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Abstract— This paper deals with life estimation of lithium 
batteries for plug-in hybrid electric vehicles (PHEVs).  An aging 
model, based on the concept of accumulated charge throughput, 
has been developed to estimate battery life under “real world” 
driving cycles (custom driving cycles based on driving statistics).  
The objective is to determine the “damage” on the life related to 
each driving pattern to determine equivalent miles/years.  Results 
indicates that Lithium-ion batteries appear to be 10 year/150,000 
mile capable, provided that they are not overcharged, nor 
consistently operated at high temperatures, nor in charge 
sustaining mode at a very low state of charge.  

Keywords- Lithium-Ion Batteries, Battery Aging, PHEV, 
Weighted Ah-throughput models,  

I.  INTRODUCTION 
 

Plug-In Hybrid Electric Vehicles (PHEVs) are receiving a 
great deal of interest in the United States.  Recent 
improvements in lithium batteries technology are making 
PHEVs a viable solution to reduce cost, petroleum 
consumption and emissions in the transportation sector. 

To make PHEVs a feasible solution, some issues need to 
be addresses, such as cost, abuse tolerance, and lifespan of the 
battery.  The current cost of a Li-Ion battery is estimated at 
about $1000/kWh and the long term goal that would facilitate 
speedy introduction of PHEVs is $250/kWh.  In order to 
achieve an all electric range (AER) of 30 miles, a PHEV sedan 
would need about 15kWh of available energy, thus resulting in 
a $15,000 premium.  Economies of scale could definitely 
reduce the cost per kWh, but the battery clearly represents the 
most expensive component of the vehicle. 

Lithium-ion batteries will play an important role in our 
mobility because of various advantages over other battery 
technologies like the high specific energy and the high specific 
power, which are very important for PHEV applications.  In 
spite of these advantages there are some improvements needed 
in order to make the lithium-ion technique more competitive 
in particular in terms of costs and lifetime. The ability to 
predict the lifetime of batteries is essential for the market 
introduction of lithium batteries in the plug-in hybrid electric 
vehicle market. But this key challenge is very complex 
because in this electrochemical system a number of aging 
processes take place parallel due to different stress factors 

which are caused by the varied operation conditions of the 
battery related to the drivers requirements.  
 

Accurate estimation of batteries life is a great challenge in 
particular for lithium-ion batteries in traction applications 
because these batteries experience a very irregular pattern of 
charge and discharge cycles depending on the driver’s driving 
and recharging habits.  The requirements of the driver (power 
and energy demand) determine the operating conditions of the 
battery like current and voltage.  But also other factors like the 
temperature distribution within the battery, the depth of 
discharge (DoD) and the state of charge (SoC) of the battery 
must be taken into account in the lifetime estimation.  These 
operating conditions determine the stress factors which induce 
the aging and the rate of aging. 

A successful lifetime prediction requires knowledge of the 
aging processes, the stress factors and their relationships.   
 

II.  BATTERY LIFE ESTIMATION 
There are two completely different approaches for 

lifetime estimation: performance-based models and weighted 
Ah-throughput models (or cycle counting).  

 
• Performance based models simulate the change of 

performance values of the battery (e.g. capacity, voltage, 
current). The End-of-Life (EoL) of the battery is reached 
when a predetermined particular performance dropped 
under a threshold value.  

• Weighted Ah-throughput models link the End-of-Life of 
the battery to some parameters which can be determined 
such as: Ah-throughput, number of cycles or time since 
manufacturing. 

 
Performance based models 
 

Models which are capable of simulating the change of 
performance of a battery including aging processes can be 
distinguished into four groups: 

• Electrochemical models 
• Equivalent circuit models 
• Analytical models with empirical data fitting 
• Artificial neural networks (ANN) 
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In the following these models and their advantages and 
disadvantages are shortly discussed. 

Electrochemical models provide very detailed information 
and results on local conditions and performance (e.g. 
temperature, potential, current, electrolyte concentration etc.). 
But they require knowledge of the chemical and physical 
interaction. This type of model is the most complex needing 
several input information (e.g. porosity of the active materials, 
electrolyte volume and density, etc.). Because of the 
complexity of the model the computational speed of 
simulation is low. 

