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Abstract: This paper presents an overview of diagnostic needs and methodologies in the
automotive field. The field of automotive engineering has seen an explosion in the presence of
electronic components and systems on-board vehicles since the 1970s. This growth was initially
motivated by the introduction of emissions regulations that led to the widespread application of
electronic engine controls. A secondary but important consequence of these developments was
the adoption of on-board diagnostics regulations aimed at insuring that emission control systems
would operate as intended for a prescribed period of time (or vehicle mileage). In addition, the
presence of micro-controllers on-board the vehicle has led to a proliferation of other functions
related to safety and customer convenience, and implemented through electronic systems and
related software, thus creating the need for more sophisticated on-board diagnostics. Today, a
significant percentage of the software code in an automobile is devoted to diagnostic functions.
This paper presents an overview of diagnostic needs and requirements in the automotive
industry, illustrates some of the challenges that are associated with satisfying these requirements,

and proposes some future directions, in particular with respect to prognostics.
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1. INTRODUCTION

Why diagnosis in the automotive field? The field of auto-
motive engineering has seen an explosion in the presence
of electronic components and systems on-board vehicles
since the 1970s. This growth was initially motivated by
the introduction of emissions regulations that led to the
widespread application of electronic engine controls. A
secondary but important consequence of these develop-
ments was the adoption of on-board diagnostics regula-
tions aimed at insiring that emission control systems re-
mained functional for a prescribed period of time (or vehi-
cle mileage). In addition, the presence of microcontrollers
on-board the vehicle led to a proliferation of functions
implemented through electronic systems and related soft-
ware, related to safety and customer convenience, creating
the need for more sophisticated on-board diagnostics. To-
day, a significant percentage of the software code in an
automobile is devoted to diagnostic functions. Of course,
the use of diagnostic methods in automobiles is as old
as the automobile itself. Repair technicians have adopted
a variety of diagnostic techniques based on the human
senses, from sight to sound to smell, for over a century.

* This work was supported in part by someone.

However, over the past quarter century this field has
evolved from being in the domain of expert technicians,
aided by test and measurement equipment, to the develop-
ment of software that is embedded in the microcontrollers
that manage functions ranging from engine performance
and emissions, to braking, traction control, stability, and
myriad customer convenience functions. The aim of this
paper is to present an overview of the state of the art in on-
board diagnostics in today’s automobiles, and to suggest
some future directions.

1.1 Emission requlation

The original motivation for the introduction of real-time
on-board diagnostics in automotive vehicles originates
from the California Air Resources Board (CARB) require-
ments introduced in the early 1990’s to guarantee the
integrity of the engine exhaust emissions control systems.
The idea behind the original on-board diagnostics regula-
tions [obd05], [EPA] was to guarantee that the exhaust
emissions control system would be functional for a pe-
riod of time associated with warranty or with regulated
requirements. OBD regulations mandate that any fault in
the emission control system affecting software algorithms,
sensors, actuators or other hardware that could lead to



an increase of tailpipe emissions such that the vehicle
would no longer meet the emissions regulations, should
be detected in real-time and codified according to a set
of on-board diagnostic codes that are described in the
OBD legislation. These regulations first came into effect in
1988 and were further expanded in 1994 through OBD-II
regulations, and affect every single component or subsys-
tem that could increase engine exhaust emissions above a
pre-specified threshold. With the growth in complexity in
exhaust emissions regulations, and the attendant increase
in complexity in the hardware and software required to
meet such regulations, the task of meting OBD regulations
has become quite challenging. In particular, the OBD
challenge for Diesel engines and associated exhaust after-
treatment systems is notable, requiring the detection of
faults that lead to very small changes in regulated exhaust
gas emissions, of the order of tens of ppm. In a later
section, this paper reviews three distinct approaches to
solving OBD problems related to exhaust emissions con-
trols.

1.2 Safety

A second motivation for the introduction of on-board
diagnostic algorithms has been the introduction of safety
systems on-board vehicles. In recent years, increasing
attention to safety has led to the introduction of anti-
lock braking systems, traction control systems, electronic
stability control systems, and passive and active restraints.
Many safety functions are also the subject of increasingly
stringent regulations. The introduction of active systems
that can affect the safety of a vehicle, such as braking,
traction and stability control, and the introduction of by-
wire systems to implement these functions, has generated
different needs in diagnostics. In this context, diagnosis
is a precursor to fault-tolerant control: if a safety-critical
component is malfunctioning because of a fault or failure
in a sensor, actuator or other component, or a malfunction
in one of the software algorithms, then it is necessary to
identify such safety-critical failures very quickly so as to
be able to take corrective actions and ensure the safety
and reliability of the vehicle.

