2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA01.5

ECMS as a realization of Pontryagin’s minimum principle for HEV control

Lorenzo Serrao, Simona Onori, Giorgio Rizzoni

Abstract— An analytical derivation of the Equivalent Con-
sumption Minimization Strategy (ECMS) for energy manage-
ment of hybrid electric vehicles (HEVs) is presented, based on
Pontryagin’s minimum principle. The derivation is obtained us-
ing a generic formulation of the energy management problem in
HEVs and is valid for any powertrain architecture. Simulation
results obtained for a series HEV are also provided.

I. INTRODUCTION

Hybrid electric vehicles are characterized by the presence
of two energy sources on board, the fuel tank powering the
engine and a battery; at each instant, the sum of the power
flows from each of the two sources equals the total power
delivered at the vehicle wheels. Energy management in
hybrid vehicles [1] consists in deciding the power repartition
between the two sources, with the objective to minimize
the fuel consumption, pollutant emissions, or a compromise
among them. The energy management of hybrid vehicles
is an optimal control problem, in which the minimization
objective is defined by an integral over an extended period
of time (typically, a regulatory driving cycle). However, it
poses some specific challenges, related to the fact that the
driving cycle is not known in advance.

If the cycle were known, anlytical optimal control tech-
niques [2], [3], [1], [4] or Dynamic Programming [5], [6]
could be used to find the optimal solution to the prob-
lem; however, the solution obtained in this way cannot
be implemented in real-time, and can only be used as a
benchmark for other implementable strategies. These include
rule-based control [7], [8], model predictive control[9], [10],
stochastic dynamic programming [11], [12], and the equiva-
lent consumption minimization strategy (ECMS) [13], [14].
The basic idea behind ECMS is to associate the use of
the electrical energy buffer to a future increase or decrease
of fuel consumption, and to minimize at each instant the
equivalent fuel consumption, i.e. the sum of the actual fuel
consumption and of virtual fuel consumption associated to
the use of the electrical energy. The main objective of this
paper is to show the analytical optimality of the ECMS,
based on Pontryagin’s minimum principle.

II. THE OPTIMAL CONTROL PROBLEM IN HYBRID
ELECTRIC VEHICLES

A generic representation of a hybrid electric powertrain
is given in Fig. 1. In this figure, only the primary power
flows are shown, i.e. those that correspond to energy moving
from a storage device into the driveline, or vice-versa (when
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Fig. 1. Main energy flows in a hybrid electric powertrain

possible). The schematics is independent from the powertrain
architecture (i.e., series, parallel, series/parallel) and is valid
for all vehicles in which the fuel tank and a reversible energy
storage device (such as a battery) are present. The details
of the powertrain architecture are essential to determine how
the chemical energy stored in the fuel or the electro-chemical
energy stored in the battery are transformed into electrical
or mechanical energy to drive the vehicle, but in this work
the point of view is more general and these details are not
considered.

Given a prescribed driving cycle defined by the velocity
history v(t), t € [to,ty], it is possible to determine the
corresponding power P,.,(t) that is necessary to follow the
cycle as

P, = (mz'}(t) + 1o + riv(t) +rov?(t) + mgsin'y(t)) v(t)
(1

where: m is the vehicle mass; rg, 71, 5 are constant
coefficients that model rolling resistance and aerodynamic
drag; g is the acceleration of gravity and ~y(¢) the road slope
angle. The history of ~(¢) is another driving cycle parameter.

The objective of the energy management strategy in hybrid
electric vehicles is to determine how P, (t) is shared
between the on-board energy transformers (engine, batteries,
electric machines) in order to minimize an integral cost
defined over the entire optimization horizon [to,t¢]. Typ-
ically, the integral cost is the fuel consumption over the
driving cycle; in some instances, a weighted average of fuel
consumption and pollutant emissions can also be minimized.
In general, then, the cost function to be minimized can be
expressed as:
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J = [ + anozMNoz + apyviiipy + apcmpe] dt

to

where the « factors are weighting coefficients, iy is the
fuel mass flow rate (instantaneous fuel consumption), m x4
is the rate of nitrogen oxide emission, ripps is the rate of
particulate matter emission, and 1 ¢ is the rate of unburned
hydrocarbon emission. All these quantities depend on the
engine operating conditions and can be modeled (at least in
a first-approximation approach) as static functions of engine
power and speed:

m; = mi(Picevwice)v 1= f7 NOI,PM, HC

The control action is the repartition of the load, and
can be defined in different ways, depending on the specific
powertrain architecture taken into consideration and on the
number of degrees of freedom. The choice of the control,
instant by instant, must be such that the following constraints
are satisfied:

0< Pice(t) < -Pice,mam vt € [to, tf] 2)
Pem,@,min < Pe’rme(t) < Pem,e,maw vt e [to, tf] (3)
Pbatt,min < Pbatt(t) < Pbatt,max vt e [to, tf] )

SOEpmin < SOE(t) < SOEmae VE € [to,t;]  (5)

where P;.. is the engine mechanical power, P, . is the
electric machine electrical power (there can be more than one
electric machine, in which case there is a constraint equation
for each), Py, is the battery power, SOF is the battery state
of energy, defined as the ratio of the energy currently stored
in the battery to the maximum amount of energy that can be
stored:

SOE — Ehpae (1)

max

The subscripts max and min refer to the maximum and
minimum limits of each variable.

This article focuses on single degree of freedom systems,
either series or parallel, in which the battery power can be
used as the only control variable for the power split problem.
In more complex architectures, such as the systems using
EVTs (electrically variable transmissions), the battery power
is one of two (or possibly more) control variables.

The state of the system is represented by the battery state
of energy. Its derivative is a function of the battery electrical
power Ppygts:

_ Pyart(t) if P (t) >0
YE — 2tt(SOE, Ppatt) Emas i Fpare(t) 2
SOFE = {_Z:at:(SOE,PZa:: Poare(t) 35 Ppasa(t) < 0 (6)

Emaz

Pypart(t) > 0 indicates discharging and Ppet(t) < 0
indicates charging.

Indicating the battery power with u and the battery state of
energy with z, the system dynamic equation can be written
as

. - Eu(téE if u(t) > 0 (discharge) 7
T = att (T, U)Emax
— etz ull) - if () < O (charge)

If only the fuel consumption is considered, the cost
function is:

ty
J= /f i (u(t), £)dt ®)

to

Note that 77 ¢ is an explicit function of the time because it
depends on the driving cycle, which can be considered as a
time-varying parameter in this context. 72y is not an explicit
function of the state of the system SOE, but depends only
on the battery power and the vehicle power demand.

Additional algebraic equations that depend on the specific
powertrain architecture relate the engine power Pj;.., the
electric machine power P.,, and the battery power P4+, and
create new constraints for the control variable in addition to
(4). The overall constraints on the control are synthetically
represented as

u(t) € U(t) ©)

where U(t) is the set of admissible controls.

The constraints on the state of energy of the battery
can be expressed using the auxiliary function G(z) =
(G (x) Ga(x)]" as:

_ JGi(@) = (2(t) — Tmaz) <0
Gl = {Gz(w) = (Tmin — (1)) <0

The terminal conditions are given by the state of energy
at the initial and final time, as:

xT (to) =X
w(ty) =y
In general, in charge-sustaining hybrid vehicles, the initial
and final state of energy should be the same, hence z; =
xo. However, it is possible to specify that the final state of
energy is within a (small) distance from the initial value:
x(ty) € S =z £ 4.
The energy management problem can be formally defined
as follows.

Problem 1: Find the control law u(t) that minimizes the
cost

(10)

(1)

J= /t " (u(t), £)dt

0

subject to constraints

if u(t) > 0 (discharge)

_ L)E
j’j — NMbatt (T, U max
_M if u(t) < 0 (charge)

Emac
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u(t) € U(t)

III. APPLICATION OF PONTRYAGIN’S MINIMUM
PRINCIPLE

Pontryagin’s minimum principle (PMP) provides a set of
necessary conditions that the optimal solution u*(¢) must
satisfy. Since the minimum principle provides necessary
conditions for optimality, it can be used to identify solution
candidates. Because of the constraints on the state variable,
the formulation of the principle depends on whether the state
constraints are active (i.e., the state assumes a boundary
value) or not (i.e., it changes during the optimization hori-
zon). The formulation of the minimum principle used here
is provided in [15, §2.5].