In Equivalent circuit models the battery is represented by 
components of an equivalent circuit like voltage and current 
sources, resistors, capacitors, inductances. The aging processes 
are represented by the changes of the values of the equivalent 
circuit diagram. This type of models is very common for 
predicting battery dynamic characteristics, but there is no 
predictive model in the literature which capture the slow 
variation of model parameter with aging, and with factors 
contributing to aging such as C-rate, DoD and temperature. 

In analytical models with empirical data fitting the 
lifetime is predicted by means of interpolation and 
extrapolation from test results and field data. For this purpose 
a lot of data is required. And the question how to investigate a 
particular effect on battery lifetime such as C-rate, DoD and 
temperature still remains open. 

Artificial neural networks have a tremendous potential to 
discover relationships between inputs (operating conditions) 
and outputs (ageing processes and performance values). This 
model does not rely on a detailed understanding of the 
mechanism which link input and output, but measurements are 
necessary in order to conduct this model. 
 
 
Weighted Ah-throughput models  
 

Weighted Ah-throughput models are based on the 
assumption that under particular standard conditions (C-rate, 
temperature, DOD) a battery can achieve an overall Ah-
throughput until the end of life (EoL) is reached. This data is 
usually given by the battery manufacturer and is required for 
the lifetime estimation with the weighted Ah-throughput 
model. The impact of a given Ah throughput on the battery 
lifetime depends on the details of the conditions during this Ah 
throughput.  One important advantage of this model is that it 
takes into account that deviations from the standard operating 
conditions (C-rate, DOD) may increase or decrease the 
physical Ah-throughput and consequently also the rate of 
aging.  The equation for the effective Ah-throughput is given 
by: 
  ∑ ⋅⋅= EEEeff AhnwAh           (1) 
 

The sum over all events E consists of AhE being the Ah-
throughput of an event E, nE the number of events E and wE 
the weighting factor for the event E, which can consider the 
force of the current of this event or the temperature, or the 
DOD. There can also be used multiple weighting factors 

considering different operating conditions (e.g. wEI.for the 
current I, wET.for the temperature and so on). The End of Life 
of the battery is given once the effective Ah throughput 
exceeds the total Ah-throughput measured under standard 
conditions or expressed in an equation: 
 

  1=
⋅⋅∑

total

EEE

Ah
Ahnw

             (2) 

 
This model represents a good option for the lifetime 

estimation of batteries in PHEVs because of its various 
advantages.  It has an easy basic structure and this allows very 
high computational speed and can be adapted to different 
battery technologies.  The main issue remains the 
determination of the parameters for the weighting factors 
(severity factors).  Accurate values would require extensive 
data collection, not yet available.  

 

III. APPROACH 

Most batteries have a nominal cycle life (20% loss in 
capacity) when doing 100% DoD cycles. Cycles with lower 
DoD have minor effects on performance degradation (i.e. loss 
in capacity, increase in resistance), thus resulting in a typical 
"throughput" type model, where the total number of partial 
and full cycles are proportionally added together to find out 
how much of the life has been expended (manufactures 
publish a curve of expected cycle number vs. depth of 
discharge of each cycle).  

Recent data shows that there is some validity to this, if the 
battery begins at 100% SoC and is discharged repeatedly to 
some depth before recharge; given these assumptions, the 
throughput model is roughly correct (although a bit 
pessimistic).   

A PHEV battery model was developed through a 
collaborative effort between Ohio State University Center for 
Automotive Research (OSU-CAR) and General Electric (GE) 
Global Research.  This model is based on the concept of 
accumulated charge throughput and considers the following 
input and output. 

 
Input: load duty cycles for batteries based on a 

typical/predicted usage patterns. One or more typical 
week/month/year can be identified based on customer driving 
habits. 

Output: life as function of above duty cycles. Number of 
miles that a battery pack could run within a capacity loss lower 
than 20%. 