1.8 Customer satisfaction

The third area that has seen a growth in diagnostcs is
related to customer satisfaction. Even in subsystems where
diagnostic requirements are not legislated, nor are they
mandated by the presence safety-critical functions, there
may be some significant advantages in having diagnostic
algorithms on-board the vehicle for the purpose of guaran-
teeing customer satisfaction and overall quality. The use
of diagnostic algorithms to reduce false positives that may
lead to significant warranty costs for manufacturers has
been a subject of interest to automotive manufacturers,
and also to subsystem suppliers, who may incorporate
diagnostics directly into sensors or actuators. Accurate
diagnosis can reduce the incidence of faulty components
or the incidence of components being replaced when they
are in fact still good (i.e., false positives). This is an issue
of particular concern in a vehicle that has significant elec-
tronics content because it is often too easy, in the face of a
perceived malfunction, to replace expensive components,

such as for example an electronic control unit, rather
than pinpoint the specific cause. Studies conducted in the
industry have shown that the percentage of false positives,
for example as they pertain to replacement of the engine
control unit, is as high as 80% of the cases ([MPY106]).

2. PROBLEMS AND CHALLENGES

In the face of the different requirements outlined in the
preceding section, there is growing interest on the part of
the automotive industry in the ability to systematically
design diagnostic algorithms. Further, automakers have
also shown a desire to extend warranty periods to provide
consumers with a worry-free experience. As a consequence,
in addition to on-board diagnosis of different functions,
the prognosis of various functions and subsystems in the
vehicle has also become important. Manufacturers would
like to be able to predict when maintenance or replacement
may be needed for specific components, for example the
12V battery, or components in subsystems related to the
emissions control system. So, prognosis is beginning to
take on a role in automotive electronic systems that was
not on the horizon even just five or ten years ago.

The implementation of diagnostic and prognostic algo-
rithms of this type in automotive systems presents a num-
ber of challenges due to the scale of the implementation.
Such algorithms must be adaptable to millions of vehicles
and must be robust enough to be valid over a broad range
of different realizations of the same vehicle platform, with
choice of different engines, transmissions, and accessories.
Further, vehicles that might be architecturally identical,
will unavoidably require different software calibrations in
different markets. Thus, the design and implementation of
OBD algorithms is not a ‘one size fits all’ kind of design
approach.

The second issue is related to the fact that automo-
tive systems tend to be complex and highly nonlinear.
For example, engine and exhaust emissions processes are
characterized by complex thermochemical behavior (com-
bustion processes, exhaust emissions formation), that is
strongly affected by chemical reaction kinetics, fluid mo-
tion and heat transfer. Further, the presence of sensors
and actuators, such as fuel injectors, or systems that could
be pneumatically or hydraulically actuated increases the
overall complexity of an engine emission control system.
Therefore, it is difficult to imagine that simple, linear algo-
rithms could be very effective unless a substantial amount
of thinking and a deep understanding of the physics of the
processes goes into their design.

Another important aspect is the speed of execution, in
the face of limited computational capabilities (both CPU
speed and memory). On-board computers used in au-
tomotive applications have relatively low power relative
to the number of functions that they perform, because
cost is a significant constraint in the automotive industry.
So, one of the main challenges is to develop effective
diagnosis algorithms that can be implemented in fixed-
point arithmetic microcontrollers with limited amount of
memory and limited CPU speed. Some algorithms may
require truly real-time implementation. For instance, in
safety-critical diagnosis algorithms (e.g.: vehicle stability
control, or brake-by wire or steer-by wire applications), one



is obviously concerned with the implementation of these
algorithms in real-time so that any fault that is detected
can be compensated for in a fault-tolerant control scheme
or by entering a limp-home mode as safely and as quickly
as possible. On the other hand, other types of algorithms,
such as those that may be used to diagnose malfunctions in
the emission control systems, may not have such stringent
real-time requirements, in the sense that on-board diag-
nostics regulations typically require that the diagnosis be
carried out within what is called a ‘one trip’.

Finally, diagnosis must be as transparent as possible to
the user, while the designer must be very cognizant of
the relative weight of false alarms vs. missed detections:
such weighting will vary depending on the application,
with missed detections being especially costly (to the user)
in safety-critical applications, while false alarms can be
very costly (to the manufacturer and consumer alike)
when non-safety-critical applications that have warranty
implications are considered.

In short, the subject of system diagnosis in the most com-
plex consumer device in existence today - the automobile
- is one that presents numerous technical challenges that
range form the theory of estimation and detection, to
real-time software implementation issues. We hope that
the reader will come to appreciate the true complexity of
the problem after reading the overview presented in the
following sections.

3. APPROACHES TO FAULT DIAGNOSIS

Generally speaking, one can characterize approaches to
fault diagnosis as

e data-based: based on data and employing system
identification techniques to identify models;

e physics model-based, that is, based on a model that
has some predictive quality based on physical first
principles.

In reality, no approach is completely physics-model-based
or completely data-based, because every approach that
uses data typically has some kind of an underlying model,
and every physics-model-based approach requires a certain
amount of empirical calibration, so that in truth every
approach we use is really a combination of data-based
and physics-model-based techniques. It is our opinion
that, whenever possible, models based on the physics of
the process should be used. What constitutes a model
is subject to interpretation, of course. A model is, in
general, intended to be a collection of differential and/or
algebraic equations, but can take many forms. The key
idea is that one should taking into account a physical
understanding of the system at the very onset. It is
also important to understand that when one talks about
model-based approaches in diagnostics, these may require
models that have greater fidelity than the models that are
required to develop the control algorithms. This is one
of the fundamental challenges in diagnostics: in order to
be able to detect minor differences between the normal
operation of a system and its faulty operation, one needs
to have reasonably sophisticated models, or a very solid
understanding of the physical principles that underlie the
processes.

