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Abstract—Plug-In Hybrid Electric Vehicles (PHEVs) are a
promising mid-term solution to reduce the energy demand in
the personal transportation sector, due to their ability of storing
energy in the battery through direct connection to the electrical
grid. However, an important aspect to a successful market
acceptability for these vehicles is related to the reliability of the
energy storage system.

In this scenario, various studies have attempted at investigating
the effects of current/power demand, calendar life and operating
temperature on battery life, as well as estimating the residual
life of the battery under various operating conditions.

This paper illustrates the preliminary results of a compre-
hensive study on Li-ion battery life estimation for PHEVs,
predicting their residual life under real-world driving conditions.
The methodology adopted is based on both deterministic and
stochastic simulations to investigate the effects of electrical and
thermal loading on the battery life. To this end, an electro-
thermal battery model, inclusive of thermal dynamics and
residual life estimation, is developed and utilized in conjunction
with a vehicle model, a supervisory controller for PHEV energy
management and real-world driving scenarios.

Within this framework, the proposed study addresses the
impact of the PHEV control parameters on the battery life,
namely the vehicle operating modes (charge depleting or charge
sustaining), and constraints on the State of Charge (SoC).

I. INTRODUCTION

Plug-In Hybrid Electric Vehicles (PHEVs) are today con-

sidered a promising solution to reduce petroleum usage in

the automotive transportation sector. The performance, cost

and reliability of such vehicles is strongly driven by the

energy storage system, for which the current state of the art

is represented by Li-ion battery technology.

It is well known that electrochemical energy storage systems

are subject to performance degradation due to the aging, which

depends on various factors such as the current magnitude

(C-rate), temperature, operating State of Charge (SoC) and

calendar life. Such aspects are important over the lifetime of

the vehicle and have been extensively studied through long

term experiments on various battery technologies. However,

most of the available information is based on results from

laboratory testing, under very controlled environments, and

using aging protocols which may not correctly reflect the

actual vehicle utilization. Therefore, significantly differences

in aging and battery life may exist when the batteries are

utilized on a vehicle under specific operating conditions and

usage patterns, leading to conservative vehicle designs where

the battery system is typically oversized (hence more costly)

to guarantee performance and range near the end of life.

However, studies on the estimation of battery life for Li-

ion batteries in PHEV applications have acknowledged the

importance of two aging factors, namely temperature and

SOC/Depth of Discharge (DoD) [1], [2], [3], [4], [5]. Such

factors are typically indirectly controlled or driven by the

vehicle usage patterns, charging scenarios, battery pack sizing,

vehicle control strategy, environmental factors and battery

pack thermal management.

Leveraging on previous experimental battery aging studies,

the proposed work presents the preliminary results of a simu-

lation study of PHEVs to investigate the impact on battery life

of a wide variety of usage scenarios and vehicle parameters.

The study is based on a validated dynamic battery model based

on an equivalent-circuit analogy, which integrates a dynamic

thermal model that predicts the internal temperature in relation

with the current demand and the boundary conditions. A

characterization of battery aging based on the work presented

in [3] is also included. Finally, the battery model is integrated

into a vehicle model validated on a prototype PHEV mid-

size SUV, which include a supervisory controller for energy

management [6].

II. OVERVIEW OF THE MODELING FRAMEWORK

Figure 1 shows the structure of the implemented battery

model. The model is composed by three sub-models namely,

electrical, thermal and aging models. The inputs of the system

are the battery current, denoted as Ibatt, and the ambient

temperature Tamb. The model outputs are the battery voltage

V and open circuit voltage Voc, the battery temperature T and

the severity factor σ, which is the key variable for battery life

estimation [3].

A. Battery Electrical Model

The electrical model of the battery is based on a linear

Randle equivalent circuit and is comprised of an open circuit
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Fig. 1. Schematic of Battery Model Structure

voltage, an internal resistance R0, and n parallel RC circuits

[7], [8], as schematically shown in Figure 2.

Fig. 2. Scheme of a nth Order Equivalent Circuit Model

The dynamic equation that describes the voltage across the

ith RC circuit is given by:

dVi

dt
=

1

RiCi

· Vi +
1

C
· Ibatt (1)

where the parameters are identified based on laboratory test

data and are scheduled according to the battery SoC and tem-

perature. Finally, the battery terminal voltage can be expressed

as the sum of all the voltage components:

Vbatt = VOC − R0 · Ibatt −

n
∑

i=1

Vi + Vh (2)

where VOC is the open circuit voltage, and Vh is the hysteresis

voltage [7]. The model described above has been validated

on a A123 ANR26650 power cell over a wide range of

SoC and temperature, and with the relevant current dynamics

experienced in vehicles [8], [9].