The objective is to determine the “damage” on the life 
related to each driving pattern/ battery load profile; as a final 
step, the number of cycles is converted into equivalent miles / 
years. 
 
Battery ‘aging’ nominally depends on accumulated charge-
transfer in/out of the battery (A-h throughput) and the severity 
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of this charge transfer at each instant.  At the cell level, the 
severity of the charge transfer depends on: 

• Current severity relative to battery size (i.e., C-rate) 
• Temperature 
• DoD/SoC  
• Possibly other factors 

 
At the pack (vehicle) level, the determining factor for pack 
aging and life is going to be the most aged cell, strongly 
impacted by both electrical cell balancing/BMS and thermal 
design/management. 
Our focus here is on cell level and generalization to the 
vehicle level under assumption of all cells equivalent. 
 

IV. APPROACH TO MODELING OF AGING 
The age of the battery is expressed in terms of variation of 
damage variables, i.e. the (physical or functional) parameters 
of the battery whose value changes irreversibly because of 
aging and modify the behavior of the system (see [2] for more 
details). A generic dynamic system subject to aging can be 
described as: 
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Variation of damage variables implies slow changes in the 
system behavior, hence aging.   
In this work the capacity is considered as the only aging 
parameter that effects battery life and thus, life characteristics 
of the battery are defined based on its residual capacity. To 
express the progression of the aging process the normalized 
damage measure ξ  is defined as: 
 

ff SS
SS

−
−=

−
−=

0

0

0

0)(
ϑϑ
ϑϑϑξ  

(4) 

 
In practice ξ  is a scalar index varying between 0 and 1, where 
0 indicates beginning of life and 1 end of life. ( 0S  is the 
capacity of a new battery and fS  is the capacity of a battery 
at the end of its life). The evolution of the damage variable  ϑ    
is expressed as variation of damage measure ξ  as: 
 

( )p
dn
d ,ξϕξ =  

(5) 

V. BATTERY MODELS AND DAMAGE VARIABLES 
The framework for battery aging is a damage accumulation 
model borrowed from mechanical fatigue ([1], [2]). In the 
study of mechanical fatigue the most common approach to 
modeling the aging of a mechanical component is the use of 
the Palmgren-Miner rule (see, for example, [3]). The rule 
states that the life of a component under a sequence of variable 
loads is reduced each time by a finite fraction. This reduction 
corresponds to the ratio of the number of cycles spent under 
the given load condition and the number of cycles that the 
component would last if subjected to that same load condition 
for its entire life. In other words, if in  is the number of cycles 

spent under the load condition ip  and )( ipN  is the number 
of cycles that the new component would last if it were cycled 
under condition ip  until failure, the end-of-life due to a 

sequence of variable loads Wipi …1, =  corresponds to the 
condition: 

∑
=

=
W

1t i

i 1
)N(p

n  
(6) 

 
i.e., the end-of-life is reached when the cumulative of the 
fractions of life reduction reaches the unit value. The total life 
is a function of the loading conditions, and is obtained from 
experimental data for a wide variety of loads, components, and 
materials. The equivalence between the Palmgren-Miner, (6) 
and the damage accumulation model (4), is given if and only if 
(5) can be factorized as product of two independent functions 
(see [4]): 
 

( ) ( ) )(, 1 pp
dn
d σξϕξϕξ ==  

(7) 

The expression (7) allows for tracking the progression of 
aging if the functions ( )ξϕ1 and )( pσ are known. The two 
functions can be defined respectively as the age factor (how 
the aging progresses) and the severity factor. The severity 
factor function depends on the severity occurring to the 
battery, e.g., temperature, SoC/DoD, current, etc.    It must be 
mapped using experimental results, since they account for 
different effects, and are derived using experimental data 
collected during aging experiments.  
In this work, we specifically focus on the characterization of 
the severity factor function for Li-Ion batteries for PHEV 
application.  
 

