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Abstract— The increasing adoption of Lithium Iron Phos-
phate (LFP) batteries in Electric Vehicles is driven by their
affordability, abundant material supply, and safety advantages.
However, challenges arise in controlling/estimating unmeasur-
able LFP states such as state of charge (SOC), due to its flat
open circuit voltage, hysteresis, and path dependence dynamics
during intercalation and de-intercalation processes. The Core-
Shell Average Enhanced Single Particle Model (CSa-ESPM)
effectively captures the electrochemical dynamics and phase
transition behavior of LFP batteries by means of Partial
Differential-Algebraic Equations (PDAEs). These governing
PDAEs, including a moving boundary Ordinary Differential
Equation (ODE), require a fine-grained spatial grid for accurate
and stable solutions when employing the Finite Difference
Method (FDM). This, in turn, leads to a computationally
expensive system intractable for the design of real-time battery
management system algorithms. In this study, we demonstrate
that the Finite Volume Method (FVM) effectively discretizes the
CSa-ESPM and provides accurate solutions with fewer than 4
control volumes while ensuring mass conservation across multi-
ple operational cycles. The resulting control-oriented reduced-
order FVM-based CSa-ESPM is experimentally validated using
various C-rate load profiles and its observability is assessed
through nonlinear observability analysis. Our results reveal that
different current inputs and discrete equation numbers influ-
ence model observability, with non-observable regions identified
where solid-phase concentration gradients are negligible.

I. INTRODUCTION

Cobalt- and nickel-free positive electrode materials pro-
vide a pathway for building a resilient battery supply chain.
Iron phosphate (LiFePO4, also referred to as LFP) cathodes
exhibit good thermal and chemical stability and also offer
a better lifetime compared to NCA or NMC cathodes [1].
These characteristics make LFP batteries widely used in
electrified transportation and gird applications. For LFP
batteries, the presence of the two-phase transition results in
a flat OCV curve which is also accompanied by a significant
hysteresis during charge and discharge, making the modeling
a challenging task. Among different electrochemical models,
this study focuses on the core-shell average enhanced single
particle model (CSa-ESPM). The core-shell model is first
proposed in [2], and the CSa-ESPM is proposed in [3], [4].
After that, CSa-ESPM has been further investigated to reduce
model complexity [5] and account for hysteresis [6].

The CSa-ESPM contains partial differential-algebraic
equations (PDAEs) that need to be discretized and trans-
formed into ordinary differential equations (ODEs) by using
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Fig. 1: C/4 discharge. The moving boundary (rp) is plotted
to illustate the positive electrode one-phase (rp/Rs,p = 0)
and two-phase (rp/Rs,p > 0) regions.

numerical methods. In previous studies, the finite difference
method (FDM) is used to solve the CSa-ESPM with suf-
ficient spatial grid resolution (i.e., 70 spatial discretization
nodes). The resulting ODEs lead to a computationally expen-
sive system for deploying on the battery management system
(BMS). Using small spatial discretization nodes reduces the
computational burden but the mass conservation property is
not guaranteed when using FDM [7].

In this study, the finite volume method (FVM), which
conserves mass by design, is used to build a low-dimensional
CSa-ESPM with less than 4 discretization control volumes,
prone for on-board BMS applications. Model validation is
conducted using experimental data at different C-rate, and
non-linear observability analysis is studied for the positive
electrode. This paper is structured as follows. First, the CSa-
ESPM model is introduced, and the FVM method is used
to discretize and convert model equations into a system of
ODEs. Then, experimental data is used to identify model pa-
rameters, followed by the nonlinear observability analysis of
the CSa-ESPM model. Finally, conclusions are summarized
in the last section.
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TABLE I: CSa-ESPM discretized electrochemical governing dynamics

Model state-space formulation (The matrices and coefficients are reported in [3] and [7])
Negative electrode and one-phase positive electrode concentration [7] Electrolyte concentration [3]