B. Battery Thermal Model

The parameters of the electrical model depend on the

temperature of the battery cell. However, in [7], [8], the

temperature is assumed as a static input to the model. In

order to improve the accuracy, a model of the cell temperature

dynamics is introduced, based on the work described in [10],

[11]. The thermal model is obtained starting from solving a

heat diffusion problem for a cylindrical battery cell, subject to

internal heat generation and external convective heat transfer

at ambient temperature Tamb. By applying a model order

reduction method in the frequency domain [11], [12], the

solution is converted into a linear MISO system in the form:

T (s) =
[

G11 (s) G12 (s)
]

[

Q̇ (s)
Tamb (s)

]

(3)

where T (s) is a spatially-averaged cell internal temperature,

Q̇ (s) and Tamb (s) are the Laplace-transformed heat genera-

tion rate and ambient temperature. The heat generation rate is

calculated as a function of the cell current, voltage and open

circuit voltage:

Q̇ = I (VOC − V ) (4)

The transfer functions Gi,j (s) of the reduced order model

are rational functions as follows:

Gi,j (s) = Ki,j

(s − z1) (s − z2) . . . (s − zn−1)

(s − p1) (s − p2) . . . (s − pn)
(5)

where n is a finite number and the poles, zeroes and gains are

calculated based on the thermal and heat transfer parameters of

the cell [11]. For engineering accuracy, a third-order transfer

function (n = 3) allows one to accurately characterize the

frequency response of the system up to 10Hz, which is

the typical sampling frequency adopted for the experimental

characterization of battery cells [11], [8].

The cell bulk temperature T (t) is the dynamic variable con-

sidered for scheduling the parameters of the electro-thermal

battery model. With this approach, the thermal dynamics of

the battery is coupled to the electrical dynamics, allowing one

to explicitly account for effects related to the electrical load

profile and the environmental conditions.

C. Battery Life Estimation Model

In this study, a model-based approach is followed to es-

timate the battery life under different usage conditions. The

approach is based on the weighted Ah-throughput model intro-

duced first in [2] and further developed [3]. The model is based

on the concept of accumulated Ah-throughput, implemented

through the equation:

Aheff =

∫

σ(T, DoD)|Ibatt|dt (6)

which gives the effective Ah-throughput that the battery can

achieve before reaching its end of life, depending on the

operating conditions, i.e., temperature and DoD. The nonlinear

function σ(T,DoD) in Eq. 6, called severity factor map,

weights the Ah exchanged by the battery as a function of

T and DoD.

The determination of the severity factor surface is typically

difficult. For the purpose of this paper, a prototypical example

of aging severity factor map was extracted from manufacturer’s

data, albeit with considerable difficulty as the tests were not

necessary conducted with the real driving framework in mind.

In the current practice, aging is typically assessed by cycling

a cell with 100% DoD at a 1C rate and at near-isothermal

conditions. In this paper an estimate of the value of severity

factor as a function of operating temperature and DoD is based

on available data ([13], [9]) and shown in Figure 3.
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On a real vehicle application, though, the actual aging

conditions are different from the ones considered to generate

the severity factor map. In fact, the battery can operate in

a wide range of temperatures and SoC. Hence, the need to

conduct an extensive campaign of aging experiments reflecting

the actual operation of the battery is unquestionable.

With reference to Figure 3, two regions on the severity

factor map are highlighted, namely a fringe spot and a sweet

spot. If the battery is operating in a fringe spot, the Ah-

throughput model places a relatively high weight to the current

exchanged by the battery, hence leading to a decrease in the

expected life of the battery.

Fig. 3. Severity Factor Map σ(T, DoD).

A broad campaign of aging experiments is being conducted

at The Ohio State University Center for Automotive Research,

to validate the severity map of Figure 3 to reflect the real usage

of the battery.

D. Vehicle Model

The battery model is embedded in a PHEV simulator to

allow for conducting the simulation study. The simulator

builds upon the energy-based model of a conventional hybrid

electric vehicle [14], [15], later converted to a PHEV by

modifying the battery pack capacity [6]. The selected battery

pack allows for an all-electric range (AER) of approximately

30 miles.

