
2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA01.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3964



J =

ˆ tf

t0

[ṁf + αNOxṁNOx + αPMṁPM + αHCṁHC ] dt

where the α factors are weighting coefficients, ṁf is the
fuel mass flow rate (instantaneous fuel consumption), ṁNOx

is the rate of nitrogen oxide emission, ṁPM is the rate of
particulate matter emission, and ṁHC is the rate of unburned
hydrocarbon emission. All these quantities depend on the
engine operating conditions and can be modeled (at least in
a first-approximation approach) as static functions of engine
power and speed:

ṁi = ṁi(Pice, ωice), i = f, NOx, PM,HC

The control action is the repartition of the load, and
can be defined in different ways, depending on the specific
powertrain architecture taken into consideration and on the
number of degrees of freedom. The choice of the control,
instant by instant, must be such that the following constraints
are satisfied:

0 ≤ Pice(t) ≤ Pice,max ∀t ∈ [t0, tf ] (2)

Pem,e,min ≤ Pem,e(t) ≤ Pem,e,max ∀t ∈ [t0, tf ] (3)

Pbatt,min ≤ Pbatt(t) ≤ Pbatt,max ∀t ∈ [t0, tf ] (4)

SOEmin ≤ SOE(t) ≤ SOEmax ∀t ∈ [t0, tf ] (5)

where Pice is the engine mechanical power, Pem,e is the
electric machine electrical power (there can be more than one
electric machine, in which case there is a constraint equation
for each), Pbatt is the battery power, SOE is the battery state
of energy, defined as the ratio of the energy currently stored
in the battery to the maximum amount of energy that can be
stored:

SOE =
Ebatt(t)

Emax

The subscripts max and min refer to the maximum and
minimum limits of each variable.

This article focuses on single degree of freedom systems,
either series or parallel, in which the battery power can be
used as the only control variable for the power split problem.
In more complex architectures, such as the systems using
EVTs (electrically variable transmissions), the battery power
is one of two (or possibly more) control variables.

The state of the system is represented by the battery state
of energy. Its derivative is a function of the battery electrical
power Pbatt:

˙SOE =

{

− Pbatt(t)
ηbatt(SOE,Pbatt)Emax

if Pbatt(t) ≥ 0

−ηbatt(SOE,Pbatt)Pbatt(t)
Emax

if Pbatt(t) < 0
(6)

Pbatt(t) ≥ 0 indicates discharging and Pbatt(t) < 0
indicates charging.

Indicating the battery power with u and the battery state of
energy with x, the system dynamic equation can be written
as

ẋ =

{

− u(t)
ηbatt(x,u)Emax

if u(t) ≥ 0 (discharge)

−ηbatt(x,u)u(t)
Emax

if u(t) < 0 (charge)
(7)

If only the fuel consumption is considered, the cost
function is:

J =

ˆ tf

t0

ṁf (u(t), t)dt (8)

Note that ṁf is an explicit function of the time because it
depends on the driving cycle, which can be considered as a
time-varying parameter in this context. ṁf is not an explicit
function of the state of the system SOE, but depends only
on the battery power and the vehicle power demand.

Additional algebraic equations that depend on the specific
powertrain architecture relate the engine power Pice, the
electric machine power Pem and the battery power Pbatt, and
create new constraints for the control variable in addition to
(4). The overall constraints on the control are synthetically
represented as

u(t) ∈ U(t) (9)

where U(t) is the set of admissible controls.
The constraints on the state of energy of the battery

can be expressed using the auxiliary function G(x) =
[G1(x) G2(x)]

T as:

G(x) =

{

G1(x) = (x(t) − xmax) ≤ 0

G2(x) = (xmin − x(t)) ≤ 0
(10)

The terminal conditions are given by the state of energy
at the initial and final time, as:

{

x(t0) = x0

x(tf ) = xf

(11)

In general, in charge-sustaining hybrid vehicles, the initial
and final state of energy should be the same, hence xf =
x0. However, it is possible to specify that the final state of
energy is within a (small) distance from the initial value:
x(tf ) ∈ S = x0 ± δ.

The energy management problem can be formally defined
as follows.

Problem 1: Find the control law u(t) that minimizes the
cost

J =

ˆ tf

t0

ṁf (u(t), t)dt

subject to constraints

ẋ =

{

− u(t)
ηbatt(x,u)Emax

if u(t) ≥ 0 (discharge)

−ηbatt(x,u)u(t)
Emax

if u(t) < 0 (charge)
{

x(t0) = x0

x(tf ) ∈ S
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G(x) =

{

G1(x) = (x(t) − xmax) ≤ 0

G2(x) = (xmin − x(t)) ≤ 0

u(t) ∈ U(t)

III. APPLICATION OF PONTRYAGIN’S MINIMUM

PRINCIPLE

Pontryagin’s minimum principle (PMP) provides a set of
necessary conditions that the optimal solution u∗(t) must
satisfy. Since the minimum principle provides necessary
conditions for optimality, it can be used to identify solution
candidates. Because of the constraints on the state variable,
the formulation of the principle depends on whether the state
constraints are active (i.e., the state assumes a boundary
value) or not (i.e., it changes during the optimization hori-
zon). The formulation of the minimum principle used here
is provided in [15, §2.5].

