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Abstract: The paper presents an analytical formulation of a damage accumulation law for
automotive batteries, derived using curve fitting of experimental data from literature.
The analytical formulation shows the equivalence of the proposed model to the Palmgren-Miner
fatigue model used for mechanical components. The proposed model can be used to determine
the residual life of automotive batteries and is potentially implementable on-line.

1. INTRODUCTION

The automotive industry is directing its efforts to develop-
ing vehicle that are as reliable as possible, while increasing
the interval between scheduled maintenance checks. On-
board diagnosis (OBD) plays a crucial role in automat-
ically detecting system failures (loss of functionality) or
faults (reduction of functionality), thus reducing the time
and effort needed to identify the source of a problem.
Prognosis, i.e. the ability to track the degradation of a
system and predict its failure, is a further step towards
reliability and customer satisfaction.

Due to the increasing importance of the electrical power
and storage systems in modern vehicles, especially evi-
dent in electric or hybrid electric vehicles, diagnosis and
prognosis of electric power systems is the object of intense
research and development efforts.

In this article, we focus on prognosis techniques for batter-
ies used in automotive applications, for either conventional
vehicles (12 V starter batteries) or electric/hybrid electric
vehicles (nickel-metal hydride or lithium-ion). The objec-
tive of this work is to derive a model for tracking the state
of health of a battery using data collected on board of the
vehicle, and predicting the moment in which the battery
is not able to deliver its specified performance. Being able
to determine this end-of-life condition in advance allows
for more efficient preventive maintenance.

Batteries age with usage. Battery aging includes the loss
of rated capacity, faster temperature rise during opera-
tion, reduced charge acceptance, higher internal resistance,
lower voltage, and more frequent self-discharge. In auto-
motive applications, in particular, it is experimentally ob-
served (Chehab et al. [2006]) that the main effects of aging
are an increase of the internal resistance and a decrease
of the capacity (charge acceptance). The former manifest
itself as loss of efficiency and consequent reduction of peak
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power (a smaller fraction of the chemical power is available
at the terminals); the latter reduces the amount of energy
that can be stored in and subtracted from the battery. In
conventional vehicles using lead acid batteries, the most
important effect of battery aging is the loss of the ability
to start the engine, due to the fact that the power supplied
by an aged battery is not sufficient to crank the engine. In
electric and hybrid-electric vehicles, on the other hand, the
battery pack has a much higher maximum power, and thus
its reduction is not as critical as in a conventional vehicle;
however, the decrease in peak power and efficiency reduce
the overall efficiency of the vehicle.

The reduction of capacity, and therefore of the amount of
energy that can be stored on board, is critical especially for
pure electric vehicles and plug-in hybrid electric vehicles,
which discharge their batteries very deeply (unlike charge-
sustaining hybrids). In these cases, battery aging may
imply a substantial reduction of the operating range, or
decrease of the gas mileage. By contrast, charge-sustaining
HEVs usually operate their batteries in a relatively narrow
range of state of charge, using only a fraction (20-40%) of
the available energy; therefore, the decrease of the total
energy that can be stored in the battery is not critical,
until a minimum value is reached.

The objective of this paper is to present a general method-
ology to derive an analytical aging model for automotive
batteries based on experimental results collected on three
different kinds of batteries: lead-acid (PbA), nickel-metal
hydride (NiMH) and lithium-ion (Li-Ion). Even though the
paper focuses on methodology rather than experimental
results, published data from several sources are used to
propose an aging model.

The paper has the following structure. In Section 2 a
description of the main aging parameters affecting the
life of automotive batteries is presented. In Section 3 the
theoretical framework for aging modeling is introduced;
its application to calculate the damage progression of
automotive batteries is shown in Section 4 and Section 5.



2. BATTERY AGING

Several authors (Chehab et al. [2006], Serrao et al. [2005],
Wenzl et al. [2005], Dubarry et al. [2007]) in the past have
attempted to characterize the process of battery aging,
and in particular to quantify the effect that the operating
parameters have on battery life.