The vehicle is based on a series-parallel architecture, which

includes a Diesel engine coupled to a Belted Starter Alternator

(BSA) on the front axle and an Electric Motor (EM) on the

rear axle. Table I describes the main vehicle components. The

above configuration allows for a variety of modes such as

pure electric drive, electric launch, engine load shifting, motor

torque assist, and regenerative braking.

The vehicle simulator is based on a forward-oriented model

of the the vehicle longitudinal dynamics. Energy-based models

of the vehicle components are present to characterize their

energy consumption starting from their respective efficiency

maps [16]. The validation of the models was performed first

TABLE I
DESCRIPTION OF THE MAIN VEHICLE COMPONENTS.

Component Type Specifications

Chassis Mid-size
SUV

2005 Chevrolet Equinox

Engine 1.9l Diesel 4 Cylinder, 16v, Euro 4, 103 kW @
4000 rpm, 305 Nm @ 2000 rpm

Belted Starter/
Alternator

Permanent
Magnet

Kollmorgen servomotor, 10.6 kW
nominal power, 80 Nm peak torque,
4150 r/min Max Speed

Energy Storage Li-ion
Batteries

A123 ANR26650 cells, total capac-
ity 17.2 kWh, 300 V (nominal)

Transmission 6 Speed Au-
tomatic

450 Nm torque capacity

Electric Motor AC Induction 32 kW, 185 Nm peak torque

by comparison with laboratory test data on the vehicle compo-

nents (e.g., engine, transmission electric motors, battery), and

then by vehicle data acquisition during driving tests [15].

As a remark, the modular structure of the simulator allows

for easily changing various vehicle parameters and compo-

nents, including battery model, battery size and initial SoC.

E. Vehicle Energy Management Strategy

The supervisory control strategy implemented in the PHEV

simulator manages the torque demands to the engine, BSA and

rear EM, in order to satisfy the torque required at the wheels.

The control strategy, developed in [6], splits the power

demand in order to instantaneously minimize a cost function

defined by the cumulative CO2 emissions:

JPHEV (u(t)) =

∫ tb

ta

ṁCO2,f (u(t), t) + ṁCO2,e(u(t), t)dt

(7)

where ṁCO2,f is the mass flow rate of the CO2 produced by

the engine and ṁCO2,e is the mass flow rate of CO2 produced

as result of the electric energy on-board consumed. While the

former term is directly related to the engine brake specific fuel

consumption map, the latter is a more complex function, which

depends on the battery energy utilization and by the specific

CO2 emissions of the grid energy generation mix, estimated

using the GREET model [17].

Because the overall (fuel and grid) CO2 emissions are

considered in the cost function, the effect of the vehicle to

grid interactions are explicitly accounted for on the vehicle

energy utilization.

With reference to the power flow of the vehicle model

shown in Fig. 4, the control variable u(t) for the considered

problem is a two-dimensional vector defined as:

u(t) = [Pbatt; PEM,el/Pbatt] (8)

where the first element is the total battery power and the latter

represents the power split between the rear electric motor

and the BSA. According to the power flow of the vehicle

powertrain, it is possible to state the following balances:

Ptot(t) =PICE(t) + PBSA,el · ηBSA + PEM,el · ηEM

Pbatt(t) =PBSA,el + PEM,el

(9)
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Fig. 4. Block Diagram of the Vehicle Power Flows.

where Ptot(t) is the total power request to the hybrid driveline,

and Ptot = Pwh,front + Pwh,rear.

The control and state variables are subject to constraints in

order to respect limitations from the drivetrain components

and for safe vehicle operations. In particular, the battery SoC

(in principle defined between zero and one) is usually limited

in order to avoid operating conditions that may result in battery

abuse and premature aging:

SoCmin ≤ SoC(t) ≤ SoCmax (10)

Further constraints may posed by the components of the

drivetrain, which are typically subject to power limitations:

Pbatt,min ≤Pbatt(t) ≤ Pbatt,max

PEM,min ≤PEM (t) ≤ PEM,max

PBSA,min ≤PBSA(t) ≤ PBSA,max

(11)

Details on the supervisory controller algorithm are provided

in [6], and in particular, the mathematical expression of

ṁCO2,e in Equation (7). Here, a calibration parameter is

defined in order to privilege the utilization of the electric

energy over the fuel. This parameter allows one to define the

operating mode of the vehicle and the discharging rate of the

battery during vehicle operations, as documented by the results

reported in [6].