˙̄cs,j = Aj c̄s,j +BjI, with: j = n, p (1) ˙̄ce = Aec̄e +BeI (2)

c̄s,j =
[
c̄s1,j , c̄s2,j · · · c̄sNr,j

]T ∈ RNr×1with: j = n, p (3) c̄e = [c̄e1, c̄e2 · · · c̄eNe ]
T ∈ RNe×1 (4)

Positive electrode in two-phase
Governing equations

∂cs,p

∂t
=

Ds,p

r2
∂

∂r

(
r2

∂cs,p

∂r

)
(5)

drp

dt
=

sign (I)Ds,p(
cαs,p − cβs,p

) ∂cs,p

∂r

∣∣∣∣
r=rp

(6)

State-space formulation

ẋ2,p = Asx2,p +BsI +Gs (7) g (I) =

 cβs,p = θp,β · cmax
s,p , if I > 0

cαs,p = θp,α · cmax
s,p , if I < 0

0, otherwise
(8)

x2,p =
[
c̄s1,p, c̄s2,p · · · c̄sNr,p, rp

]T ∈ R(Nr+1)×1 (9)

As =
3Ds,p

∆r2P



− (∆r2P+rp)
2
+2r2p

(∆r2P+rp)
3−r3p

· · · 0 0

...
. . .

...
...

0 · · · ((Nr−1)∆r2P+rp)
2

((Nr−1)∆r2P+rp)
3−R3

s,p

0

2 sign(I)

3
(
cαs,p−c

β
s,p

) · · · 0 0


((Nr+1)×(Nr+1))

(10)

Bs =
3

AcellFLpap


0
...

R2
s,p

((Nr−1)∆r2P+rp)
3−R3

s,p

0


((Nr+1)×1)

, Gs =



−
6Ds,pg(I)r

2
p

∆r2P

(
(∆r2P+rp)

3−r3p

)
...
0

− 2 sign(I)Ds,pg(I)

∆r2P

(
cαs,p−c

β
s,p

)


((Nr+1)×1)

(11)

Model output
Electrode overpotential Electrolyte overpotential

ηj =
2RT

F
sinh−1

(
Ip(I)

2as,jAcellLji0,j

)
, j = n, p

p(I) =

{
−1, j = p
1, j = n

, as,j = 3
Rs,j

εj

(12) ∆ϕe =
2RTv

F
ln

(
ce (Ln + Ls + Lp)

ce (0)

)
(13)

Exchange current density

i0,p = kpF
√

cavge,p c2p
(
cmax
s,p − c2p

)
with

{
One - phase : c2p = csurfs,p

Two - phase : c2p = cbulks,p
(14)

i0,n = knF

√
cavge,n csurfs,n

(
cmax
s,n − csurfs,n

)
(15)

Cell voltage State of charge

Vcell = Up + ηp − Un − ηn +∆ϕe −RlI (16) SOC
ch/dis
p =

θ
ch/dis
p,0 −θbulk

p

θ
ch/dis
p,0 −θ

ch/dis
p,100

, SOC
ch/dis
n =

θbulk
n −θ

ch/dis
n,0

θ
ch/dis
n,100 −θ

ch/dis
n,0

(17)
1 csurfs,j is the surface solid-phase concentration, and is given by Eq.42 and 43 in ref [7].
2 cbulks,j and θbulks,j are the bulk and bulk-normalized solid-phase concentration, respectively. They are calculated using Eq.3 and 5 in ref [4].

