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ABSTRACT

This paper proposes a strategy for estimating the remain-

ing useful life of automotive batteries based on dual Extended

Kalman Filter. A nonlinear model of the battery is exploited for

the on-line estimation of the State of Charge, and this informa-

tion is used to evaluate the actual capacity and predict its future

evolution, from which an estimate of the remaining useful life

is obtained with suitable margins of uncertainty. Simulation re-

sults using experimental data from lead-acid batteries show the

effectiveness of the approach.

Introduction
A lot of efforts have been done over the years in order to

find efficient models of electrochemical batteries for automo-

tive applications, with the main purpose of estimating the State

of Charge (SoC), defined as the percentage of stored electric

charge [1]. This information is often used in applications re-

lated to electric and hybrid-electric vehicles, where the knowl-

edge of the SoC is crucial for the energy management optimiza-

tion [2]. A lot of work has been done also in characterizing the

aging phenomena in batteries, in order to estimate the so-called

State of Health (SoH) of the system. This latter is defined as a

variable that accounts for the level of damage accumulated by

the battery, and is used to understand the remaining life span.

Nonetheless, it is extremely difficult to give reliable models for

the aging process: simple models may not take into account im-

portant phenomena and may give wrong predictions in real appli-

cations, while model based on physical-chemical understanding
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of the system can be too complicated for real-time automotive

applications (for instance, requiring the measurement of internal

variables). Examples of aging models of both PbA and Li-Ion

batteries can be found in [3], [4], and [5].

In general, estimating the age of the battery can be very use-

ful to avoid replacing the battery when it is still working well,

as well as to be able to promptly substitute it when the battery

reaches its end-of-life. Variables that can be related to the SoH

are, for example, the internal resistance, which increases with

the age, and the capacity (that is, the maximum amount of charge

that can be stored in the battery) which decreases with age. While

the internal resistance remains almost constant for a long time

and then suddenly increases when the end-of-life is close, the ca-

pacity decreases in time with a more linear trend, which can be

then directly related to the SoH. Of course, the capacity cannot be

directly measured, but it is known that the variation of the SoC of

the battery, given a certain input current, depends on the value of

the capacity. The estimation of the SoC can then allow to prop-

erly estimate the capacity, hence, the battery SoH. Hence, it is

possible to give an estimate of the Remaining Useful Life (RUL)

of the system, and eventually design a prognostics strategy. For

an overview on prognostics the reader can refer to [6], while a

recent approach to battery prognostics can be found in [7].

Exploiting this relationship between the state-of-charge (the

value of which can be estimated very precisely, according to re-

cent papers( [8], [9], [10], [11])) and capacity dynamics is the

key to estimate the capacity itself, using a state observer.

In this paper, a dual observer based on the Extended Kalman

Filter (EKF) is used to estimate the SoC of a PbA battery and

track its capacity evolution. Once the value of the capacity at
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the present moment is obtained, the EKF is used to predict, with

suitable uncertainty margins, its future evolution. In this work

the capacity is considered as the only damage variable related

to the residual life of the system, hence, its future evolution is

directly related to the estimation of the RUL.

The paper is organized as follows: Section 1 introduces the

model of the system, and Section 2 describes the proposed prog-

nostics strategy. Simulation results are shown in Section 3, while

some conclusions are gathered in Section 4.

1 Battery modeling

In order to model the battery to estimate SoC and track ca-

pacity evolution, the system is described by equations that take

into account both the fast dynamics (SoC estimation) and the

slow dynamics (capacity estimation). These two variables have

different time scales, the first being related to the charges and dis-

charges of the battery which can take place in minutes or hours,

and the second being related to the aging phenomena that take a

long time to become evident. The ‘fast dynamics’ (see [10]) is

modelled using a second order equivalent circuit, to which some

hysteresis modeling is added. The hysteresis effect is due to the

fact that following a discharge, the battery voltage relaxes to a

value less than the nominal Open Circuit Voltage (OCV) for that

SoC, while following a charge the battery voltage relaxes to a

value that is larger than the nominal OCV for that SoC [12]. The

‘fast dynamics’ is given by
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where z(t) is the SoC, S(t) is the capacity, i(t) is the input cur-

rent, η is the battery efficiency, here assumed equal to 1 for sim-

plicity, V1(t) and V2(t) are the voltages across the capacitances

C1 and C2, respectively, of the equivalent circuit shown in Fig.

1. R0, R1, R2,C1 and C2 are parameters (resistances and capaci-

tances) of the circuit which are considered constant in this work.