Assume that the state constraints are active only in a subset
B = [t1, t2] ∪ [t3, t4] ∪ ... ⊆ [t0, tf ] of the optimization
interval [t0, tf ]. In order to introduce these constraints in
the formulation of the principle, the total time derivatives of
G1 and G2 are used, up to the order ℓ in which u appears
explicitly for the first time, which in this case is ℓ = 1, since
ẋ = f(x, u) according to (7):

{

G
(1)
1 (x, u) = dG1

dt
= ẋ(t) = f(x, u)

G
(1)
2 (x, u) = dG2

dt
= −ẋ(t) = −f(x, u)

(12)

Define the Hamiltonian function of the system as:

H(x, u, t) =

{

ṁf (t, u) + λf(x, u) t /∈ B

ṁf (t, u) + λf(x, u) + µ1G
(1)(x, u) t ∈ B

(13)
with µ1 ≥ 0. In other words, the Hamiltonian function

during the intervals in which the constraints are active is
augmented by a term that depends on the derivative of the
constraint function. The term µ1 is unknown a-priori, the
principle only states that it exists; it can be found by trial-
and-error.

The minimum principle for the HEV power split problem
can be formulated as follows [15].

Theorem 1: If u∗(t) is the optimal control for Problem
1, and x∗(t) is the corresponding state trajectory, then the
following conditions are satisfied for all t ∈ [t0, tf ]:

1) u∗ minimizes the Hamiltonian H for all t ∈ [t0, tf ];
2) G(x) < 0 ∀t /∈ B and G(x) = 0 ∀t ∈ B (i.e., x =

xmax or x = xmin ∀t ∈ B); moreover, for all t ∈ B,
G(1)(x, u) = 0, that is, ẋ∗(t) = 0 ∀t ∈ B (this follows
from (12)).

3) The terminal conditions are satisfied: x∗(t0) = x0 and
x∗(tf ) = x0.

4) The optimal co-state trajectory λ∗(t) satisfies the fol-
lowing dynamic equations:

λ̇∗(t) = −∇x H|
∗

= −
∂ṁf (t, u)

∂x
− λ∗

∂f(x∗, u∗)

∂x

for t /∈ B, and:

λ̇∗(t) = −
∂ṁf (t, u)

∂x
− λ∗

∂f(x∗, u∗)

∂x
− µ1∇xG(1)(x, u)

(14)
for t ∈ B.
The co-state equations can be simplified by considering

that ṁf is not an explicit function of the state of energy x;
using the expression of f(x, u) given in (7), they become:

{

λ̇∗(t) = λ∗u(t)
η2

batt
(x,u)Emax

∂ηbatt(x,u)
∂x

if u(t) ≥ 0

λ̇∗(t) = λ∗u(t)
Emax

∂ηbatt(x,u)
∂x

if u(t) < 0
(15)

for t /∈ B and, considering that ∇xG(1) = ±∂f(x,u)
∂x

,

{

λ̇∗(t) = (λ∗(t) ± µ1)
u(t)

η2

batt
(x,u)Emax

∂ηbatt(x,u)
∂x

if u(t) ≥ 0

λ̇∗(t) = (λ∗(t) ± µ1)
u(t)

Emax

∂ηbatt(x,u)
∂x

if u(t) < 0
(16)

for t ∈ B.
The sign in front of µ1 depends on which of the constraints

(10) is active: it is negative if x(t) ≥ xmax and positive if
x(t) ≤ xmin).

IV. DERIVATION OF THE EQUIVALENT CONSUMPTION

MINIMIZATION STRATEGY

For a more compact notation in the following, define the
auxiliary function1:

p(x) =











µ1 if G1(x) ≥ 0

−µ1 if G2(x) ≥ 0

0 if G1(x) < 0 and G2(x) < 0

(17)

Replacing the expression of the dynamic equation (7) into
the Hamiltonian function H , this becomes

H(x, u, t) =

=

{

ṁf (t, u(t)) − (λ(t) + p(x)) u(t)
ηbatt(x,u)Emax

if u(t) ≥ 0

ṁf (t, u(t)) − (λ(t) + p(x)) ηbatt(x,u)u(t)
Emax

if u(t) < 0

Let us now define a charge and discharge equivalence
factors as

sdis(t) = −
Qlhv

ηbattEmax

λ(t) (18)

and

sch(t) = −ηbatt

Qlhv

Emax

λ(t) = η2
battsdis(t) (19)

where Qlhv is the lower heating value of the fuel (repre-
senting its energy content per unit of mass, or power content
per unit of mass flow rate).