In many cases, the definition of the battery life is given
in terms of the number of charge/discharge cycles that
it can sustain before its capacity drops to 80% of the
original value (IEEE SCC 29 [1997]). This definition is
meaningful only in cases in which a unique cycle is used
throughout the battery life. Drouilhet and Johnson [1997]
used Ah counting as a unit of measurement for battery
life, assuming that a battery can supply a given amount of
charge during its entire life. In this way, there is no need
to define a specific cycle as a unit of reference. This is the
method used in the present article.

In general battery aging is a complex process, resulting
from the interaction of several variables, or aging factors.
Among them, the most significant in automotive applica-
tion can be identified as follows:

• operating temperature;
• depth of discharge (amount of charge drawn from a

battery during a given cycle);
• battery current.

Higher values of the three factors lead to faster battery
aging. Depending on the specific application, other aging
factors can be identified: for example, the time between
complete recharges (Wenzl et al. [2005]), which is not
meaningful in automotive batteries that are never charged
completely during normal operating conditions. Over-
charging and over-discharging (exceeding voltage limits)
can also be very harmful to a battery, as it is remaining
at very high or low state of charge (Wenzl et al. [2005]).
However, if the battery is monitored by a voltage control
system, these events will not take place during normal
operation.

The definition of end-of-life is arbitrary, and depends
on the specific application. As mentioned, one possible
definition of end-of-life corresponds to the condition in
which the capacity becomes 80% of the value it had in the
new battery. However, aging can compromise the battery
usability in other ways, for example, as explained earlier,
reducing peak power. In this work, the age of the battery is
expressed in terms of variation of damage variables, i.e. the
(physical or functional) parameters of the battery whose
value changes irreversibly because of aging and modify
the behavior of the system. The deterioration of these
parameters is represented by using an aging model as
described in the following sections.

3. APPROACH TO AGING MODELING

A generic dynamic system subject to aging can be de-
scribed by


ẋ = f(ϑ, x, u)
ϑ̇ = εg(ϑ, p)
y = Cx+Du+ v

(1)
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Fig. 1. Zero order circuit model of a battery

where:

x ∈ Rn is the set of state variables associated with the fast
dynamics of the system;

ϑ ∈ Rm is the set of damage variables, i.e. the system
parameters that change with the age of the system;

ε is a positive scalar (ε� 1) that represents the fact that
the dynamics of the damage variables are much slower than
the system dynamics, so that the value of the parameters ϑ
can be considered constant when dealing with the system
dynamic equation ẋ = f(ϑ, x, u);

u ∈ Rl is the set of external inputs acting on the system;

p ∈ Rk is the set of aging factors which have an effect
on the aging of the system. p can be composed of states,
inputs and/or external parameters;

y ∈ Rj is the set of system outputs, dependent on the
constant matrices C and D and on the measurement error
v.

The dynamic variation of ϑ is assumed to be much slower
than the main system dynamics, so that the value of the
parameters ϑ can be considered constant when dealing
with the system dynamic equation ẋ = f(ϑ, x, u).

The main issue in finding an aging model of the system
is the formulation of the aging equation ϑ̇ = εg(ϑ, p),
which expresses the parameter variation due to the aging.
The rest of this paper focuses on the proposal of such
formulation for the case of electrochemical batteries used
in electric and hybrid electric vehicles. In particular, the
damage variables and aging factors will be identified and
described in Section 4, and a form for the function g(ϑ, p)
will be proposed in Section 5, based on the analysis of
experimental results.

4. BATTERY MODELS AND DAMAGE VARIABLES

The simplest circuit model of an electrochemical battery is
shown in Figure 1. This is a zero-order model involving two
parameters: the open circuit voltage E0 and the internal
resistance R0, which accounts for ohmic and conductivity
losses in the battery. However, even though it does not
appear explicitly in the circuit model, the most important
battery parameter is the capacity S, i.e. the amount of
charge that the battery can hold.

All these parameters are a function of the battery oper-
ating conditions (state of charge, temperature, direction



of the current) and can vary with the age of the battery.
From the aging standpoint, the parameters whose change
with age is most noticeable are the internal resistance R0

(because it affects the power capabilities of the battery)
and the capacity S (which affects the amount of charge,
and hence of energy, that can be stored in the battery).
The internal resistance increases with aging, while the
capacity decreases.