The ultimate accuracy of diagnostic algorithms is depen-
dent on accuracy of the model we use to predict the
behavior of the system. Whether these models are data-
based or physics-based, whether we obtain them through
system identification or whether they are grey-box models
in which we parameterize a physically-based model with
empirical coefficients, it is always true that any diagnos-
tic algorithm is fundamentally limited in its robustness
by modeling capability. Modeling errors will unavoidably
arises due to the use of a simplified model to represent
a more complex phenomenon, resulting in unmodeled or
inaccurately modeled dynamics, for example, whenever
we approximate a distributed-parameter process using a
lumped-parameter model. A second and equally important
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Fig. 1. Effect of the modeling errors on residual (above),
and on the probability density function (below)

source of model uncertainty in automotive systems is due
to the fact there are unavoidable plant differences even
in nominally identical realizations of the same system
or subsystem due to production variability across tens
or hundreds of thousands of vehicle units. This fact is
clearly recognized by the automotive industry, and is the
reason for the development of sophisticated calibration
procedures. Work has been done in characterizing this
different types of model uncertainty in fault diagnosis, but
this remains one of the great challenges in the diagnosis of
automotive systems.

4. APPLICATIONS - EMISSION CONTROL
4.1 On-Board Diagnostics (OBD)

To combat the smog problem in the LA basin, the State
of California started requiring emission control systems
in 1966 model-year passenger vehicles. The federal gov-
ernment extended these controls nationwide in 1968. In
1970 the Environmental Protection Agency (EPA) was
established. This started a series of graduated emission
standards and requirements for maintenance of vehicles.
To meet these standards, manufacturers turned to elec-
tronically controlled fuel feed and ignition systems. In
1988, the Society of Automotive Engineers (SAE) set a
standard connector plug and set of diagnostic test signals.



The EPA adapted the standards from the SAE on-board
diagnostic programs [EPA]. OBD-II is developed by SAE
and adopted by the EPA and CARB (California Air Re-
sources Board).

EPA: OBD-I and OBD-II  The first-generation OBD-I
requirements (1988) were relatively simple as compared to
today’s requirements:

- Emission-related inputs to the ECU were required to
be monitored for opens and shorts;

- The components requiring performance monitoring
included the ECU, fuel metering system, ignition and
EGR system (if present).

Since 1994, OBD-II regulations have been imposed in the
U.S.A. on gasoline, Diesel and alternative fuel vehicles. A
distinction is made between passenger cars and light-duty
trucks on one side, and heavy-duty vehicles on the other.

The European Union (EU) has developed a set of regula-
tions for onboard diagnostics for emissions controls that is
similar to those defined for the U.S.A. It is expected that
common standards will be used to define the EU OBD
requirements such that engines developed for the U.S. and
Europe will comply for OBD in both domains. The Eu-
ropean On-Board Diagnostics (EOBD) requirements are
similar to the EPA OBD requirements, with the exception
that higher malfunction thresholds are tolerated. In prac-
tice, most manufacturers have simply utilized US OBD-II
software/strategy to meet the EOBD requirements.

Any component that directly or indirectly affects emis-
sions, for example, coolant or intake manifold temperature
sensors must be monitored. If a malfunction is detected
that would cause emissions to exceed the regulated stan-
dard by more than 50%, a Malfunction Indicator Light
(MIL) must be lit on the dash-panel to warn the operator
that repair is required.

In addition, the OBD-II regulations require monitoring of
comprehensive components, such as any electronic power-
train component /system which either provides input to, or
receives commands from the on-board computer for: mal-
functions which can affect emissions during any reasonable
in-use driving condition, or electronic powertrain compo-
nents/systems used as part of the diagnostic strategy for
any other monitored system or component. This stringent
requirement is intended to ensure that anything that can
affect emissions, even to very small degree, is monitored.

In the next three sections we illustrate three diagnostic
applications motivated by OBD requirements, chosen to
place emphasis on three distinct diagnostic methodologies:

e Model-based fault diagnosis of a NO, aftertreatment
system. In ([PCO'09], [PSYJ06]) an open-loop ap-
proach based on parity equations is used;

e fault-tolerant powertrain control achieved by inte-
grating control and diagnostics, in which [KRU98],
[KRUO1a] use nonlinear (sliding-mode) observers;

e and, finally a signal-processing-based engine misfire
detection [KRSW95] algorithm.

