifies the 

effective heat transfer coefficient in the manner of Eq. 4. 

 

 321010 ,,,fs),fs(hAhA   (4)  

 

In Eq. 4, hA0 is the natural convection heat transfer 

coefficient.  Table I summarizes the range of values for the fan 

setting fs determined via temperature based threshold control. 

 

TABLE I.  FAN CONTROL THRESHOLD SETTINGS 

Setting fs Range (°C) 

Off 0 T < 30 

Low 1 30 ≤ T < 35
 

Medium 2 35 ≤ T < 40 

High 3 T ≥ 40 

 

In summary, the inputs to the thermal sub-system are the 

current, I, and the fan setting, fs.  The output and state of the sub-

system is the lumped battery temperature, T.    

State of Charge Dynamics.:  The SOC dynamics are 

determined simply by setting the rate of change of SOC equal to 

the current as in Eq. 5.  It is scaled by the total capacity of the 

pack, Ah, and is negative for a positive (discharge) current.   

 

 Ah/ICOS   (5)  

 

Parameter Scheduling.  The internal resistance, OCV, and 

capacity of batteries are influenced by a number of factors 

including SOC, temperature, and current direction.  The 

parameters of the equivalent circuit model must approximate this 

dependency.  For example, Fig. 3 from [8] shows a representative 

temperature-SOC-resistance relationship. 

 

 

FIGURE 3.  FIT OF RESISTANCE VERSUS TEMPERATURE 

AND SOC DATA [8]. 

Finally, Fig. 4 summarizes the relationship between the 

described sub-models graphically. 

 

 

FIGURE 4.  RELATIONSHIP BETWEEN SUB-MODELS. 

Considered Faults 
In a typical industrial scenario, a hazard analysis would be the 

first step towards characterizing the location and severity of 

possible faults.  In this work it is assumed that a suitable hazard 

analysis has been performed, and that the most interesting 

potentially faulty components are the current, voltage, and 

temperature sensors, and the fan motor.   

Based on operational experience at the Center for Automotive 

Research (CAR) [10], we have defined methods for realistic fault 

injection.  The two types of sensor faults that are considered in 

this work are intermittent signal loss due to faulty wiring 

connections, and sensor bias resulting from time or temperature 

drift.  For the fan motor, the only fault that is considered is a total 

motor failure where it can no longer provide cooling to the battery. 

FDI STRATEGY AND DESIGN 
In this section, the applicability of the NPERG method is 

discussed for the battery management system.  Through definition 

of the estimation error dynamics, it is shown that a modified 

approach is required.  Such an approach is pursued at the expense 

of complete isolation of faults after they are detected. 

NPERG Method 
The NPERG method is a general approach to the design of 

fault detection algorithms for non-linear systems, and so it is used 

as a starting point here.  The methodology states that a subset of 

inputs and outputs are hypothesized to be non-faulty, and residuals 

are generated based on this assumption.  Residuals are defined as 

the difference between the estimated and actual values of a signal, 

and computing these differences requires both forward and inverse 

models of the system.  One important point is that the inverse 

model of the system only needs to invert the subsystem of interest, 

which can have a dimension less than the complete system.  

Detection and isolation of faults is achieved based on the 

hypothesized non-faulty subset of inputs and outputs and the 

signature of the residuals.  The process is shown graphically in 

Fig. 5 on the next page.  The first residual generator assumes 

voltage and fan setting are non-faulty.  An inverse model is used to 
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calculate the input current, which is then used as the input to a 

forward model that computes the battery temperature residual.   

 

 

 

FIGURE 5.  SCHEMATIC OF NPERG FDI SCHEME. 

 

Alternatively, the second residual generator assumes 

temperature and current are non-faulty and produces residuals for 

the fan setting and voltage sensors.  Many techniques are available 

to design an inverse model, such as a sliding mode observer, 

unknown input observer, or an empirical correlation using system 

identification techniques.  The forward model is simply a copy of 

the plant dynamics. 

Observer Design.  Due to the presence of nonlinearities in 

the system and its robustness to modeling errors, sliding mode 

observers are designed for the inverse model problem.  Consider 

Eq. 1 with the input replaced by a discontinuous term, μI, as 

shown in Eq. 6. 
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Then, one could define error dynamics as in Eq. 7,  
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where the error is defined as V̂ - V  eV  .  The error must be 

defined in terms of the battery terminal voltage, since the 

equivalent circuit capacitor voltage is not measurable.  This is a 

mathematical representation of the inverse model from voltage to 

current in Fig. 5. 