II. CORE-SHELL AVERAGE ESPM

In this section, a brief overview of the governing equa-
tions of the CSa-ESPM, emphasizing the phase transition
mechanisms inherent in LFP batteries, is described. Then,
the numerical solution of the positive electrode concentra-
tion diffusion governing equation, coupled with the moving
boundary ODE, is introduced based on the FVM scheme.
During operation, the positive electrode of LFP batteries
experiences the formation of two phases [8]: 1) a Li-poor
phase FePO4, denoted as α-phase, and 2) a Li-rich phase
LiFePO4, denoted as β-phase. To facilitate the reader’s
understanding of the phase transition mechanism within the

CSa-ESPM, a schematic representation is provided in Fig. 1.
At the initial time instant t0, the LFP battery is fully charged
and the positive electrode is in the α-phase (Li-poor). As
discharge continues, the concentration increases and reaches
cαs,p = θp,α · cmax

s,p at timestep ts, then the formation of the
β-phase (Li-rich) starts. In this stage, the coexistence of α-
phase and β-phase leads to a constant positive electrode open
circuit potential (OCP). The transition from α-phase to β-
phase ends when concentration reaches cβs,p = θp,β · cmax

s,p

at timestep tf . After this point, the positive electrode is in
β-phase and the positive OCP decreases significantly until
the end of discharge te.



Fig. 2: Comparison results at C/4, C/2, and 1C for (a) voltage, (b) moving boundary, (c) volume-average concentraion, (d)
moving boundary during cycling.

A. CSa-ESPM: Governing equations

In the CSa-ESPM, the positive electrode in the two-
phase region is modeled as one single particle with the core
(Phase #1) and the shell (Phase #2). During discharge, for
example, the concentration in the core is uniform and at a
constant value cαs,p. This is a shrinking process and the β-
phase replaces the α-phase as discharge takes place. The
mass balance equation Eq.(6) models this process where
the motion of the α- and β-phase interface, rp, is assumed
to be a function of the concentration gradient solely. Be-
sides the positive particle diffusion equation, the remaining
governing equations are the same as the ESPM. Table I
summarizes the governing equations for CSa-ESPM, where
the subscripts n and p refer to the negative and positive
electrodes, respectively. The detailed model description for
CSa-ESPM, including the electrode OCPs, is provided in [3].
In previous studies, the following coordinate transformation
is proposed to remap the shell region from [rp, Rp] to [0, 1],
which makes the shell calculation domain stationary while
the boundary is moving.

χ =
r − rp
Rp − rp

∈ [0, 1] (18)

After this transformation, the governing equations for the
moving boundary and solid-phase diffusion in two-phase

region becomes:

drp
dt

=
sign (I)Ds,p(

cαs,p − cβs,p
)
(Rp − rp)

∂cs,p
∂χ

∣∣∣∣
χ=0

(19)

∂cs,p
∂t

=
∂2cs,p
∂χ2

[
Ds,p

(Rp − rp)
2

]
+

∂cs,p
∂χ

[
2Ds,p

r (Rp − rp)

]
−∂cs,p

∂χ

∂rp
∂t

[
χ− 1

Rp − rp

]
(20)

The complexity of the governing equations after coordi-
nate transformation increases given that FVM requires the
governing equation to be solved in its integral form. Next, we
will illustrate how to solve the CSa-ESPM by FVM without
coordinate transformation.

B. CSa-ESPM: FVM scheme

In FVM scheme, the calculation domain is divided into
control volumes (CVs), and the volume-averaged value of
the solid-phase concentration (i.e., c̄si,j with , j = n, p) is
calculated in each CV:

c̄si,j =
1

Vi

∫
CVi

csi,jdV (21)

where Vi represents the volume of the ith CV.
The solid-phase diffusion equation in the integral form is

solved using FVM scheme, thus guaranteeing mass conserva-
tion. By applying the Gauss theorem in spherical coordinates
and using the second order difference scheme to approximate



the diffusion terms (i.e., Ds,j

(
∂cs,j
∂r

)
), the solid-phase dif-

fusion equation for each CVi can be written as:

∂c̄si,j
∂t

Vi = Ds,j

c̄s(i+1),j − c̄si,j

∆r
Ai+ 1

2
−

Ds,j

c̄si,j − c̄s(i−1),j

∆r
Ai− 1

2
, j = n, p

(22)

Where index i + 1
2 represents the interface between the ith

and i+1th CV. Ai− 1
2

and Ai+ 1
2

are the left and right surface
areas of the ith CV, respectively.