However, it can be observed that both the resistance in-
crease and the capacity loss are due to the same underlying
physical phenomena. In fact, in lead-acid batteries for
example, the degradation of positive active mass causes
an increase in electrical resistance at the lead-oxide sites
that leads to a loss of capacity, since the resistance of the
softened sites increases to a point where they are no longer
participate in electrochemical reactions (Suozzo [2008]).

For this reason, only the capacity S is considered as a
damage variable: ϑ = S, and the life characteristics of
the battery are defined based on its residual capacity. In
the rest of this paper, we will use the normalized damage
measure ξ to express the progression of the aging process.
The damage measure is defined as:

ξ =
ϑ0 − ϑ
ϑ0 − ϑf

=
S0 − S
S0 − Sf

(2)

where ϑ0 = S0 is the capacity of a new battery, and
ϑf = Sf the capacity of a battery at the end of its life,
which is a predefined value. In fact, the end of life is usually
defined as the moment in which the capacity becomes 80%
of its original value. By definition, the damage measure ξ
takes values between 0 (new battery) and 1 (end-of-life
battery).

The aging equation dϑ/dt = ϑ̇ = εg(ϑ, p) that appears
in (1) can be written in terms of ξ and of the number of
cycles n rather than ϑ and time, with a simple rescaling
of the variables:

dϑ

dt
=

1
tc

dϑ

dn
; dϑ→ dξ (3)

where the first equality is due to the fact that tc is the
duration of each cycle (hence dn = dt/tc) and the second
transformation uses the definition (2).

The slope of the curve ξ(n) is

dξ

dn
= ϕ (ξ, p) (4)

and depends on the value of the aging parameters p and
the age ξ. It can be used to predict the evolution of
battery damage and represents the basis of the aging
model proposed in this work. The time evolution of the
damage measure, ξ(t), depends also on the duration tc of
each cycle.

In the study of mechanical fatigue the most common ap-
proach to modeling the aging of a mechanical component
is the use of the Palmgren-Miner rule (see, for example,
Juvinall and Marshek [2000]). The rule states that the
life of a component under a sequence of variable loads
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Fig. 2. Graphical representation of the Palmgren-Miner
rule, assuming that p represents the intensity of
load on a component and that the life is inversely
proportional to p

is reduced each time by a finite fraction. This reduction
corresponds to the ratio of the number of cycles spent
under the given load condition and the number of cycles
that the component would last if subjected to that same
load condition for its entire life. In other words, if ni is
the number of cycles spent under the load condition pi
and N(pi) is the number of cycles that the new compo-
nent would last if it were cycled under condition pi until
failure, the end-of-life due to a sequence of variable loads
pi , i = 1, ...,W corresponds to the condition:

W∑
i=1

ni
N(pi)

= 1, (5)

that is, the end-of-life is reached when the cumulative of
the fractions of life reduction reaches the unit value. The
total life is a function of the loading conditions, and is
obtained from experimental data for a wide variety of
loads, components, and materials. Experimental results
collected over the course of the years for basic mechanical
components are readily available as tabulated data.

This empirical rule has found wide usage in mechanical
fatigue analysis because it is followed with fairly good
approximation in many cases of practical relevance. It
implies that the order in which the loads are applied is
not significant, that their effect is accumulated and that
the progression of damage is linear.

An important result tying the Palmgren-Miner rule to
the damage accumulation equation (4) was formulated by
Todinov [2001]. He proved that the additivity law coming
from Palmgren-Miner rule is equivalent to (4) if dξ

dn can be
factorized as product of two independent functions:

dξ

dn
= ϕ (ξ, p) = ϕ1(ξ) · ϕ2(p) (6)



Therefore, if one assumes that an additivity rule like the
Palmgren-Miner rule (5) applies to the case of battery
aging, it is possible to simplify the analytical development
of the aging model by using the form (6) for the aging func-
tion ϕ. On the other hand, the validity of this assumption
must be verified by fitting ϕ (ξ, p) to experimental data and
showing that the decomposition (6) is possible, as done in
Section 5.

The expression (6) allows for tracking the progression of
aging if the functions ϕ1(ξ) and ϕ2(p) are known. The two
functions can be defined respectively as the age factor and
the severity factor, since they account for different effects,
and are derived using experimental data collected during
aging experiments.