This expression is intractable because it contains the 

derivatives of the input current and the estimated input current.  

Additionally, the capacitor voltage enters the expression and this 

quantity is not an available measurement.  One could proceed with 

this design, and choose μI such that it is greater than some 

approximation of the other terms.  Upon extraction of the 

equivalent control term through filtering, however, these terms 

will remain and corrupt the current estimate.  Therefore, an 

alternative scheme is proposed below, so that the input current 

may be calculated from known quantities. 

 

Proposed Residual Generation Method 
Since temperature is the only explicitly measured model state, 

it is preferable to use it as the input to both inverse models as in 

Fig. 6.  In this scheme we have removed the forward model for 

temperature resulting in the requirement that the temperature 

measurement be non-faulty, which was not previously necessary. 

   

 

 

FIGURE 6.  SCHEMATIC OF PROPOSED FDI SCHEME. 

 

Observer Design.  There are two inverse models required 

to compute estimates of the inputs using the temperature signal.  

The inverse model computing the fan setting from battery 

temperature may be defined as follows.  First, the estimated 

temperature dynamics are given by Eq. 8, where the heat sink term 

due to fan cooling is replaced by μfs.   

   

 fs
mc

RI 
 T̂ 

2


 (8)  

 

Next, the error dynamics of this estimate may be defined as in 

Eq. 9, where the error is defined as T̂ - T  e fs  . 

 

 fsfs -
mc
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By setting μfs = Kfsgn(e) the origin of the error (efs = 0) for 

the inverse path from temperature to fan setting is guaranteed to 

be asymptotically stable as long as Eq. 10 is satisfied. 

 

 
mc

)T-fs)hA(T(1
   K f


  (10)  

 

Since asymptotic stability is guaranteed, it is clear that 

fse will also converge to zero.  Then, Eq. 11 holds if a low-pass 

filter is applied to μfs to extract its low-frequency content. 
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 Now the second inverse model estimating battery current 

from temperature must be defined.   A form similar to Eq. 8 is 

used to obtain Eq. 12 below, where instead the heat source due to 

Joule heating is modeled using a discontinuous term. 
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Again, defining the error T̂ - T  eI   gives the error dynamics 

shown in Eq. 13. 
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Then by setting μI = KIsgn(T-T∞), the origin of the error 

dynamics for the inverse path from temperature to current are 

asymptotically stable when the constraint given by Eq. 14 is met.   
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After a finite length of time, eI and e converge to zero.  

Application of a low-pass filter results in the equality of Eq. 15.   
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Finally, the forward model estimate of battery terminal 

voltage is given by Eq. 1, where instead of the actual current, the 

estimated current of Eq. 15 is defined as the input to the system.  

It should be noted that the modification for discrete time systems 

presented in [11] is used to produce the simulation results.   

Fault Signature Development.  Generally, fault 

signatures may be developed analytically for simple systems or if 

there is no coupling between sub-systems.  However, Eqns. 1 and 

3 exhibit numerous forms of coupling that make it difficult to 

determine the exact effects of faults.  It is clear that a fault in one 

location of the system may produce multiple non-zero residuals.  

Thus, simulation is used to develop the fault signature for this 

system.  Faults are injected, one at a time, into each of the three 

sensors and fan motor.  In order to simplify the process of 

identifying the faulty response of each residual, a constant current 

profile is considered, but this should not change the resulting 

signatures for more complex inputs.  The faults consist of 

intermittent signal losses, or in the case of the fan motor a 

complete loss of cooling that is non-recoverable.  The simulated 

„measured‟ values for the current, fan setting, and the output 

voltage of a single cell are shown in Fig. 7 along with the 

estimated values.  The residual corresponding to each sensor is the 

difference between the estimated and actual values. 

 

 

FIGURE 7.  RESPONSE OF RESIDUALS TO INTERMITTENT 

CURRENT SENSOR FAULT AT A TIME OF 50 S. 