4.2 NO, after treatment system

A fundamental application of FDI in the automotive
field consists in monitoring the after-treatment systems
in Diesel engines. In [PCS] and [PCOT09] a scheme based
on a parity equation approach is proposed and analyzed.
One of the most important factors for permitting the use
of Diesel engines according to the OBD regulations is the
control of the engine emissions, in particular particulate
matter (PM) and nitrogen oxides (NO,). A methodology
for NO, emission reduction called Lean NOx Trap (LNT)
[BCSB98] (see Fig. 2), is taken into account here. This
strategy has the advantage of not requiring reductant
supply aboard, is effective within a broad range of tem-
peratures (250 — 450°C'), and has a high NO, conversion
efficiency (more than 90%).
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Fig. 2. Schematic of typical LNT aftertreatment system

The main challenge for NO, after treatment systems
implementation on the vehicle is that a robust control
system must be implemented, in order to ensure that
the after treatment device operates with high conversion
efficiency, regardless of variability in the operating con-
ditions, and with restrictions on the available sensors.
Moreover, dedicated algorithms are required to monitor
the aftertreatment system for faults, in compliance with
the recent OBD-II regulations. In [PCS] and [PCO™09],
the described strategy permits to detect faults regarding
sensor malfunctioning, LNT sulfur poisoning and thermal
deactivation in the LNT scheme. The model is obtained
with a grey-box approach, where the equations regarding
the conservation of mass and energy are used, together
with simplified stoichiometric reactions for mass balances.
It is assumed that the mixture is at thermal and chemical
equilibrium (quasi-steady conditions), and that NOx are
only present as NO. A high level scheme of the model can
be seen in Fig. 3.
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Fig. 3. Schematic of the model used for the NO, after
treatment diagnostics

The fault diagnosis method used to detect the LNT af-
tertreatment system faults with steady-state input condi-
tions, is based on parity equations with constant thresh-
olds. Fig. 4 represents the whole diagnostics scheme: the



blocks in the upper part, from left to right, represent
the Diesel engine with air-to-fuel ratio (AFR) control, the
Diesel Oxidation Catalyst (DOC) and the LNT. The block
in the left-lower part represents the model of the engine
that is run in the diagnostics scheme, in order to generate
the output in case of non-faulty conditions: the difference
between the outputs of this system and those generated
by the ‘truth model’ implemented in the upper part of the
scheme are the residuals used for fault detection and iso-
lation. Please note that the implementation of the parity
equations is achieved in this case through a computational
model, not an analytical one, and that the computational
model, however simplified, is still quite complex.
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Fig. 4. Schematic of the FDI system in the NO, after
treatment application

The method described above yields promising results; for
instance, Fig. 5 shows the results obtained in detecting a
fault in the temperature sensor in [PCOT09], These results
were obtained in simulation, using a validated model of
the process. It should be remarked that today, the ability
to run models of such complexity in real time in an on-
borad processor is probably still beyond the capabilities
of production microcontroller hardware. Nonetheless, this
approach shows what can be accomplished if a relatively
high-fidelity model that can be computed in real time is
available.
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Fig. 5. Residuals for temperature sensor fault diagnosis in
the NOx diagnostics scheme

4.8 Fault tolerant powertrain control

The second application that pertains to the exhaust emis-
sions regulations area is the one described in ([KRUO1al)
and [KRU98|, where the integration of control and diag-
nostics with the objective of achieving fault tolerant con-
trol is considered. The references cited describe a strategy

that incorporates detection and isolation, and guarantees
desired system stability and performance in the presence
of certain component malfunctions.
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Fig. 6. Air-fuel related subsystem of an IC engine.

The system under consideration considers the breathing
and fueling dynamics of a port fuel-injected 4.6L spark
ignition (SI) engine, shown in Figure 6. This type of
model is generally referred to as a "mean value” model.
The elements of the system include flow through the
throttle, filling and emptying of the intake manifold, fuel
injection and fuel film dynamics in the manifold runners,
exhaust gas recirculation (EGR), system delays including
the induction-to-power stroke delay inherent in the four-
stroke engine cycle and transport delay in the exhaust
manifold, and sensor dynamics.

The objective of the work is two-fold: first, it is required to
identify a fault in the proportional oxygen sensor (UEGO),
and, second, the air-fuel-ratio (AFR) controller must be
capable of reacting to a fault maintaining good control
performance, that is, keeping the AFR as close as possible
to the reference value. To solve both these problems, the
control strategy is designed as follows: a feed-forward
term that uses cylinder air charge estimation and fuel
film estimation provides the base value for the fuel to be
injected; feedback comes in the form of a proportional term
(using the UEGO sensor) and of and Integral Sliding Mode
term. The latter consists of an additive discontinuous
control term that compensates for possible actuator faults.
A sliding mode observer is used to track the value of the
output, in order to avoid that a fault on the sensor could
lead to decreased performance of the control strategy. Fig.
7 shows a schematic of the fault tolerant control strategy:
the observer structure takes into account the possible
different faults.

The strategy was implemented first in simulation, then
on an engine; Fig. 8 shows how the proposed control
methodology reacts to an input fault (in simulation). After
a short time, the fault is identified, while the Integral
Sliding Mode strategy permits to react very quickly to it
keeping the AFR around the reference value.
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4.4 Engine misfire detection

In this section we summarize a family of approaches that
use signal processing and statistical signal classification
to detect and isolate individual occurrences of engine
misfire. Misfire is defined as as a lack of combustion in
the cylinder due to absence of spark, poor fuel meter-
ing, poor compression, or any other cause. This does not
include lack of combustion events in non-active cylin-
ders due to default fuel shut-off or cylinder deactivation
strategies [obd05]. According to the OBD-II regulations,
even a single instance of misfire in the engine has to be
recorded, while repeated instances have to be reported for
maintenance. Automotive engines, as with any rotating
machinery, present signature torsional vibrations, and any
changes in this signature can be used to detect faults in
the engine. Angular velocity measurement have been used
to detect changes in torsional vibration characteristics of
engines [Riz89],[GW90],[CR94],[PGGT95],[KRSW95].