In this study, Nr refers to either the total number of CVs
in FVM, or the spatial discretization nodes in FDM.

The state space representation for one-phase positive elec-
trode and negative electrode concentration (Eq.(1)) can be
found in Eq.(39) - (41) in [7]. In the two-phase region, the
thickness of the positive electrode shell region is changing.
Therefore, the length of each two-phase CV is a function of
the moving boundary rp and is calculated as:

∆r2P =
Rs,p − rp

Nr
(23)

Following the same approach outlined in [7], the state
space representation of Eq.(5) and Eq.(6) are given by Eq.(7)
- Eq.(11).

III. PARAMETERS IDENTIFICATION

Following the identification strategy proposed in [3], CSa-
ESPM model parameters are identified. These parameters are
shown in Table I. First, C/4 charge and discharge data are
employed to identify the parameter vector, denoted as λC/4,
which comprises:

λC/4 =

[
θchp,100 θchp,0 θchn,100 θchn,0 θchp,α θchp,β
θdisp,100 θdisp,0 θdisn,100 θdisn,0 θdisp,α θdisp,β

Rs,p Rs,n Ds,p Ds,n εp εn
kp kn Acell Rl]

(24)
It is important to highlight that the stoichiometric values

differ between charge and discharge conditions. This dis-
crepancy arises from the utilization of distinct positive OCP
curves for charge and discharge simulations, as outlined in
Equation (8) of [5]. Consequently, separate calibration of
the stoichiometric window is necessary. Then, the following
parameter vector is identified using C/2 and 1C charge data.

λC/2 = λ1C =
[
Ds,p, Ds,n, kp, kn

]
(25)

The identified values are shown in Table II, and the
identification results are shown in Fig. 2(a)-(c). Here, only
4 CVs are used to discretize the CSa-ESPM (FVM with
Nr = 4).

Model validation is conducted using C/2 discharge and 1C
discharge data. As can be seen from Fig. 2(a), the simulated
voltage matches well with the measured data. Also, the
simulated moving boundary rp is shown in 2(b). The root-
mean-square-error (RMSE) of voltage under C/2 and 1C
discharge are 14.96 mV and 23.89 mV, respectively. Above
results show that FVM-based CSa-ESPM has high accuracy

with only 4 CVs. To the best of our knowledge, it is the
first time that CSa-ESPM solved by FVM is validated using
experimental data.

Besides accuracy, the mass conservation property is also
checked. Following the approach presented in [7], we used
a C/4 charge – C/4 discharge profile for multiple cycles
simulation, which ensures the total ampere-hour throughput
are the same for charge and discharge. Fig. 2(c) shows that
the peak values for positive and negative electrodes volume-
average concentration remain constant, which proves the
mass is conserved when using FVM for solving CSa-ESPM.
Also, Fig. 2(d) shows that the moving boundary changes
continuously between one-phase and two-phase regions.

TABLE II: Identified parameters at different C-rates.

Current profiles Charge Discharge
C-rates C/4 C/2 1C C/4

θn,100% [-] 0.832 - - 0.831
θn,0% [-] 0.011 - - 0.009
θp,100% [-] 0.065 - - 0.066
θp,0% [-] 0.910 - - 0.925
θp,α [-] 0.220 - - 0.196
θp,β [-] 0.817 - - 0.804
Rs,n [m] 8.10e-07 - - 8.10e-07
Rs,p [m] 1.67e-08 - - 1.67e-08
εn [-] 0.655 - - 0.655
εp [-] 0.681 - - 0.681

Acell [m2] 2.125 - - 2.125
Rl [Ω] 1.54e-03 - - 1.54e-03

Ds,n [m2/s] 1.28e-15 1.00e-10 1.42e-15 -
Ds,p [m2/s] 4.05e-18 5.45e-18 2.74e-18 -

kn [m2.5/(mol0.5s)] 2.02e-12 2.56e-12 4.71e-12 -
kp [m2.5/(mol0.5s)] 9.50e-13 6.00e-13 1.45e-12 -