VI. SEVERITY FACTOR FUNCTION FOR PHEV APPLICATIONS 
 
The main aging factors for PHEV applications can be 
identified in:  

•  Temperature  
•  SoC/DoD  

 

outputs
) and  (including factors aging xternalinternal/e of vector
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The C-rate effect on aging can be neglected. Typically, the 
battery is oversized for PHEV applications and therefore 
typical current C-rates range between ±4C (±2C typical), and 
hence the currents encountered in such applications do not 
contribute to any significant severity unlike HEV applications 
where currents ranging up to ±10 or 15C are experienced.  The 
vector p  of aging factors in the aging accumulation model (5) 
is then given by  [T,SOC/DOD]. 
The determination of the severity factor surface is typically 
difficult to obtain and is very dependent on the particular 
battery chemistry, anode and cathode composition, 
construction.  Furthermore, all information related to aging 
characteristics even for a given cell, requires extensive and 
very lengthy (hence costly…) data collection.  In the context 
of the methodology described in this paper, two primary types 
of information is feasible: First, the (very scarce) aging data 
provided by battery manufacturers, obtained typically under 
well described, but not necessary relevant PHEV aging 
protocols; and second, aging data collected at our facility 
under a variety of proprietary and in-house research protocols.  
For the purpose of this paper, a prototypical example of aging 
severity factor was extracted from manufacturer’s data, albeit 
with considerable difficulty as the tests were not necessary 
conducted with our framework in mind (typically aging is 
assessed by cycling a cell with 100% depth of discharge at a 
few  temperatures at a set 1C current).  Alternatively, we have 
extracted current, DoD and temperature data from actual 
vehicles and/or vehicle simulations and develop a 
methodology to extract statistically representative aging 
protocols which mimic real life operation.  An example of 
current profile corresponding a charge-depleting PHEV on a 
US06 driving cycle is shown in Figure 1, and the statistical 
distribution of current C-rate is shown in Figure 2.  One US06 
driving profile corresponds in this case to approximately 5% 
DoD.  A synthesized (simplified) current profile is extracted 
from this data with a statistically similar joint distribution of 
current level and SoC.  For battery aging, this profile is 
repeated multiple times until a set low SoC limit is reached 
and the battery is recharged at a prescribed rate (typically 1C 
for rapid charging).  Meanwhile, the cell under aging is 
subjected a fixed or variable temperature environment. 

 

 
Figure 1 - Typical Current (C-rate) Profile as a Function of Time for a PHEV 

(in Charge-Depleting Mode) during an Actual  Driving Cycle. 

 
Figure 2  – Typical Current (C-rate) Statistical Distribution for a PHEV (in 

Charge-Depleting Mode) during an Actual  Driving Cycle. 
 
These protocols have been implemented in our battery aging 
facility, which consist of 12 battery cyclers operated on a 24/7 
basis, complete with Peltier junctions or environmental 
chambers to control the thermal environment.  
 
In this paper, for the purpose of illustration of the 
methodology, and to not impact on proprietary information, 
we are limiting ourselves to an estimate of the value of 
severity factor as function of operating temperature and 
SoC/DoD based on publically available data.  This severity 
factor surface will be referred to as ‘estimated’ in the 
remainder of this paper. The topology of this ‘estimated’ 
severity function, while specific to a particular cell and very 
lengthy to determine experimentally, is generic enough in its 
overall shape.  The ‘estimated’ severity factor function, σ  as 
a function of T and DoD, is shown in Figure 3.  
 

 

 
Figure 3 - Severity Factor Map. 

 
The damage accumulation is linked to severity factor 
parameters, T and DoD, and the postulate is that the map is 
nominally 1 in the ’sweet spot’, increasing rapidly at the 
‘fringes’. Thus, high temperatures and high DoD will result in 
higher severity factors which will age the battery faster, while 
low DoD and low-medium temperature will not affect the  
severity of the aging, and hence, the A-h discharged and stored 
into the battery will count all the same.    
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While the focus of this methodology is to relate actual vehicle 
conditions to a damage accumulation model of the aging, the 
same methodology can be used ‘in reverse’ to engineer aging 
studies.  This opens up the opportunity for model-based design 
of aging experiments to experimentally obtain severity maps 
in an accelerated fashion.  This procedure will be described in 
a separate upcoming paper. 
 