The diagnosis of abnormalities in the torsional vibration
of the engine crankshaft is more readily apparent when the
variables of interest are viewed with respect to the angle
of rotation of the shaft. These variables are periodic when
measured in the domain of angle of rotation, and it does
not matter if angle of rotation is a non-linear function of
time [CR94]. Among the various methods used to analyze
the angular velocity data, there are: spectral analysis
using discrete fourier transform, principal components
analysis, discrete wavelet transform and change detection
[KRSW95].

When torsional vibrations are measured in the angular
domain, they are quasi-periodic with period equal to one
engine cycle (two revolutions for a four stroke engine).
Discrete Fourier Transform (DFT) based approach are
especially appropriate because of the periodic nature of
the signal. If we define the window to be 4w radians,
then the engine firing frequency will be N times per
period, where N is the number of cylinders in the engine.
Assuming that each cylinder produces identical torque, the
spectral content of the signal will be at the firing frequency
of the engine, and at higher harmonics. Any spectral
content at lower frequencies will indicate a significant non-
uniformity in engine torque production, and is an excellent
indicator of misfiring conditions. Fig. 9 shows the case
of the amplitude spectrum of the angular velocity signal
for the normal and misfire case for a 12-cylinder engine
[PGGT95].

The fact that a misfire is readily visible in the order of
rotation spectrum, as shown in Fig. 9, does not make
the isolation task automatic. Isolation of the misfiring
cylinder can actually be a complex process that can require
sophisticated pattern recognition methods. In the espe-
cially challenging case, that of a 12-cylinder engine, [Riz89]
shows that using a combination of Principal Components
Analysis (PCA) and statistical clustering it is possible to
correctly detect and isolate single misfires even in a V-
12 high-performance engine in which combustion events
have significant overlap with one another, rendering the
isolation of the misfiring cylinder quite difficult.
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Fig. 9. Amplitude spectrum of the angular velocity signal
for the normal and misfire case for a 12-cylinder
engine

The PCA method is a well-known multi-variate statisti-
cal technique that permits analysis of complex data by
providing the ability to compress large data sets into a
lower dimensional representation. The data compression
characteristics of PCA also make it suitable for the ex-



traction of salient features from the data, and facilitate
the solution of pattern recognition ad signature analysis
problems. In this example, PCA is used in conjunction
with clustering techniques to isolate the location of the
misfiring cylinder. The real and imaginary parts of the
first twelve frequency components of the engine angular
velocity signal (excluding the DC component), form the
initial data vector for PCA. As explained earlier, these
frequency components are computed on a cycle-by-cycle
basis. Let a sample data matrix be

X =y =w; (1)
where ¢ = 1,...,I is the engine cycle index and j =
1,...,24, is the index of the real and imaginary parts of
the twelve frequency components. Note that I >> 24, and
that z; is the row vector corresponding to the ¢th engine
cycle. The matrix X is typically generated by acquiring
data at various engine speeds and loads, under nominally
constant speed and load conditions. The z; vectors can
then be represented in 24-dimensional space.

Once a normalized data matrix exists, it becomes possible
to define a new orthonormal basis, u1,us,...,uy. The uy
axis is determined in such a way that the square distances
between vectors z; and the u; axis are minimized. This
is analogous to maximizing the square projections of the
vectors z; on u;. Summing up these square projections,
the variance of the random vectors z; is obtained. The
ug axis is found following the same procedure with the
supplementary constraint of its orthogonality with u;. The
ug axis is defined in the same way adding the orthogonality
to u; and us and so on.

The projection of the i-th cycle vectors onto the new basis
is calculated by means of the transformation matrix U:
F = fi; = fi = ZU where F is a (I x 24) matrix,
called the factor matrix. The f; = f;; columns (the
Principal Components) contain the projections of all the
I points onto the u; axis. The next step is to order the
J columns f;, according to the decreasing value of the
variance on the u; axis. Taking into account only the most
significant Principal Components, the computing time is
reduced, without a substantial loss of information. The
detection and isolation of a misfire is then based on the
calculation of the distance between the coordinates of
the z* vector and the coordinates of the pre-computed
centers of gravity of each of the clusters corresponding to
each of the twelve possible misfire conditions. Figure 10
depicts such clustering in three-dimensional space simply
for visualization purposes showing clusters of misfiring and
normal data.