III. SIMULATION AND ANALYSIS OF RESULTS

The electro-thermal battery model, together with the life

estimation model, was integrated into the PHEV simulator

and the supervisory controller to build a framework for

deterministic and stochastic simulations. This paper reports

the preliminary results of the simulation study, focusing on

the effects of the PHEV control parameters on the battery

estimated life.

A full factorial DOE of two variables was considered to

evaluate the effects of the vehicle operating modes (charge de-

pleting or charge sustaining), and the constraints on the battery

SoC bounds. Specifically, a set of simulations was performed

considering constant ambient temperature (Tamb = 25◦C),

and a fully charged battery at the beginning of each driving

schedule. Furthermore, the simulation results presented are

based on a real-world driving cycle obtained from a fleet

study. The driving schedule considered, shown in Figure 5,

is representative of a typical commute from home to work,

which includes both urban and highway segments.

In order to allow for the supervisory controller to deplete the

battery, it is important that the driving cycle length is greater

than the AER. In this case, three repetitions of the cycle shown

in Figure 5 were considered in the following simulations.
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Fig. 5. Velocity Profile of the Driving Schedule Considered for the Simulation
Study.

While the upper SoC bound was set to 0.90 of the total

battery capacity, the lower SoC bound was a variable for the

aging evaluation. In this preliminary study, five levels of the

lower SoC bound were considered, between 0.10 and 0.30

of the battery capacity. x Furthermore, two different energy

management strategies have been considered to deplete the

battery at different rates, indicated in Figure 6 as Charge

Depleting-Charge Sustaining (CD-CS) mode, and Blended

Mode (Blended). The figure shows an example of the SoC

profile for the two operating modes, for a fixed SoC lower

bound at 0.20. When the supervisory controller operates the

vehicle in Blended Mode, the lower SoC bound is reached only

at the end of the driving pattern, whereas in CD-CS mode the

controller will attempt at depleting the battery to the lower

SoC bound in the shortest time possible, thereafter switching

to charge sustaining mode.
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Fig. 6. SoC Profile in Blended Mode and CD-CS Mode (SoC Lower Bound
Set at 0.20).

The percentage of driving cycle operated in charge sus-

taining mode at the lower SoC bound was considered as the

second variable for the DOE study. Note that, in this case,

such variable can not be set directly, as its value depends on

the characteristics of the driving cycle and on the parameter

of the PHEV supervisory controller [6].

It is evident that the fraction of driving cycle operated in

CS mode reaches a limit of zero if the vehicle is operated in

blended mode. Varying the duration of the charge sustaining
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mode has an immediate impact on the effective Ah-throughput

of the battery. In particular, the CD-CS mode represents a

worst-case scenario where the controller will initially attempt

at depleting the battery in a relatively short time, in relation

with the imposed driving pattern. During the initial discharging

phase, the C-rate will reach high peak values, which will

increase the heat generation rate and, ultimately, the battery

temperature. Consequently, the battery will experience more

severe conditions, drawing up the fringe spot region in the

severity factor map shown in Figure 3.

The behavior described above is summarized in Figure 7,

where the statistical distribution of the C-rate in CD-CS mode

is represented, with a SoC lower bound of 0.20. When the

vehicle is operated in charge depleting mode (left plot), high

C-rates peaks are reached, in some cases up to 14C. However,

the distribution of the C-rate evidences that the battery is

mostly depleted at rates below 5C, with an average rate of

discharge around 1.35C. Once the lower SoC bound is reached,

the controller operates the vehicle in charge sustaining mode;

here, as shown in the right plot, the mean C-rate is zero with

minimal dispersion of the data.

It is worth observing that the results shown in Figure 7

justify the assumption of neglecting the effects of the C-rate

on the severity factor, hence considering only the dependence

on temperature and DoD.
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Fig. 7. Distribution of the C-Rate During CD-CS Mode (SoC Lower Bound
Set at 0.20).

The results of the DOE are summarized in Table II, re-

porting the main model outputs for three different values of

the SoC lower bound. For each SoC value, the results are

reported with reference to the blended mode and the CD-CS

mode, respectively.

Although the maximum C-rate never exceeds 14C, the

average battery power demand increases substantially when

the lower SoC bound is decreased. This has direct consequence

on the battery cell temperatures, which tend to increase despite

imposing constant ambient temperature.

Table III shows the weighted cumulative Ah-throughput

and the cumulative Ah (i.e., computed considering the actual

battery current) at the end of the simulated driving cycle,

varying the PHEV control parameters. The weighted cumula-

tive Ah-throughput is the output of the life estimation model,

calculated through the severity factor map shown in Figure 3

[3]. The tabulated results are shown graphically in Figures 8-9,

providing an intuitive representation of the cumulative battery

TABLE II
SUMMARY OF SIMULATION RESULTS.