Assume that the state constraints are active only in a subset
B = [t1,t2] U [t3,ta] U ... C [to,ts] of the optimization
interval [to,t¢]. In order to introduce these constraints in
the formulation of the principle, the total time derivatives of
GG and G4 are used, up to the order ¢ in which u appears
explicitly for the first time, which in this case is £ = 1, since
& = f(x,u) according to (7):

1 .
Gy, u) = G = i(t) = f(z,u) 12
1 .
Gy (e, u) = 9G2 = —i(t) = —f(z,w)
Define the Hamiltonian function of the system as:
g (t, u) + Af(x,u) t¢ B

g (t,u) + Af(v,u) + G (z,u) te B
13)

with g3 > 0. In other words, the Hamiltonian function
during the intervals in which the constraints are active is
augmented by a term that depends on the derivative of the
constraint function. The term p; is unknown a-priori, the
principle only states that it exists; it can be found by trial-
and-error.

The minimum principle for the HEV power split problem
can be formulated as follows [15].

Theorem 1: If u*(t) is the optimal control for Problem
1, and x*(t) is the corresponding state trajectory, then the
following conditions are satisfied for all ¢ € [to,ty]:

H(z,u,t) {

1) «* minimizes the Hamiltonian H for all ¢ € [to,t¢];

2) G(x) <0Vt ¢ Band G(z) =0Vt € B (le, z =
Tomaz OF T = Tyun YVt € B); moreover, for all t € B,
G (z,u) = 0, that is, &*(t) = 0Vt € B (this follows
from (12)).

3) The terminal conditions are satisfied: z*(tg) = 2o and
x*(ty) = wo.

4) The optimal co-state trajectory \*(¢) satisfies the fol-
lowing dynamic equations:

A (t)=-V, H|, = o A o

for ¢t ¢ B, and:

gt 05 w)

_ _ )
Ox Ox Ve G (@, )

(14)

A (t) =

for t € B.

The co-state equations can be simplified by considering
that 7in¢ is not an explicit function of the state of energy x;
using the expression of f(xz,u) given in (7), they become:

L% o A u(t) OMpart (x,u)
).\ (t) o naatt(mvu)Emam B Oz if U(t) = 0 (15)
Ao (t) = Gull) Oag (o) if u(t) <0

for t ¢ B and, considering that V,G() = 4 @)

ox
N(8) = (V(8) & ) oty Pl if u(t) > 0
S (8) = (O (1) & puy) ) Page ) it u(t) < 0
(16)

for t € B.

The sign in front of 1y depends on which of the constraints
(10) is active: it is negative if x(t) > Zmq. and positive if
x(t) S xmin)

IV. DERIVATION OF THE EQUIVALENT CONSUMPTION

MINIMIZATION STRATEGY

For a more compact notation in the following, define the
auxiliary function':

0 if Gi1(x) <0 and Ga(z) <0

p(z) = a7

Replacing the expression of the dynamic equation (7) into
the Hamiltonian function H, this becomes

H(xz,u,t) =

_ {m(nu(t)) — (A1) + p()) ﬁ if u(t) > 0

g (8 u(t)) — (A1) + p(a)) et e if (1) < 0

ax

Let us now define a charge and discharge equivalence
factors as

Qino

nbattEmaz

Sdis(t) = A(t) (18)

and

Ql}w
E At) = lefattSdis (t)

where (Q;p, is the lower heating value of the fuel (repre-
senting its energy content per unit of mass, or power content
per unit of mass flow rate).

Using the definitions (17), (18), and (19), the Hamiltonian
of the system H can be represented as:

Sch(t) = —TNbatt (19)

'Note that, in principle, G1(z) and Ga(x) cannot be positive, only
negative or zero; the definition of p(z) reported here is complete with the
case in which the boundaries are not only reached, but also exceeded, which
could happen if the constant w1 is not chosen properly

3966



H(t,x(t), u(l)) =

{mf(t, u) + Sdis(t) (1 + k(t)p(l)) %
g () + sen(t) (11 B(1)p(a)) 20

where the term w(t)/Qp, has units of power/heating
value and therefore represents a mass flow rate, and sg;¢ (1)
and s.p,(t) are a-dimensional equivalence factors. The factor
(1+k(t)p(x)) is a penalty function that takes a value
different than 1 only when the state boundaries are reached.