5. APPLICATION - SAFETY
5.1 Introduction

The first results in electronically controlled vehicle chassis
systems can be found in [WI95], where a diagnostic system
for the lateral vehicle motion is designed using a discrete
parity space approach. In [KR95a] and [KR95b] a solution
to the problem of diagnosing faults in a vehicle steering
system is proposed using nonlinear observers constructed
by sliding mode design techniques. In [ISS00], after a
description of a drive-by-wire system and of the possible
sensor, actuator and component faults, an application

Fig. 10. Example of clustering in three-dimensional space

of a simple fault detection and isolation scheme for a
electromechanical brake pedal in a brake-by-wire system is
presented. Three residuals are obtained by using a parity
equation method and by comparing the signal from one
sensor with the reconstructed value from another sensor
obtained by an analytical pedal model. In [Ise00], the
fault detection and isolation approach is applied to vehicle
suspensions and to a simplified bicycle model for the
steering system. Some experimental results are presented
for the vehicle suspension related to the tire stiffness
estimation. For the bicycle model a fault detection scheme
based on the parity space approach and neural networks
is used to classify the different faults by training it with
special patterns. For an overview on fault-tolerant drive-
by wire system one can refer to [[SS02], while recent
results in FDI for lateral and vertical vehicle dynamics
are presented in [FBSI07]. Fault diagnosis for engine and
powertrain systems, and vehicle dynamics and control, has
been studied for instance in [KRUO1b], [DAR99], [PSR03].

During recent years, the applications of FDI strategies for
improving safety in the vehicle have received increasing
attention.

In the following, a hierarchical approach proposed in
[Pis02] in drive-by-wire system is presented which permits
the use of simple models for fault diagnosis.

5.2 Hierarchical FID in o drive-by-wire system

The general structure for the Hierarchical FDI is based on
a hierarchical decomposition of a system, as represented
in Fig. 12. The basic idea is to view the system as an in-
terconnection of lower dimensional subsystems determined
according to a certain partitioning methodology. For the
decomposed system it is possible to create a FDI scheme
comprised of many ‘Residual Generation Units’, and each
of them outputs a residual that is sent to a ‘Residual
Evaluation Unit’ that performs the residual evaluation for
the selected subsystem. An example of hierarchical decom-
position scheme for a vehicle chassis system is depicted in
Fig. 11.

The methodology combines enhanced version of model-
based fault diagnosis with qualitative techniques and mod-
els. The principle is based on the fact that system failures
occur in two stages: failure sources where the fault orig-
inated, and failure propagation of these faults to other
units. So, a process for failure analysis must try to locate
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the failure sources, and isolate the faults cause of failure,
according to the scheme in Fig. 13. The framework is struc-
turally divided into two components. The model-based
passive component represents the knowledge about the
fault behavior of the system under analysis, and consists
of two different models. The failure analysis instead is
an active constituent comprising processes that use the
model-based knowledge for diagnosis. One model for the
passive component is the Hierarchical Model-Based FDI
previously described, while the second model is constituted
by a Hierarchical Fault Propagation Digraph.

The fault propagation digraph contains a hierarchical rep-
resentation of available knowledge about the character-
istics of fault propagation within the system. Each level
in the hierarchy contains one or more structures that
together represent a view of the system under a partic-
ular granularity. The granularity of view increases with
levels. Thus as one traverses down the levels of the model,
the resolution of view increases. The Fault Location and

SUPERVISOR

Failure Analysis Failure model-based

passive components

Hierarchical Fault
Propagation
Digraph

Fault location

and
isolation
Hierarchical
Model-Based FDI
processes

Fig. 13. A framework for hierarchical FDI

Isolation Process (FLIP) operates on individual structures
of the hierarchical fault propagation model.

FLIP starts at the top level of the model constituted by a
single structure containing a single element that represents
the system under analysis. Once the FLIP returns the
failure sources in all structures at one level, the process
migrates to the next level. The FLIP interacts also with
the hierarchical model-based FDI model by activating the
available residual generator units to reduce the possible
fault locations and, at the end, to perform the final
isolation. When a FLIP exits from the lowest level, the
failure source set will contain the set of faults that are the
source of failure.

A scheme representing the application of such methodol-
ogy to a chassis system is depicted in Fig. 14.

For the same application, i.e. the drive-by-wire system,
adaptive thresholds are used for fault detection in sensors
when a steer-by-wire strategy is used, as described in
[PSYJ06], where it is also shown how modeling errors can
be drastically reduced by this technique.
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6. APPLICATION - CONSUMER SATISFACTION

6.1 Introduction

The demand for electric power systems in automobiles
has increased substantially in the last decade due to the
addition of many electrical systems and electronic devices
needed to comply with regulations and meet customer
needs. As a consequence of this dramatic growth in power
requirements, and in order to maintain optimal vehicle
performance, attention must be given to deriving more
effective fault diagnosis algorithms for electrical systems.
Vehicle diagnosis has become an important component in a
vehicle operation both for safety and consumer satisfaction
reasons. As vehicles have become equipped with more and
more complex electronic systems and sub-systems, it has
also become more challenging to identify the defective part
of the system, whether it is the ECU, sensor, actuator,
wiring harness, etc. ([TH02]). This is mainly due to the
following reasons. First of all, because different models of
vehicles generations have versatile architecture and fea-
tures, they can exhibit distinct fault behavior and it can
be sometimes difficult to uniquely associate a malfunction
feature to a specific component. Moreover, the automotive
industry has experienced an increased of both "no defect
found” problems, not reproducible, and ”intermittent de-
fects”, that exhibits a minimal degree of repeatability but
are hard to locate. That leads to an intrinsic difficulty of
accurately identifying faults on vehicles. This challenging
problem has led both the academic and the industry world
to put a lot of efforts in it [KNO5], [AM02], [BI03].