The ‘estimated’ severity factor map, incorporated in the aging 
model presented in the previous section, is used to estimate 
battery life. A case study under “real world” driving cycles is 
discussed in the next session.    

 

VII. MODELING ASSUMPTIONS 
For this study a mid-sedan PHEV30 was selected, thus 

allowing up to 30 miles of AER (All Electric Range) in UDDS 
(Urban Dynamometer Driving Schedule) throughout the life of 
the vehicle. 

 
TABLE 1- BASIC VEHICLE MODELING PARAMETERS. 

 Conventional PHEV-30 

Glider Mass (kg) 693 693 
Engine/Transmission/Final 

Drive/Wheels (kg) 441 374 

Power Electronics and Electric 
Machine (kg) 0 44 

Energy Storage (kg) 0 124 

Fuel Subsystem (kg) 58 48 

Total Vehicle Mass (kg) 1192 1283 

Total Vehicle Mass w/ 136 kg 
Cargo (approx. 2 passengers) 1328 1419 

Battery Energy (kWh) - 14 

Engine Power (kW) 110 50 

Motor Power (kW) - 55 

 
The considered vehicle requires approximately 260 

Wh/mile for electric mode in UDDS cycle, thus resulting in 
about 7.8 kWh of stored energy required to run 30 miles in 
AER.  To account for battery aging and performance issues, 
the usable SOC has been assumed in the range 0.25-0.95; 
starting from this assumption the total storage capacity of the 
battery needs to be about 11.2 kWh.  Annual degradation of 
the battery capacity has been taken into account by estimating 
the energy required by each driving pattern and exchanged by 
the battery both in charge depleting and charge sustaining 
mode. In order to achieve the desired AER throughout the life 
of the vehicle (10 years/150,000 miles) part of the battery 
capacity is preserved and not completely used.  Assuming a 
battery pack sized to keep at least 80% of its original capacity 
after 150,000 miles, this results in over-sizing the battery pack 
up to 14 kWh of available energy (300 V, 46.7 Ah) in order to 
have at least 7.8 kWh of usable power at end of life.  These 
assumptions are probably somewhat conservative. 

The EV-mode energy management policy, that is the 
decision made at the vehicle level to use electric energy 
exclusively, until the battery has reached a lower acceptable 
SOC limit, is adopted to maximize fuel economy: independent 
of trip distance and/or driving patterns, the vehicle runs in 
pure electric mode (charge depleting) until a set SOC 
threshold is reached, then the vehicle reverts to parallel, series 
or dual-mode hybrid operation. Even though this might not 
result in an optimal power split, its simplicity allows easy and 
economic implementation on board on today’s vehicles 
without the need of additional devices (e.g. GPS to determine 
driving cycles in advance). Evaluation of alternative control 
strategies is currently underway.  Refer to [5] and [6] for 
further details. 

In order to simulate “real world” scenarios, custom 
driving cycles/typical days were identified starting from 
average driving statistics and well-known cycles. 

 
TABLE 2- DRIVING AND CHARGING EVENTS. 

 Description 

T1: UDDS+US06 (trip to work after full charge) 

T1b: US06+UDDS (trip to home after work). Initial SOC is the 
final SOC of previous trip 

T2: UDDS (errands). Initial SOC is the final SOC of 
previous trip 

T3: 
UDDS+HWFET+HWFET+HWFET+HWFET+UDDS 
(this assumes the vehicle is only recharged at the end of 

the day) 

C1: Overnight charging after T1b 
C2: Overnight charging after T2 
C3: Overnight charging after T3 

 
 

The combination of the described events and typical days 
results in 15,428 miles/year and 3,150 kWh/year of energy 
needed to recharge the vehicle. 

 
TABLE 3 - SIMULATED TYPICAL DAYS. 