The Hamiltonian can thus be interpreted as the sum of
the actual fuel consumption in the engine, my, and of a
term that has the same units and is related to the use of
the battery power u(t). This additional term represents the
virtual fuel consumption associated to the battery use, and,
as intuitively explained in the first papers on ECMS [16],
[13], it is related to the future fuel consumption due to the
use of the battery at the present time. In particular, using the
battery to supply part of the power demand means that the
present fuel consumption becomes lower, but an additional
fuel quantity will be needed later to recharge the battery.
Vice versa, using the engine to charge the battery increases
the instantaneous fuel consumption but will allow for future
savings when the stored energy is used.

Therefore, the Hamiltonian of the system, object of instan-
taneous minimization, can be regarded as an instantaneous
equivalent fuel consumption: H = myf + Mejec = Mego-
Thus, as an implication of the Pontryagin’s principle, the
optimal solution to the problem of minimizing the total fuel
consumption over a driving cycle must also minimize the
instantaneous equivalent fuel consumption, defined using the
opportune equivalence factors.

V. IMPLEMENTATION EXAMPLE
A. Model description

A control strategy obtained by solving Problem 1 with
Pontryagin’s minimum principle is implemented in sim-
ulation on a series hybrid electric vehicle configuration,
represented in Fig. 2. A quasi-static, backward representation
of the vehicle longitudinal dynamics is considered in the
simulation model [17]. The driving cycle is therefore con-
sidered an input to the simulator and is assumed to be met,
while the torque/power/speed of each machine are calculated
backwards.

The mechanical power of the traction motor is the same
as the vehicle power (1): Fepy i = Poen.

The corresponding electrical power is derived using the
efficiency map of the motor:

if Peym >0

_ Pumm
— nem(v(t)7P€m;m)
if Poppn <0

7 Tlem (U(t)a Pem,m)Pem,m

and must be satisfied by the sum of the battery power and
the generator power:

Pbatt ‘I’Pgen -

em,e

Internal m 7
Combustion
Engine

Fuel tank

A

Pice

+

\ 4

Generator

Pgen

+

\ 4

Electric bus |« | Traction Motor |«¢ —

Vehicle

Pbatt
\ 4

Battery

Fig. 2. Series hybrid electric powertrain

10

Fuel consumption [g/s]

0 50 100 150
P [kW]
gen

Fig. 3. Fuel consumption map of the engine and generator combined

Therefore, the fuel consumption can be expressed as

iy = 1y (Pyen) = 1inp (Pem e (t) — u(l)) (21)

and can be represented using the efficiency maps of the
engine and the generator as shown in Fig. 3 (this map implies
the fact that the engine speed is chosen automatically as the
speed that minimizes the fuel consumption for each level of
electrical power F,.,, which is a typical approach used in
series hybrid vehicles).
The battery model is given by the state of energy dynamic
equation (6):
o {_mwi,;{n if u(t) > 0 (discharge)
if u(t) < 0 (charge)

_ Mbassu(l

assuming a constant battery efficiency 7,,::. The fact that

the battery efficiency is constant simplifies the numerical

solution of the optimization problem because it implies
A*(t) =0 for all ¢, i.e. A(t) = No Yt € [to, L]
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B. Pontryagin’s minimum principle implementation

In order to identify a solution candidate, the conditions
listed in Theorem 1 must be satisfied. This implies that the
dynamic equation of the system (7) and the co-state equations
(15)-(16) need to be solved together, while imposing the
condition that u(t) = argmin H(x,u,t).

In general, the solution of the two point boundary value
problem is carried out numerically, using an iterative proce-
dure in which the free initial (in this case, constant) value of
the co-state variable A is set to an arbitrary value and the
equations are solved numerically, obtaining a corresponding
value of the final state x*(t¢). The value of Ay is then
changed (using an iterative procedure such as the variation
of extremals algorithm [18]) until the terminal condition on
the state is met, i.e. until |z*(t;) — xo| < 0 (where § is the
acceptable tolerance on the terminal condition).