The next section focuses on the description of development
of fault diagnosis systems for the automotive Electric
Power Generation and Storage (EPGS) system. It will be
extremely helpful to give an early warning to the user
when the EPGS system leaves its safe operating area
due to whatever reasons. Meanwhile, such a capability
will also improve resource management via condition-
based maintenance, and minimize the operational costs for
automotive dealers. For such a system two different fault
diagnosis approaches have been proposed:

- model-based approach ([?], [LCS'08b]), which ex-
ploits a analytical model of the system for designing
a parity-equation based fault diagnosis scheme, and

- a hierarchical approach, presented in [LCST08a], that
allows to go from more general information of the
system malfunctions to a detailed knowledge of the
fault, hence achieving fault isolation.

6.2 Electric Power Generation and Storage system (EPGS)

The EPGS system, shown in Fig. 15, is composed of a
belt, an alternator with rectifier, a voltage regulator, a
battery and several electrical loads. When the engine is

Fig. 15. EPGS system

running, the alternator, driven by the engine through a
belt, supplies power to the loads and charges a 12-V
lead-acid battery. The battery provides the high power
needed by the engine starter motor, and supplies power
when the engine is not running or when the demand for
electrical power exceeds the output power of the alternator
[Bos03]. The diagnostic problem focuses on the detection
and isolation of a specific set of alternator faults, including
belt slipping, rectifier fault and voltage regulator fault.

The faults aimed to be diagnosed are:

- Open diode fault: a diode of the passive rectifier is
open.

- Regulator electronic circuit fault: the electronic cir-
cuit of the regulator can break.

- Belt slip fault: the belt can break or can have a
significant slip.




The first three faults are different failure modes of the
alternator, whereas the last two are faults related to the
belt. The two approaches presented have been both tested
in simulation and implemented on the EPGS experimental
test bench, (Fig. 16) developed at the Center for Automo-
tive Research, OSU.

Fig. 16. EPGS test bench

6.3 Model-based fault diagnosis for the EPGS system

Model-based fault detection and isolation (FDI) is based
on the ability to construct residual generators based on
models of the system (for example, through the design
of state observers or parity equations). Unfortunately,
due to the highly nonlinear behavior of the components
of the system, the complexity of the EPGS system is
significant. For the alternator system, the combination
of the nonlinear dynamics of the three-phase generator
with the switched, state-dependent behavior of the diode
bridge rectifier, make the design of a model-based fault
diagnosis system very challenging. Linearization is, for
example, virtually impossible in the presence of the hard
nonlinearities present in the rectifier. Meanwhile, a direct
non-linear parity equation or observer design for such a
complex non-linear switch system will also be extremely
difficult.

In order to obtain a robust diagnostic algorithm, and in
light of its implementation in the vehicle, the approach in
[LCST08b] utilizes an equivalent alternator model based
on its input-output relationship ([SRP07]). This allows for
the identification of an equivalent DC generator model of
the alternator by the replacement of the AC synchronous
generator and diode bridge rectifier with an equivalent DC
generator, as shown in the scheme of Fig.17. The designed
fault diagnosis algorithm uses a parity equation approach
based on the equivalent model and compare the behavior
of the alternator with the behavior of the equivalent model
to produce the residuals that contain the information of
the faults, according to the scheme in Fig. 18.

The components of the EPGS system have a high nonlin-
ear behavior which can be hard to model. For the alter-
nator system, the combination of the nonlinear dynamics
of the three-phase generator with the switched, state-
dependent behavior of the diode bridge rectifier, make the
design of a model-based fault diagnosis system very chal-
lenging. Linearization is, for example, virtually impossible
in the presence of the hard nonlinearities present in the
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rectifier. Meanwhile, a direct non-linear parity equation
or observer design for such a complex non-linear switch
system will also be extremely difficult. It is important

PE fault

Fault
decison

I
Residual (I
Generator | =" |

Fig. 18. Model-based fault diagnosis scheme

to notice that the equivalent model is used as an open
loop estimator for the full model without fault. Another
important part of FDI design is the residual processing and
threshold calibration. In fact, because of model inaccuracy,
disturbance or measurement noise, conditions for perfectly
robust residual generation cannot be met in practice. The
threshold calibration has been conducted by a statistical
approach, with the aim of reducing the probability of false
detection and miss detection. In Fig. 19, for example, it is
shown the behavior of the residual 7o = Vy — V4, in the
case of no fault, belt fault and diode fault condition.
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Fig. 19. Experimental results

6.4 Hierarchical fault diagnosis for the EPGS system

The main drawback of the model-based FDI solution
presented in the previous section is that it requires the
measurements of both the battery current and alternator



current, whereas only the alternator current is available
on-board. A different approach of fault diagnosis is then
pursued in [LCST08a]. In this work, the frequency content
of the measured signals is deeply analyzed and exploited
to design the hierarchical FDI algorithm. Specifically, from
an accurate analysis of the signals, one can extract crucial
information about the symptoms of the faults occurring
at the system. For instance, it is known that, if an open
diode fault occurs, the ripple amplitude increases.