 Events Frequency 

D1 T1-T1b-T2-C2 
3 days/week, 48 weeks/year 

(tot. 144 days/year) 

D2 T1-T1b-C1 
2 days/week, 48 weeks/year 

(tot. 96 days/year) 

D3 T3-C3 

2 days/week, 48 weeks/year +         
7days/week, 4 weeks/year 

(tot. 124 days/year) 
 

For a complete analysis it is also important to consider 
different charging availability, i.e. how often it is possible to 
recharge the battery. In this paper two main scenarios have 
been inspected:  controlled charging (once a day, overnight) 
and uncontrolled charging (charging is possible whenever the 
vehicle is parked).   

Clearly through uncontrolled charging a better fuel 
economy can be achieved,  but at the price of reduced battery 
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life.  Other issues are related to the possible overload of the 
power grid, but this will not be discussed in this paper.   

 

VIII. VEHICLE DATA  
The Center for Automotive Research at The Ohio State 
University has launched a new program focused on Plug-in 
Hybrid Electric Vehicles (PHEVs), Electric Vehicles (EVs) 
and intelligent charging: SMART@CAR [7].  Several projects 
are currently underway, ranging from modeling the effects of 
PHEVs penetration into the energy market to vehicle data 
collection, etc. 
The program is currently in its early phases with the first 
prototype data acquisition systems operating in vehicles.  In 
order to build up the database, a limited number of vehicles 
(two or three) will be fitted with acquisition systems and 
distributed to various affiliates of SMART@CAR. 
Furthermore, we are currently negotiating with eTec (Electric 
Transportation Engineering Corporation) a reciprocal 
agreement that will allow us access to a much more extensive 
vehicle data base.  DOE's Advanced Vehicle Testing Activity 
(AVTA), INL, and testing partner eTec initiated Plug-in 
Hybrid Electric Vehicle (PHEV) testing activities during the 
second half of 2006.  The AVTA's PHEV activities include: 
 

• development of the PHEV Integrated Test Plan and 
Evaluation Program, which is used to conduct 
accelerated on-road and baseline performance 
(dynamometer and test track) testing 

• testing is being conducted on several PHEV models, 
with most of the PHEVs from conversion companies. 
The conversion companies and the base models 
include: the Hymotion Prius, Hymotion Escape, 
EnergyCS Prius, Renault Kangoo, HybridsPlus Escape, 
HybridsPlus Prius, Electrovaya Escape, Green Car 
Company Prius, and E85 capable Ford Escape 

• on-road data collection has started for more than 100 
PHEVs already deployed with onboard data loggers 
being used to capture real-world fleet operations data, 
including vehicle operations and charging profiles.  

 
These vehicles will be loaned to members of these groups and 
used for general use – from business trips to picking up kids 
from school.  Each person will have the vehicle for a period of 
several days to monitor the typical usage patterns of the 
particular person and then passed on to another test subject.  In 
this way, a limited number of vehicles can be used to generate 
a database that is statistically representative of a certain 
segment of the population.  Sample data shown in Figure 4 to 
Figure 8. 

 
Figure 4  - Trip Distance – Statistical Data. 

 

This task will answer important generic questions related to 
the fuel efficiency of PHEVs.  The calculation of total distance 
traveled, mean speed, and fuel economy would provide the 
basis for comparison between the different parameters and 
also a starting point for comparisons under different 
conditions. Other calculated values include energy consumed 
over a trip, during charging, electric range, etc. 

 

 
Figure 5  - SOC Change During Trip. 
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 Figure 6 -  SOC Change During Charge. 

 
 Figure 7  - Charging Duration. 

The investigation will extend beyond the use of simple trip 
distance information by studying factors related to: 

• in-vehicle data, i.e.: 
Vehicle characteristics 
Driving cycles 
Battery pack size (nominal) 
Battery type (conversion kit, battery technology) 
On-board energy (changes over time due to 
battery aging) 

 
• environment and surroundings, i.e.: 

Operating temperature (weather conditions) 
Geographic characteristics (local analysis) 
Charging availability, charging events (number, 
duration, …) 

 

 
Figure 8 - AC Current for a Typical Charging Event. 

 

IX. RESULTS AND FUTURE WORK 
 

To achieve 10 year/150,000 mile life, certain abuses must 
be avoided.  For example, the battery must not be 
overcharged; therefore, a safety margin of 5% capacity is used 
in this study and operation above the 95% state of charge 
(SoC) is avoided.   