The OCV is obtained as a static function of the SoC. Considered

that in the region of normal operation of a PbA battery (that is,

0.6 ≤ z ≤ 0.9) this relation can be approximated as a linear one,

it is assumed: OCV = α+βz, where α and β are constant values

obtained from experimental data. The term h(t) represents the

hysteresis effect on the measured external voltage, while γ and

M are other parameters related to the hysteresis phenomenon: in

particular, the value of M is considered constant in this work, but

some refinements can be made, in order to represent it as a func-

tion of the SoC and its derivative [10]. The corresponding output

equation is

V (t) = OCV (z(t))−V1(t)−V2(t)+h(t)−R0i(t) (2)

where V (t) is the measured external voltage.
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Figure 1. An equivalent circuit representation of the used model for SOC

estimation

In order to approach the observer design, the observability

properties of the system are investigated, [13]. The system state

is expressed by the vector

x(t) =
[

V1(t) V2(t) h(t) z(t)
]T

and the nonlinear equations (1)-(2) can be expressed as

ẋ(t) = f (x(t), i(t))
V (t) = g(x(t), i(t))

The Lie derivatives of the output equation g with respect to f [13]

are defined as

L0
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which, by defining the vector l(x, i) ,
[
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. Now, the local observability of the system de-

pends in general on the rank of the matrix

O ,
∂l(x, i)
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where x0 and i0 are fixed values of the state and the input. In our

case, it yields

O =
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Note that, for our system, the observability does not depend on

the state value, but only on the input and the parameters. Con-

sidering that R1C1 ≫ R2C2, in practice there are two conditions

that make the rank of the matrix O diminish:

1. if β ∼ 0, that is the case when a change of SoC does not

influence the output voltage V , and then it is impossible to

track the value of the SoC;

2. if no current is given or drained from the battery, that is

i(t) ∼ 0.

The system is then locally observable everywhere under mild

conditions.

As for the model of the ‘slow dynamics’, that is, the capacity

dynamics, it is known that it is influenced by different factors

(usually called ‘severity factors’), which could be, for instance

(see [14] and the references therein)

1. the State of Charge σ1;

2. the C-rate1 of the current σ2;

3. the external temperature σ3.

How to find a precise model of the aging process relying on these

parameters is still an open issue. In this paper we formulate a

general model, the focus being on the proposed strategy rather

than on the aging modelling. The ‘slow dynamics’ can be ex-

pressed as

Ṡ(t) = εφ(S,σ1,σ2,σ3, ...) (3)

where the presence of the term ε ≪ 1 means that the dynamics

of the capacity is much slower than the one of the other states.

2 Proposed strategy
The proposed scheme, depicted in Fig. 2, is a dual observer

scheme, which consists in two EKF interacting with each other.

The EKF has been proved to be a solution showing satisfying es-

timation performances in many applications, maintaining a rel-

atively low computational burden, which usually makes its use

possible in real-time automotive applications. As all observers,

it uses both the model of the system and the measurement to ob-

tain an estimation of the system state.

1The charge and discharge current of a battery is measured in C-rate. A dis-

charge of 1C draws a current equal to the rated capacity.

Figure 2. Scheme of the dual EFK

2.1 The SoC observer

In order to implement the proposed technique on a micro-

processor, it is necessary to discretize the system, using a suitable

sampling time T . Discretizing (1)-(2) using the forward Euler

method one obtains
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The SoC observer uses the measurements of the input cur-

rent ik and the output voltage Vk, and the model of the battery.

The estimated value of the capacity Ŝk is considered like a mea-

surement coming from the capacity observer (as discussed later).

This part of the estimation scheme is similar to the ones used in

works on SoC estimation (see for instance [8] and the references

therein). The state of system (4) can be expressed as follows

xk =
[

V1k
V2k

hk zk

]T

while the state of the SoC observer is expressed as

x̂k =
[

V̂1k
V̂2k

ĥk ẑk

]T
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where V̂1k
, V̂2k

, ĥk, ẑk are the estimates of the corresponding

states.

System (4)-(5) subjects to uncertainties can be expressed as

xk+1 = f (xk, ik)+wk

Vk = g(xk, ik)+ vk

where wk ∼ N (0,Q) and vk ∼ N (0,L) are independent random

variables assumed to have a gaussian probability density func-

tion with zero mean and covariance matrices equal to Q and

L, respectively. Define A ,
∂ f

∂x
∈ R 4×4 and H ,

∂g
∂x

∈ R 1×4,

while the variance matrix of the estimation error is P ∈ R 4×4.