The independent variable n that represents how much the
component has been used is commonly identified with a
number of cycles. However, the concept of “cycle” is not
meaningful in the case of a battery for traction applica-
tions, because every charge or discharge event is different.
For this reason, the accumulation of age in a battery is
expressed using the total ampere-hour throughput, in both
charge and discharge, i.e.:

n =
∫ t

0

|I(t)| dt. (7)

5. AGING MODEL FROM EXPERIMENTAL DATA

The aim of this section is to give an analytical expression
of damage progression model (6) using curve fitting of
experimental data relative to the three main kinds of
batteries used in automotive applications.

While their relative importance can change depending on
the battery chemistry, the aging parameters p can be
identified with:

• operating temperature, T ;
• state of charge SOC, i.e. variation of state of charge

during a single charge or discharge event;
• intensity of current I drawn from or flowing into the

battery, or – more in general – characteristics of the
load profile.

From a qualitative point of view, higher values of these
parameters reduce the useful life of the battery.

Using laboratory experiments it is possible to characterize
the aging process of a battery, or in other words, determine
the quantitative behavior of the damage progression dξ

dn =
ϕ1(ξ) · ϕ2(p) as a function of the aging parameters p =
[T, SOC, I]. In order to derive the damage progression dξ

dn ,
the curve ξ(n) parameterized in p, is fitted to experimental
data.

The data used for for NiMH and PbA batteries was col-
lected in the Battery Laboratory at the Center for Au-
tomotive Research of the Ohio State University (Chehab
et al. [2006], Suozzo [2008]), while the data for Li-Ion
batteries is published by A123Systems.

We looked at the variation of battery capacity with the
progression of aging, i.e. at the data points that give the
relation S(n). Data for Li-Ion, PbA, and NiMH batteries

ξ

n

a2 > 1 a2 = 1

a2 < 1

a1(p)

Fig. 3. Different effects of the fitting parameters on damage
measure ξ(n)

are shown in Figures 4, 5 and 6 respectively. For each
chemistry, one or two experiments are present, relative to
different operating conditions. Li-Ion batteries are tested
under the same cycle, but different temperatures; lead-acid
batteries are tested under two different loading cycles, and
only one type of cycle is shown for Ni-MH. In all cases, the
capacity decreases with the progression of aging. The data
have been presented plotting the ratio S/S0 (S0 is the
value of the capacity at the beginning of life) with respect
to the total ampere-hour throughput n, which is easily
obtained from the number of cycles and the characteristics
of the test cycles, as

n = 2 ·DOD · S0 · ncycles (8)
where DOD is the depth of discharge of each test cycle
(which are supposed to be all identical), and ncycles is the
life expressed in number of cycles. The factor 2 is present
because we assume as life measurement the amount of Ah
extracted or put into the battery, hence both charge and
discharge cycles are counted.

The damage measure ξ is calculated according to the
definition (2) as:

ξ =
S0 − S
S0 − Sf

=
1− S/S0

1− Sf/S0
(9)

assuming that the capacity at the end of life Sf is a
constant for each battery type (corresponding to the lowest
final value observed in each family of curves). Figures 7, 8
and 9 show the damage measure points obtained from the
data.

All the points are fitted using the same analytical expres-
sion:

ξ(n) = a1(p) · na2 (10)
where a1(p) and a2 are fitting coefficients. a2 is a constant
for a given battery type/model, while a1 = a1(p) is
different for each curve, and is used to account for the
effects of different loading conditions.

By looking at Figure 3, it can be observed how a2 is a shape
factor, representing the qualitative behavior of the battery
aging process, which is reasonable to consider a function
only of the battery itself, while a1(p) is a severity factor,
which determines how fast the aging process happens, and
therefore it is a function of the loading conditions.

The results of the fitting (10) are shown in Figures 7, 8,
and 9. As it can be observed, this expression is adequate
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Fig. 4. Variation of battery capacity with progres-
sion of cycling, for complete discharge (DOD
= 100%), square wave current cycles, I = 2.3
A, at different temperatures. Data referred to
Lithium-ion batteries (A123 ANR26650). Source:
http://a123systems.textdriven.com.

to fit the progression of aging in all the cases examined
here. For each of the figures, a2 is fixed: effectively, only
a1 is responsible for the difference between curves in the
same figure.