 

 
Figure 9 - Battery operating regime for PHEV applications. 

 

If lithium ion cells are discharged or operated at a level 
lower than ~25% SoC, their efficiency and performance is 
degraded, plus significant heating and aging will occur.  To 
avoid this occurrence, a “No operation region” has been 
established in this study and the batteries will not be operated 
below 25% SoC.   

To achieve 10 year/150,000 mile life of the energy storage 
system, the PHEV batteries configured in this study are in fact 
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oversized.  The PHEV required a Li-ion battery pack with a 
total energy capacity of ~14 kWh.  The actual amount of 
energy used from the battery pack to achieve 30 miles AER is 
7.8 kWh. 

Studies are currently underway to consider the effects on 
battery aging of temperature and operating SOC. 

Temperature Effects. Testing activities have been 
conducted at CAR to analyze the effects of temperature on 
lithium batteries performance.  Collected data will be used to 
estimate severity factors as function of operating temperatures.  
Such factors are used to estimate battery life at different 
temperature levels.   

Operating SOC Effects.  Ideally, testing activities are 
required to evaluate the effects of different SOC operating 
points on battery aging.   However, testing activities to estimate 
severity factors as function of SOC operating range would 
require years of lab tests.  CAR is currently collecting data for 
aging purposes, but these activities represent long term goal 
and will not be completed in the next future. 

In this study we postulate severity factors vs. SOC 
operating range.  This allows to estimate aging effects of 
operating batteries at SOC lower than 25% or higher than 95%.  
Giving up these safety margins will result in unpredictable and 
shortened battery life.  This estimation is based on literature 
data (if available) and (limited) available data collected at CAR 
battery aging lab. 

Increasing the usable energy from batteries could help 
reducing battery size, thus costs.  Automotive OEMs are 
interested in find ways to reduce cost of batteries.   In fact, 
battery cost is the single largest impediment to large scale 
commercialization of PHEVs.  The aim of this analysis is to 
assess the pros and cons of using more energy from batteries, 
thus reducing battery size.  

Another approach is not to reduce battery size, but just use 
more energy.  This allows better fuel economy at the price of 
life reduction.  This study aims to understand the optimal trade-
off. 

X. CONCLUSIONS 
 

This paper describes a damage accumulation model for the 
battery aging under vehicular operation.  It is build on the 
concept that damage is accumulated with every charge transfer 
in or out of the battery (bi-directional A-h counting), modulated 
by a severity factor associated with the (local) conditions of 
this charge transfer.  Li-ion battery, like many other 
chemistries, exhibit a ‘sweet spot’ where A-h in or out of the 
battery contribute equally to the accumulation of damage.  
However, the ‘edges’ of this sweet spots depend on C-rate, 
DoD and temperatures encountered, and the severity surface 
topology tend to rise rather quickly at those edges.  Hence, it is 
critical to assess and quantify the topology of this surface for 
proper design, proper battery sizing (hence cost and weight) 
and powertrain control, so as to minimize the damage 

accumulation and lengthen the life of the vehicle. While the 
methodology described in this paper is fairly generic and 
applicable to many classes of vehicles, it is highly critical for 
estimating the life of PHEVs as these vehicles, unlike HEVs, 
typically strive  to maximize the all-electric driving range 
(AER) and hence will operate the battery for at least part of 
their life near the margins of the severity factor maps. 

Currently available data for Li-ion batteries (albeit based on 
very incomplete severity factor maps) coupled with AER 
Battery cycle life data analysis indicates that present lithium 
ion battery technologies appear to be 10 year/150,000 mile 
capable, provided that they are not overcharged, nor 
consistently operated at high temperatures, nor in charge 
sustaining mode at a very low SOC.   Significant gains in life 
prediction, vehicle design, sizing and control, cost reduction as 
well as on-board diagnostics/prognostics can be derived form 
the methodology described here.  Furthermore, the 
methodology can be used to perform model-based design of 
experiments to significantly shorten aging experiments while 
preserving  
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