The EKF algorithm is defined by the prediction step and the

correction step as follows

Prediction step

x̂−k = f (x̂k−1, ik−1)
P−

k = AkPk−1AT
k +Q

(6)

Correction step

Kk = P−
k HT

k (HkP−
k HT

k +L)−1

x̂k = x̂−k +Kk(Vk −g(x̂−k , ik))
Pk = (I −KkHk)P

−
k

(7)

where Kk is the Kalman optimal gain. The superscript minus in

the equations means that the corresponding variables are still in

the prediction step, and their value has not yet been corrected

using the measurements. For a precise analysis of the EKF the

reader can refer to the survey reported in [15].

2.2 The capacity observer
The capacity observer uses the measurement of ik and the

SoC estimate ẑk, combined with a model of the capacity evolu-

tion, to track the battery aging. Knowing that the value of the

capacity evolves very slowly, a different sampling time, equal to

NT, N ∈ N is used for this part of the observer: this EKF gener-

ates an output each N sampling times of the ‘fast’ SoC observer.

The resulting overall scheme is then a multirate observer: while

the SoC is evaluated at a sampling rate T , it is not necessary to

run an EKF so often for estimating the capacity, the estimate of

which is then updated each N sampling times of the SoC. The

‘slow dynamics’ describing the evolution of the capacity can be

modelled as:

SN(k+1) = SNk −N(k0SNk + k1σ1 + k2σ2 + k3σ3)+wSk
(8)

where for simplicity we assumed that the aging is depending lin-

early and independently on the different severity factors, while

the noise term wSk
∼ N (0, Q̃) accounts for the model uncertain-

ties. The output equation is

yNk , zNk − zN(k−1) =
ηT

SN(k−1)
IN(k−1) + vSk

(9)

where IN(k−1) = ∑Nk−1
j=N(k−1) i j and vSk

∼ N (0, L̃) is the measure-

ment disturbance. It can be shown that this output equation is the

multirate version of the one proposed in [11] for capacity estima-

tion. The value yNk represents the variation of the SoC in a time

interval equal to NT , and is obtained using the estimated SoC

at those sampling times. The structure of the EKF algorithm is

analogous to the one already analyzed for the SoC observer: in

this case the only state variable is the capacity SNk, the input is

the sum of the currents in the last N sampling times of the SoC

observer, and the output is yNk, which means that the SoC esti-

mation is considered as a measurement. The equations (8) and

(9) can be synthetically expressed as

SN(k+1) = fS(SNk, INk)+wSNk

yNk = gS(SNk, INk)+ vSNk

Define AS ,
∂ fS
∂S

∈ R and HS ,
∂gS

∂S
∈ R , while the variance

of the estimation error is Π ∈ R . Define also the state of the

capacity observer as ŜNk. Then, the EKF algorithm for the

capacity estimation is

Prediction step

Ŝ−Nk = fS(ŜN(k−1), IN(k−1))
Π−

k = ASNk
ΠN(k−1)A

T
Sk

+ Q̃
(10)

Correction step

KSNk
= Π−

NkHT
SNk

(HSNk
Π−

NkHT
SNk

+ L̃)−1

ŜNk = Ŝ−Nk +KSNk
(VNk −gS(Ŝ

−
Nk, INk)

ΠNk = (1−KSNk
HSNk

)Π−
Nk

(11)

where KSNk
is the Kalman gain, while, as in the case of the SoC

observer, the superscript minus means that the corresponding

variables are in the prediction step.

2.3 RUL estimation

With the use of these two observers in conjunction, it is pos-

sible to estimate the value of the capacity at the present moment.

It is known that a battery is considered at its end-of-life when its

capacity reaches the 80% of its nominal value S∗: such value is

defined as S0 = 0.8S∗. So, using the part of the dual EKF rela-

tive to the capacity estimation only in the prediction phase, it is
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possible to predict the future evolution of the probability density

function of the capacity (that is, its mean and variance) obtaining

an evaluation of the RUL. For example, it is known that, for a

cumulative distribution function obtained integrating a gaussian

probability density function reaches a value of about 0.027 for

a value equal to the mean minus twice the standard deviation.

Then, in order to obtain a probability of about 1−0.027 = 0.973

of not overestimating the RUL, one can decide to define

RUL , (tRUL − tc) : Ŝ(tRUL)−2
√

Π(tRUL) = S0 (12)

where tc is the present time value, while tRUL is the time instant

when the system reaches its end-of-life and Ŝ(tRUL) is the pre-

dicted value of S when the system reaches its end-of-life.

The SoH of the battery can be expressed in terms of the so-

called ‘damage measure’ ξ, which is obtained from the damage

variable S. This variable is normalized between 0 (dead battery)

and 1 (new battery), and it is defined as

ξNk =
ŜNk −S0

S∗−S0
(13)

The damage measure represents the RUL of the battery in terms

of reserve capacity. The RUL can then be defined as the esti-

mated time that it takes to the battery to go from the actual value

of the capacity S∗ to S0 . A dual way to represent the same con-

cept is to express battery life through the residual life Λ , 1−ξ.