Using the definitions (17), (18), and (19), the Hamiltonian
of the system H can be represented as:

1Note that, in principle, G1(x) and G2(x) cannot be positive, only
negative or zero; the definition of p(x) reported here is complete with the
case in which the boundaries are not only reached, but also exceeded, which
could happen if the constant µ1 is not chosen properly
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B. Pontryagin’s minimum principle implementation

In order to identify a solution candidate, the conditions
listed in Theorem 1 must be satisfied. This implies that the
dynamic equation of the system (7) and the co-state equations
(15)-(16) need to be solved together, while imposing the
condition that u(t) = arg minH(x, u, t).

In general, the solution of the two point boundary value
problem is carried out numerically, using an iterative proce-
dure in which the free initial (in this case, constant) value of
the co-state variable λ0 is set to an arbitrary value and the
equations are solved numerically, obtaining a corresponding
value of the final state x∗(tf ). The value of λ0 is then
changed (using an iterative procedure such as the variation
of extremals algorithm [18]) until the terminal condition on
the state is met, i.e. until |x∗(tf ) − x0| < δ (where δ is the
acceptable tolerance on the terminal condition).

In every iteration, the control is implemented using the
following steps at each time instant:

1) Given the present power demand, determine the
maximum and minimum battery power umin(t) and
umax(t):
{

umax(t) = min {Pem,e(t) − Pgen,min, Pbatt,max}

umin(t) = max {Pem,e(t) − Pgen,max, Pbatt,min}
(22)

2) Divide the interval [umin(t), umax(t)] into a finite
number of control candidates ui, i = 1, 2, . . . , Nu;

3) Using the definition (20), calculate the Hamiltonian
function corresponding to each control candidate:
Ĥi = Ĥ(ui);

4) Select the control that minimizes the equivalent fuel
consumption: u∗ = arg minu(Ĥ(u))

5) Apply the control, computing the successive value of
the state and co-state variables using the corresponding
dynamic equations; take into account the state bound-
aries and apply the necessary jumps to the value of the
co-state if the boundaries are reached.

After running these steps for the entire driving cycle, the
terminal value of the state of energy x∗(tf ) is computed;
if this is close enough to the desired value (i.e. the initial
value x0), the iterations are terminated; otherwise, a new
initial value for the co-state is selected and the procedure
repeated. The value of the tuning parameter µ1 is set to 1 at
all time (the solution is not so sensitive to the value of µ1

as it is to λ0; any value of µ1 high enough gives the same
results, but if it is too small, the solution does not respect
the state boundaries).

C. Traditional ECMS implementation

The traditional ECMS strategy differs from the implemen-
tation of the minimum principle because it uses the approx-
imation that the equivalence factors are constant during the
cycle and neglects their jumps in the instants at which the
state boundaries are reached (in other words, the term p(x)
is always zero). Because of this, in order to keep the state of
energy within its desired values, the maximum and minimum
battery power defined by (22) are forced to zero whenever
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Fig. 4. Effect of equivalence factors on fuel consumption (values corre-
sponding to the cycle of Fig. 5, normalized with respect to the maximum).

the corresponding limit of state of energy is being reached
(i.e., the maximum, or discharge, battery power is zero if
the state of energy is at its lowest boundary value; viceversa
the minimum, or charge, power is zero if the battery is
completely charged). The ECMS algorithm minimizes the
equivalent fuel consumption defined by:

ṁeqv =

{

ṁf (t, u(t)) − sdis
u(t)
Qlhv

if u(t) ≥ 0

ṁf (t, u(t)) − sch
u(t)
Qlhv

if u(t) < 0

which is minimized considering a set of discrete values
at each time, within the minimum and maximum admissible
control, as described for the Hamiltonian function.

The charge and discharge equivalence factors are not
known a priori; their value influences the results of the
strategy and the best solution in terms of fuel consumption
is only obtained with a specific couple of values, which
are found by trial-and-error or numerical optimization. For
example, the fuel consumption during the driving cycle of
Fig. 5 corresponding to a range of values for sch and sdis is
shown in Fig. 4.

D. Comparison between Pontryagin’s minimum principle

and ECMS implementation

As noted earlier, the two approaches are equivalent, but
the solution using conventional ECMS implements a more
straightforward algorithm.

Simulation results obtained after choosing the most ap-
propriate values of the equivalence factors (for ECMS) and
initial co-state value (for Pontryagin’s minimum principle)
are shown in the figures 5 and 6.

VI. CONCLUSION

In this paper we presented a formal statement of the
equivalence of Pontryagin’s Minimum Principle and the
Equivalent Consumption Minimization Strategy. In both
cases, the solution reduces the global optimization problem
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Fig. 6. Power split during the simulation (detail of 60 s)

to an instantaneous optimization problem. While the solution
of Pontryagin’s minimum principle needs, in principle, the
knowledge of the driving cycle, the implementation of the
ECMS does not, and therefore can be achieved on-line, under
proper calibration of its parameters (which must be done off-
line). If the assumption of a convex functional cost holds, the
analytical solution given by the minimum principle is not
only necessary but also sufficient and therefore, a global and
unique solution to the optimization problem is guaranteed.
Moreover, due to the equivalence of the minimum principle
and the ECMS, the global optimal solution can be found by
directly implementing the ECMS.
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