In every iteration, the control is implemented using the
following steps at each time instant:

1) Given the present power demand, determine the

maximum and minimum battery power ;. (t) and

Umaz (1)

Umaz (t) = min {Pem,e(t) — L gen,min, Pbatt,maz}
umzn(t) = max {Pem,e(t) - Pgen,mam7 Pbatt,min}
(22)

2) Divide the interval [tin(t), Umas(t)] into a finite
number of control candidates u;, i = 1,2,..., Ny;

3) Using the definition (20), calculate the Hamiltonian
function corresponding to each control candidate:
Hi = H(u;);

4) Select the control that minimizes the equivalent fuel
consumption: u* = arg min,, (H (u))

5) Apply the control, computing the successive value of
the state and co-state variables using the corresponding
dynamic equations; take into account the state bound-
aries and apply the necessary jumps to the value of the
co-state if the boundaries are reached.

After running these steps for the entire driving cycle, the
terminal value of the state of energy x*(¢f) is computed;
if this is close enough to the desired value (i.e. the initial
value xg), the iterations are terminated; otherwise, a new
initial value for the co-state is selected and the procedure
repeated. The value of the tuning parameter p is set to 1 at
all time (the solution is not so sensitive to the value of p4
as it is to Ag; any value of p; high enough gives the same
results, but if it is too small, the solution does not respect
the state boundaries).

C. Traditional ECMS implementation

The traditional ECMS strategy differs from the implemen-
tation of the minimum principle because it uses the approx-
imation that the equivalence factors are constant during the
cycle and neglects their jumps in the instants at which the
state boundaries are reached (in other words, the term p(x)
is always zero). Because of this, in order to keep the state of
energy within its desired values, the maximum and minimum
battery power defined by (22) are forced to zero whenever

Fuel consumption

Fig. 4. Effect of equivalence factors on fuel consumption (values corre-
sponding to the cycle of Fig. 5, normalized with respect to the maximum).

the corresponding limit of state of energy is being reached
(i.e., the maximum, or discharge, battery power is zero if
the state of energy is at its lowest boundary value; viceversa
the minimum, or charge, power is zero if the battery is
completely charged). The ECMS algorithm minimizes the
equivalent fuel consumption defined by:

g (b, u(t) = Sais ok if u(t) > 0

Meqy = . u .
¢ g (t, u(t)) — sen Qz(i) ifu(t) <0

LV

which is minimized considering a set of discrete values
at each time, within the minimum and maximum admissible
control, as described for the Hamiltonian function.

The charge and discharge equivalence factors are not
known a priori; their value influences the results of the
strategy and the best solution in terms of fuel consumption
is only obtained with a specific couple of values, which
are found by trial-and-error or numerical optimization. For
example, the fuel consumption during the driving cycle of
Fig. 5 corresponding to a range of values for s.;, and sg;s is
shown in Fig. 4.

D. Comparison between Pontryagin’'s minimum principle
and ECMS implementation

As noted earlier, the two approaches are equivalent, but
the solution using conventional ECMS implements a more
straightforward algorithm.

Simulation results obtained after choosing the most ap-
propriate values of the equivalence factors (for ECMS) and
initial co-state value (for Pontryagin’s minimum principle)
are shown in the figures 5 and 6.

VI. CONCLUSION

In this paper we presented a formal statement of the
equivalence of Pontryagin’s Minimum Principle and the
Equivalent Consumption Minimization Strategy. In both
cases, the solution reduces the global optimization problem
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to an instantaneous optimization problem. While the solution
of Pontryagin’s minimum principle needs, in principle, the
knowledge of the driving cycle, the implementation of the
ECMS does not, and therefore can be achieved on-line, under
proper calibration of its parameters (which must be done off-
line). If the assumption of a convex functional cost holds, the
analytical solution given by the minimum principle is not
only necessary but also sufficient and therefore, a global and
unique solution to the optimization problem is guaranteed.
Moreover, due to the equivalence of the minimum principle
and the ECMS, the global optimal solution can be found by
directly implementing the ECMS.
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