We want to remark that at the moment the modeling of the

aging process is still very hard to do, and there is no approach

on which everyone agrees. Moreover, an important challenge is

how to evaluate the parameters of the probability density func-

tion (in our case, the variance), in order to obtain an estimate of

the uncertainty that could take into account the information on

the real battery.
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Figure 3. Time evolution of the input current for the simulation example
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Figure 4. Time evolution of the output voltage for the simulation example

3 Simulation results

The proposed solution has been tested in simulation. The

PbA battery model is defined by the following parameters:

R0 = 2.17 · 10−2 Ω, R1 = 3.54 · 10−2 Ω, C1 = 1.15 · 104 F ,

R2 = 3.62 · 10−5 Ω, C2 = 9.52 · 103 F , M = 0.08, γ = 1, η = 1,

α = 11.564, β = 1.52 ·10−2, S∗ = 60 Ah, identified from experi-

ments conducted at the Battery Labs at the Ohio State University

Center for Automotive Research. The used sampling times are

equal to 0.5 s for the SoC observer, and to 1 hour for the capac-

ity observer, and the simulation runs for about 11 hours. In the

simulation, the parameters of the system simulating the real bat-

tery have been perturbed of small percentages (2-3%), and the

initial values of some states (in particular, in this example, of V1

and h) have also been perturbed, to show that the proposed strat-

egy has some robustness properties. The input current profile is

shown in Fig. 3, and the estimates of the states can bee seen in

Fig. 5. In particular, considering that the SoC is the state vari-

able for which the observer has been designed, the evolution of

its estimation error is shown in Fig. 6.

The projection of the evolution of the capacity is based on its

estimate at the present time instant, and is shown in Figs. 7 and

8. Considering that the estimation given by the EKF is a proba-

bility density function (though it is synthetically expressed using

mean and variance), the evolution of such a function is shown in

both a three-dimensional and bi-dimensional fashion. In partic-

ular, Fig. 7 shows the entire probability density function p(S, t)
for the values of interest of the capacity at every time instant in

the future, while looking at Fig. 8 one can see that the remaining

useful life tRUL − tc, according to (12), is established at the inter-

section of the threshold representing the lowest acceptable value

for the capacity and the lower bound of the probability density

function, defined here at any time instant t as Ŝ(t)− 2
√

Π(t).
The predicted aging process for the considered battery is evalu-

ated in a certain scenario when the battery has already been used

for some time. The prediction is done starting with a value of the

battery capacity of S(tc) = 52 Ah (the nominal battery capacity

is S∗ = 60 Ah): in this case, the threshold for which the battery is

considered dead is equal to 80% of 60 Ah, i.e. S0 = 48 Ah. The

variance ρ, as expected, in 400 days of prediction, passes from
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Figure 5. Time evolutions of the actual states (V1(t), V2(t), h(t), z(t))

and of their estimates (V̂1(t), V̂2(t), ĥ(t), ẑ(t)) using the proposed

observer

30.6 to 1142. This means that, as time goes on, the uncertainty

on the estimate increases. Using this simple model, in this case

one can conclude that the estimated RUL is equal to 350 days

with a confidence of 97.5%.
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Figure 6. Time evolutions of the estimation error for the SoC: z(t)− ẑ(t)

Figure 7. Three-dimensional representation of the prediction of the ca-

pacity evolution: the probability density function obtained with the EKF

in prediction is represented at any time instant, while the red line is the

threshold at 80% of the nominal capacity.
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Figure 8. Bi-dimensional representation of the prediction of the capacity

evolution: the dashed green line is the expected value Ŝ(t), while the

dashed blue lines stand for the values of Ŝ(t)± 2
√

ρ(t). Finally, the

solid red line is the lower threshold at 80% of the nominal capacity, and

the red arrow indicates the position of tRUL − tc. At present time t − tc
the battery has a capacity of 52 Ah.
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4 Conclusions

In the present paper, a strategy for estimating the RUL in au-

tomotive batteries has been proposed. This strategy is based on

the simultaneous estimation of the capacity and the SoC using a

multirate dual EKF, and on the prediction of the future evolution

of the capacity with suitable uncertainty margins. Simulations

show appreciable results for both estimation and prediction. Fu-

ture work will be devoted to the experimental validation of the

proposed strategy, even using different observers (i.e. Moving

Horizon Estimation), in order to compare different estimation

methodologies on the data from real batteries.
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