The slope of the curve ξ(n) described with this curve
fitting is

dξ

dn
= a1(p) · a2 · n(a2−1). (11)

By expressing n as a function of ξ from (10):

n =
(

ξ

a1(p)

) 1
a2

(12)

(11) can be written as:

dξ

dn
= a1(p) · a2 ·

(
ξ

a1(p)

) a2−1
a2

= a1(p)
1

a2 · a2ξ
a2−1

a2 . (13)

As it can be easily seen, the above expression is a product
of two terms: one is a function of only p and the other is
a function of ξ. Therefore, the curve fitting (11) respects
the condition (6). That means that the additivity rule of
Palmgren-Miner holds for battery application.

In order to be implemented on a vehicle, (13) must be
discretized as follows:

ξk = ξk−1 + ∆nk−1 · a1(pk−1)
1

a2 · a2(ξk−1)
a2−1

a2 . (14)

where k represents the index of the subsequent updates to
the value of the damage measure ξ. ∆nk is the amount of
Ah used during the interval (k−1)−k. It is assumed that
the aging factors p are constant during the same interval.
This interval could be defined arbitrarily: for example, it
can be taken as any interval in which the aging factors
are indeed constant or almost constant, or it can be the
interval between a key-on and a key-off events (in the
latter case, an average value of the aging factors would
be considered).
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Fig. 5. Variation of battery capacity with cycling (12-V
PbA battery), under two different cycles. The power
cycle is a sequence of high-current, low duration
pulses; the energy cycle is a slow discharge (Suozzo
[2008])
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Fig. 6. Variation of battery capacity with cycling (7.2-V
NiMH battery), with square wave cycles (15% DOD)
(Chehab et al. [2006])
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Fig. 7. Damage progression for Li-Ion batteries. The points
represent the same data as Figure 4, and the contin-
uous line is the curve fit (10)
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Fig. 8. Damage progression for PbA batteries. The points
represent the same data as Figure 5, and the contin-
uous line is the curve fit (10)
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Fig. 9. Damage progression for NiMH batteries. The points
represent the same data as Figure 6, and the contin-
uous line is the curve fit (10)

6. IMPLEMENTATION

The advantage of (14) is that it lends itself to online
implementation for estimating the current age of the
battery and estimating its remaining useful life, since it
offers a direct relation between the age of the battery and
the aging parameters at the instant k − 1, and the age
at the next instant k. Using a forecast of future loading
conditions (for example, on the basis of past operating
conditions), the evolution of the damage can be predicted.

However, several issues need to be addressed for a success-
ful implementation of the proposed aging model.

First, for a given battery, comprehensive maps of the
coefficient a1(p) must be obtained from experiments, as
a function of the loading parameters p. a2 is determined
from the same experiments, but it is constant for a given
battery. These experiments are very time-consuming and
thus there is very little data currently available, at least
in the open literature.

If the maps are available, the remaining issue is the
integration of (14) on board of the vehicle for the entire
battery life. In fact, modelling errors and approximations

make the integration process subject to unavoidable errors,
which should be corrected by appropriately resetting the
accumulated value of the damage ξk. In order to do
this, an independent assessment of battery damage (i.e.
a measurement of its capacity) must be available on
board, but at this point this is not possible. Finding
alternative methods to assess the current damage level
(even at infrequent intervals) is then necessary for realistic
implementation of the proposed model.

7. CONCLUSION

An analytical aging model for batteries used in automotive
applications has been presented, starting from experimen-
tal data and curve fitting. The validity of an additive dam-
age accumulation law like the Palmgren-Miner rule used
in mechanical fatigue modeling has been proved assuming
the validity of the curve fitting approach, and a directly
implementable damage progression law has been derived.
Open issues regarding the effective implementation of the
proposed model are the need for a large amount of exper-
imental data, and the fact that the simple integration of
the damage accumulation law may not be reliable without
a method to assess periodically the current value of the
damage measure ξ.
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