 

Note that in Fig. 7, there is no distinguishable difference 

between the voltage estimate and the sensor value, while the fan 

setting and current estimates exhibit sharp differences from their 

measured values at the time of the fault.  This process of studying 

the effect of faults on the residuals of the system may be repeated 

for faults originating in the temperature sensor, voltage sensor, and 

fan motor to produce a full set of fault signatures.  The fault 

signatures resulting from the complete analysis are summarized in 

Table II.  Isolation between the fan input and temperature sensor 

has not been achieved, which is a consequence of using the 

temperature sensor as an input to both residual generators. 

Threshold Selection.  Once the response of each residual 

to all considered faults is understood, the next step is to select 

thresholds for the residuals that are used to determine the presence 

of faults.  If the residual value in question exceeds its threshold, 

then a sensor fault is recorded.  Theoretically, the probability of 

error when declaring the presence of a fault may be minimized by 

studying the probability density function (PDF) of faulty and non-

faulty signals.  These functions must be obtained through 

extensive experimental data collection or simulation of the system.  

The operating conditions under which the PDF is obtained must 

be similar to the actual operating conditions expected for the 

system, to ensure that the characterization of the residuals during 

testing is appropriate for the intended application.  For the HEV 

battery management system presented here, real HEV driving data 

obtained from [12] will be used to develop the necessary PDFs.  

The current profile corresponding to this data is shown in Fig. 8.  

In addition to using a realistic current profile, Gaussian sensor 
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noise is added to the model.  This represents the inability to obtain 

exact, clean measurements during system operation and generally 

results in an increase in the mean square estimation error. 

 

TABLE II.  FAULT SIGNATURE SUMMARY.  A VALUE OF 

1 INDICATES A NON-ZERO RESIDUAL. 

Fault Location Residual Value 

T 

rI 1 

rfs 1 

rV 1 

V 

rI 0
 

rfs 0 

rV 1 

fs 

rI 1 

rfs 1 

rV 1 

I 

rI 1 

rfs 1 

rV 0 

 

For the signal loss faults that were used to develop the fault 

signatures, the selection of thresholds is trivial as long as the non-

faulty signal values are large enough.  Logically, if the non-faulty 

signal values were already zero or very close to it, then the fault 

will not be noticed.  Thus, the signal loss thresholds are set to the 

same value used for determining drift faults. 

 

 

FIGURE 8.  CURRENT INPUT FOR PDF DEVELOPMENT. 

 

The selection of thresholds for detection of sensor bias faults 

is much more complex due to smaller fault magnitudes which 

result in less differentiation between faulty and non-faulty 

residuals.  Thus, the faulty and non-faulty PDFs may have 

significant overlap if the variance of the residual is large relative 

to the bias.  This is shown graphically in Fig. 9, which contains 

two distinct faults simulated with the current profile of Fig. 8.  The 

top case considers the response of the current residual to a current 

sensor fault, while the lower case considers the response of the 

voltage residual to a voltage sensor fault. 

   

 

FIGURE 9.  PDFs OF VOLTAGE AND CURRENT SENSOR 

RESIDUALS.  VOLTAGE FAULT IS A -50 mV SENSOR BIAS 

WHILE CURRENT FAULT IS A 1 A  SENSOR BIAS. 

 

Due to the inevitable overlap of PDFs, an optimal threshold 

must be determined using hypothesis testing.  The objective of the 

optimal threshold selection is to minimize the probability of error 

when declaring a residual faulty, or deciding a non-zero residual is 

too low to detect a fault.  This statement is summarized by Eq. 16, 

where the assumption that a sensor may be faulty (H1) or non-

faulty (H0) with equal probability has been made. 

 

 )H|r(f)H|r(f r

HĤ
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r 01

1
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
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
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 (16)  

 

The expression in simple terms states that the optimal 

threshold should be placed at the intersection of the PDFs.  This 

finding comes from the desire to select the more probable 

hypothesis at any residual value, which is represented by the larger 

probability density value.  Overlapped regions of the PDF, 

however, result in a certain probability of error either from false 

alarms or missed detections.  This error is calculated by 

computing the integral of the overlapped region of the PDF.  

Given a nominal PDF and a maximum allowable probability of 

error, the amount of sensor bias (shift of residual mean) that is 

detectable using this method can be calculated. 

RESULTS 
Here the minimum detectable fault magnitudes are presented, 

along with simulations showing the actions of faults during a 

driving cycle obtained from operational HEV data. 
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Minimum Detectable Faults 
The minimum fault magnitudes to achieve five percent or less 

detection error are shown in Table III. 