Hierarchical diagnostic strategy, as implemented in [LCS*08a]

refers to a top-down methodology that uses a-priori knowl-
edge of the system signal behavior in order to detect
possible system malfunctions. This allows to go from
more general information of the system malfunctions to
a detailed knowledge of the fault, hence achieving fault
isolation. The main idea is that, starting from a high level
analysis of the signals, the occurrence of a possible fault is
detected and isolated by analyzing the frequency content
of the signals. An important advantage of such a hierar-
chical approach is that the computation load is greatly
reduced when compared to a model-based FDI algorithm.
Figure 20 depicts the diagnostic logic which runs when
the alternator is in operation. The diagnosis logic has a
hierarchical structure, composed of three levels The first
level analyzes both the battery current signal Ip.¢, by
checking amplitude and frequency of its ripple, and the
Vie signal by monitoring its mean value. If an anomaly
is detected, with respect to the nominal condition, the
algorithm activates the lower levels to isolate the fault.
This algorithm has been also experimentally validated on
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Fig. 20. Top-down hierarchical scheme

the EPGS test bench (Fig. 16) and it turns out to be
suitable for on-board implementation.

7. FUTURE CHALLENGES

7.1 Hybrid Vehicles
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Fig. 21. Fault-tree diagram of the electric powertrain

7.2 Prognosis

During the last ten years, many researchers from different
engineering communities (reliability, fault detection and
diagnosis, mechanical fatigue analysis, identification and
control of linear and nonlinear dynamical systems) started
focusing on understanding how a complex electromechani-
cal system can age, and to predict how much time remains
before the life of the system comes to the end, that is, to
estimate the Remaining Useful Life (RUL). This emerging
engineering discipline is usually referred to as Prognostics
and Health Management (PHM). Health monitoring and
prognostics of complex systems is a basic requirement for
condition-based maintenance in many application domains
where safety, reliability, and availability of the systems
are considered mission critical. Unlike health monitoring
technology, prognostics technology is still in its infancy
although some research work on developing the technology
has been done over the recent years. Most of the relevant
work in the field of prognostics comes from the structural
engineering community, where failure due to structural
fatigue can lead to catastrophic consequences (e.g., in
aeronautical and marine applications).

Like in diagnostics, prognosis methods can be divided
in data-driven and model-based ([?]). With respect to
diagnosis, in a data-driven approach for prognosis a more
intensive data collection process is needed in order to
characterize the damage accumulation and progression.

The main challenge is to analyze a multidimensional and
noisy data stream from many of sources (use conditions,
environmental conditions, and so on) in a population of
similar components. It is important to say that the man-
agement of uncertainty is fundamental in RUL estimation.
When the component is new and the accumulated damage
is negligible, the uncertainty margins on the exact time
of failure are very large. These margin of course become
narrower as the component ages. Data-driven applications
span a large number of techniques, from probabilistic ones
[?] to neural networks [?]. Model-based approaches are
useful to obtain more precise results, but of course their



design requires a deep knowledge of the system. First, it is
necessary to identify and experimentally validate damage
variables not always an easy and generalizable task, as it
usually involves very lengthy experiments under controlled
conditions, which do not necessarily reflect actual aging
in real life. Second, once a damage variable is identified,
there remains the challenge of reliably extracting features
or estimating parameters from experimental data that
closely correlate with the damage variable. Third, damage
evolution is invariably a nonlinear phenomenon, making
the modeling of it more difficult, and is also dependent
on initial conditions (e.g. structural or material defect
distribution). The applied methodologies comprehend, for
instance, observer-based methods [LBPT03], [OKGT08],
and mechanics-of-failure related strategies [CC04].

As for the automotive field, at the moment a lot of efforts
are being put in the estimation of the RUL of batteries.
A fundamental role is played by batteries, especially in
electric and hybrid-electric vehicle applications, where es-
timating their life can eventually be crucial. Estimation of
the state-of-charge (SOC) is indeed an important variable
to tarck for battery prognosis. In fact, the SOC value can
be useful to monitor the variation in the capacity of the
battery, and consequently the battery calendar life.

A very good example of model-based SOC estimation can
be found in [Ple04al], [Ple04b], and [Ple04c|, where an
Extended Kalman Filter is exploited.

A new prognostic methodology developed in ([SOGR09],
[CSGRO6], [SCGRO5]) is presented in this section.

The model-based prognosis method in ([SOGRO09]), in-
troduces an analytical aging model to describe the sys-
tem degradation for predicting the remaining life. The
analytical aging model is based on experimental results
collected on three different kinds of batteries: lead-acid
(PbA), nickel-metal hydride (NiMH) and lithium-ion (Li-
Ton) and on a suitable curve fitting. If the life of the
battery is defined in terms of residual capacity, S, then the
progression of the aging process can be expressed through
the evolution of the normalized damage measure £, defined
as,

So— S
S (2)

where Sy is the capacity of a new battery, and S the
capacity of a battery at the end of its life, which is a
predefined value. In fact, the end of life is usually defined
as the moment in which the capacity becomes 80% of its
original value. By definition, the damage measure £ takes
values between 0 (new battery) and 1 (end-of-life battery).
Based on the Palmgren-Miner comulative mechanical fa-
tigue model, a prognosis algorithm is formulated to predict
the evolution of the damage, as shown, for example, in
Fig. 22.
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