SoC limit 0.10 0.20 0.30

Mode blended cd-cs blended cd-cs blended cd-cs

C-ratemed cd [1/h] 0.57 1.43 0.52 1.35 0.45 1.11

C-ratemed cs [1/h] - 0.00 - 0.00 - 0.00

C-ratemax [1/h] 10.92 13.79 10.28 13.78 10.92 13.79

Pmed [kW] 9.51 10.31 8.59 9.04 7.54 7.33

Pmax [kW] 184.40 212.30 169.40 212.10 137.80 204.00

Tmed [◦C] 27.9 28.6 26.7 27.6 26.2 27.2

Tmax [◦C] 27.7 31.4 27.6 30.9 27.1 30.8

TABLE III
SUMMARY OF CUMULATIVE AND WEIGHTED CUMULATIVE

AH-THROUGHPUT.

SoC limit 0.10 0.20 0.30

Mode blended cd-cs blended cd-cs blended cd-cs

Ah 52.02 53.52 46.19 47.42 39.82 41.81

Weighted Ah 81.86 89.26 69.52 75.61 57.20 64.05
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Fig. 8. Summary of Ah-Throughput and Weighted Ah-Throughput in
Blended Mode.
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Fig. 9. Summary of Ah-Throughput and Weighted Ah-Throughput in CD-CS
Mode

damage that stems from the different DoD levels and vehicle

operation modes.

By comparing the results, it is possible to observe that

the damage accumulation, which influences the battery life

expectation, increases as the lower SoC bound is decreased.

This behavior is common to both vehicle operating modes.
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The simulation results obtained illustrate the presence of a

linear relationship between the variation of the weighted Ah-

throughput (with respect to the accumulated Ah) and the lower

SoC bound, for both PHEV operating modes. In particular, by

discharging the battery up to a SoC bound of 0.10 leads to

an increase in weighted Ah greater than 10%, in comparison

with a SoC bound of 0.30.

Furthermore, the observed increase is almost doubled when

the PHEV is operated in CD-CS mode. As regards the absolute

Ah values reported in Table III, it can be noticed that when

the SoC lower bound of 0.30 is reached only at the end of the

cycle, therefore no charge sustaining operations are present,

the weighted Ah-throughput achieves a value that is much

lower (more than 30%) than the one resulting from a CD-CS

cycle.

When the battery is slowly depleted during the cycle (in

Blended mode), the severity factor obtained (as a function of

temperature and DoD) results lower than in CD-CS mode.

This behavior is shown in Fig. 10, relative to a lower SoC

bound of 0.20. The severity factor values obtained in Blended

mode populate the severity map area close to the sweet spot,

hence maintaining the estimated battery life very close to the

manufacturer’s specifications.
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Fig. 10. Severity Factor Profiles as a Function of DoD and Temperature
During Blended and CD-CS Mode (SoC Lower Bound Set at 0.20).

IV. CONCLUSION

This paper describes the preliminary results of a compre-

hensive simulation study on the characterization of Li-ion

battery aging factors for PHEV applications. A model-based

methodology that estimates the battery residual life under real-

world driving conditions is developed, based on a modeling

framework that integrates an electro-thermal battery model, a

life estimation model, and a PHEV forward-oriented model

including a supervisory energy management strategy.

A design of experiments was defined and conducted in

simulation to identify the effects of the PHEV supervisory

controller on the battery life. In particular, a direct relationship

was observed between the damage accumulation that influ-

ences the battery life and the rate of battery discharging during

the duty cycle. In Charge Depleting-Charge Sustaining mode,

the battery is subject to high DoD rates, which increase the

heat generation rate and ultimately the pack temperature. Such

effects are compounded when the severity factor is calculated,

resulting in a significantly higher values of the weighted

Ah-throughput. Similarly, a correlation between the weighted

accumulated Ah and the lower bound on the battery SoC was

observed.

A more thorough investigation of the root causes for

battery aging on PHEVs is currently under way. The de-

veloped modeling framework will be used to explore large-

scale PHEV simulations, to study the effects of a wide range

of design, environmental and control variables on battery

life. Among others, PHEV battery sizing, charging patterns

and daily/seasonal/geographical temperature variations will be

included in the analysis, based on a stochastic mix of real

driving scenarios obtained from on-going fleet studies.
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