 

TABLE III.  MINIMUM DETECTABLE SENSOR BIAS. 

Fault Location Min. Magnitude 

Current Sensor 1.2 A 

Voltage Sensor 22 mV 

 

It is clear from the above values that realistic sensor drift 

cannot be diagnosed without significant false alarm error, due to 

the large minimum fault magnitudes.  For instance, we may relate 

the voltage sensor error to an SOC error by calculating the 

derivative of SOC with respect to OCV based on curves from [8].  

A quick calculation gives a range of SOC error from 7% - 100% 

for 30-80% SOC, which is clearly too large.  This problem arises 

because the OCV curve plateaus in the SOC range of interest.  

Recall that the minimum fault magnitudes are computed for a 

dynamic current profile; the estimation error could be improved 

for a designed diagnostic test with a constant discharge current. 

As a possible explanation for the poor estimator performance 

consider that the current estimator uses temperature, which has a 

large time constant, as an input.  Thus some of the dynamics of the 

original current signal are lost and a minimum bound of estimation 

error is present.  The minimum magnitude of temperature fault is 

not discussed because the temperature sensor is considered faulty 

whenever both the current and voltage thresholds are exceeded.  

This implicitly assumes that a fault in a single sensor is more 

probable than simultaneous faults in two distinct sensors.  

Additionally, the fan setting threshold is simply fixed at 0.5 

because it will only take discrete values with the assumption of the 

fault occurring as complete cooling failure. 

Driving Cycle Simulations with Faults 
The thresholds presented in the previous section are tested for 

the real-world driving cycle.  The response of the system to a fan 

motor failure at t = 200 seconds is shown in Fig. 10.  Since the 

loss of the cooling fan has a large impact on the system, the effects 

of the failure can be seen in all three residuals.  To reduce the 

error present in the residuals of Fig. 11 from both sensor noise and 

sliding mode chattering, a  0.5 second moving-average is applied. 

Next, the computed thresholds are tested for the case of signal 

loss faults.  Current sensor signal loss occurs at times of 140 and 

150 seconds, while voltage sensor loss occurs at times of 160 and 

170 seconds.  The estimation results are shown in Fig. 12, while 

the smoothed residuals are shown in Fig. 13.   

Temperature signal loss is not considered, because it is 

required for convergence of the estimators.  Of particular interest 

in the results is that there are no missed detections using these 

thresholds.  However, there are brief false alarms in the voltage 

and current residuals in both cases which can generally be rejected 

through logical algorithms to avoid increasing the thresholds.  

This type of empirical tuning is typical of practical FDI. 

 

 

FIG. 10.  FAN MOTOR FAILURE AT t = 200 SECONDS. 

 

 

FIG. 11.  RESIDUAL RESPONSES TO FAN FAULT AT t = 200 

SECONDS.  THRESHOLDS ARE DENOTED BY X‟S. 

CONCLUSIONS AND FUTURE WORK 
A FDI scheme has been designed for a Li-ion HEV battery 

management system.  The development of the system requires 

careful consideration of the model structure, in order to design 

observers whose error dynamics can be manipulated 

advantageously.  While larger faults are easily detected by the FDI 
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system, useful estimates of sensor bias escape detection.  This is 

due to the intuitive constraint that faults smaller than the normal 

estimation error of the observers cannot be detected, but could be 

corrected by employing a constant discharge diagnostic test. 

Future work on this topic could include application specific 

rules that eliminate false alarms through the use of outlier 

rejection algorithms.  This type of empirical adjustment would 

allow detection of smaller faults while still limiting false alarms.  

Finally, the FDI algorithm may be combined with parameter 

estimation to distinguish between sensor faults and natural 

changes that occur within the battery during aging.  Robustness 

with respect to battery state of health is crucial for practical 

applications, and characterization of battery aging under a diverse 

range of conditions is ongoing at CAR.  Incorporation of aging 

mechanisms into a FDI algorithm, however, would require a very 

accurate model of the aging process which is not a trivial task. 

 

 

FIG. 12.  INTERMITTENT VOLTAGE AND CURRENT 

SIGNAL LOSSES THROUGHOUT DRIVING CYCLE.  
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FIG. 13.  RESIDUAL RESPONSES DUE TO SIGNAL LOSS 
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