IV. OBSERVABILITY ANALYSIS

According to Section II-B the resulting FVM-based dis-
cretized CSa-ESPM exhibits linearity in its states and nonlin-
earity in the output during one-phase conditions. In the two-
phase region, the state-space formulation Eq.(7) becomes
nonlinear in both state and output formualtion due to the
dependency of As, Bs, and Gs (Eq.(10) - Eq.(11)) on rp.
Thus, in order to evaluate the feasibility of reconstructing
the model states using the available input-output data, a
nonlinear observability analysis is conducted. In this study,
the rank condition is employed to assess the observability of
the model in accordance with [9].

A. Non-linear observability analysis

Let’s consider a general non-linear model written as:

ẋ = f (x, u)
y = h (x, u)

(26)

where x ∈ Rn, u ∈ Rm, y ∈ R, f : Rn × Rm → Rn, and
h : Rn × Rm → R.

Definition 1 [10]: Let f : Rn × Rm → Rn be a smooth
vector field, h : Rn ×Rm → R be a smooth scalar function,
and u ∈ Rm be the system input. The J-order Extended Lie
derivative of h with respect to f and u is defined as:

LJ
f (h) =

∂LJ−1
f (h)

∂x
· f +

J−1∑
i=0

∂LJ−1
f (h)

∂u(i)
u(i+1) (27)



Fig. 3: Observability analysis results containing phase transition dynamics, rank number and the common logarithm (i.e.,
Log10) of condition number for (a) C/4 and 1C charge with Nr = 2, (b) 1C charge with Nr=2 and Nr=3. The zoom plot
shows the rank number between 10.9% - 12.5% SOC, (c) FDM with Nr = 2 and FVM with Nr = 2 under 1C charge, and
(d) UDDS current profile with Nr = 2.

Where L0
f (h) = h (x, u), and u(i) denotes the i-th order

derivative of the input u.
Theorem 1 [9]: The system (26) is locally weakly ob-

servable at (x0, u0) if

rank
(
O|(x0,u0)

)
= n (28)

Where n is the number of states of the model and O|(x0,u0)

is the observability matrix evaluated at (x0, u0) given by

O|(x0,u0)
=

∂

∂x


L0
f (h)

L1
f (h)

...
Ln−1
f (h)


(x0,u0)

(29)

It is worth noting that the rank test (29) determines
whether the CSa-ESPM is weakly locally observable. How-
ever, it does not provide information about the accuracy or
reliability of the estimates. To that end, the condition number
of the observability matrix (κ (O|(x0, u0))), serves as a
metric for evaluating the system observability, as outlined
in [11]. Specifically, κ (O|(x0, u0)) is given by:

κ
(
O|(x0,u0)

)
=

∥∥∥O|(x0,u0)
−1

∥∥∥ ∥∥∥O|(x0,u0)

∥∥∥ (30)

The condition number of a matrix reflects its degree of
ill-conditioning and proximity to singularity. Thus, a high
condition number leads to state estimates with significant
inaccuracies.

B. CSa-ESPM observability analysis

Prior research has established that constructing an observer
intended to simultaneously estimate the concentrations of
both electrodes from the available current and voltage data

provides inaccurate outcomes attributed to limited observ-
ability. To address this challenge, one effective approach is to
develop dedicated observers for each electrode individually
[12]. In this section, the non-linear observability of the pos-
itive electrode is studied. The states of the positive electrode
in the one-phase and two-phase regions are described by
Eq.(3) and Eq.(9), respectively. Under the assumption of
discretizing the particle solid-phase governing equations with
2 CVs, the extended Lie derivative for the positive electrode
in the one-phase scenario 1 is given as follows:

L0
f (h1P) = h1P (c̄s,p, I) = Up + ηp

L1
f (h1P) =

∂L0
f (h1P)

∂c̄s,p
· (f1P (c̄s,p, I)) +

∂L0
f (h1P)

∂I İ
(31)

where the positive OCP Up and the solid-phase overpotential
ηp are given by Eq. (8) - (9) in [5]. f1P (c̄s,p, I) is the state-
space equation for one-phase concentration given by Eq. (38)
- (41) in [7]. Note that the observability matrix, computed
as in (29), is full rank within the one-phase region when the
rank number is 2. In the two-phase scenario, alongside c̄s,p,
the model state also includes the presence of rp. Writing the
state vector in a compact form as x2P = [c̄s,p, rp], the Lie
derivative for the positive electrode in the two-phase scenario
is then calculated as follows:

L0
f (h2P) = h2P (x2P, I) = Up + ηp

L1
f (h2P) =

∂L0
f (h2P)

∂x2P
· (f2P (x2P, I)) +

∂L0
f (h2P)

∂I İ

L2
f (h2P) =

∂L1
f (h2P)

∂x2P
· (f2P (x2P, I)) +

∂L0
f (h2P)

∂I İ +
∂L1

f (h2P)

∂İ
Ï

(32)
where f2P (x2P, I) is the state-space equation for two-phase
concentration given by Eq.(7) - Eq.(11) in Table I. In this

1The same formulation holds also for the negative electrode [11]



Fig. 4: Positive electrode concentration distribution in two-
phase region for FVM with Nr = 3 during 1C charge

case, the rank of observability matrix must be 3 to ensure
model observability. Note that under constant current (CC)
cycling conditions, both İ and Ï in (31) and (32) are zero.
Additionally, to streamline the analysis in this study, we
assume that the second and higher-order derivatives of the
dynamic current input are negligible.

An important aspect for developing electrode-based ob-
server is to select the discretization grid points (i.e. CVs
for FVM). FVM conserves mass by design, enabling the
use of fewer control volumes in the discretization of CSa-
ESPM. In Figure 3(a), the observability results of a CSa-
ESPM with 2 CVs under constant charge currents of C/4
and 1C are depicted. The observability matrix of the positive
electrode remains at full rank, and the condition number
increases as the magnitude of current decreases. Furthermore,
Figure 3(b) examines the nonlinear observability of the
positive electrode during a 1C charge for Nr = 2 and
Nr = 3. In the Nr = 3 scenario, the observability matrix
experiences a loss of rank (rank of 3 instead of 4 in the
two-phase region), particularly at the beginning of the two-
phase region (SOC between 10.9% to 12.5%), rendering the
positive electrode unobservable. The observed loss of rank
is attributed to the minimal concentration difference, and
will be discussed later. Additionally, the condition number
increases as the number of CVs rises. Next, a comparison of
positive electrode nonlinear observability between FDM and
FVM versions of the CSa-ESPM is presented during a 1C
charge in Figure 3(c). Notably, FVM exhibits a lower overall
condition number compared to FDM, suggesting that the
FVM-based CSa-ESPM observer offers enhanced accuracy.
Finally, Figure 3(d) illustrates the nonlinear observability of
the CSa-ESPM positive electrode under the UDDS dynamic
current input profile. Compared to CC input, the condition
number plot exhibits more fluctuations, suggesting that ob-
server accuracy is likely to decrease under dynamic current
conditions. In Fig. 3(b) it was observed that the CSa-ESPM
positive electrode becomes unobservable at the beginning
of the two-phase region when Nr = 3. The explanation
for this finding can be understood by analyzing the positive
electrode concentration distribution in the two-phase region,
as illustrated in Figure 4 for 1C CC charging cycle. Under
this condition, when the LFP positive electrode initially
enters the two-phase region, the shell thickness is minimal,

resulting in a negligible concentration difference between
the particle surface and center. Consequently, such a small
disparity cannot be precisely reconstructed based solely on
the measured voltage and current. This trend is expected
to exacerbate with an increase in the number of CVs, as
it improves the level of detail within the model.

V. CONCLUSION

In this paper, the FVM is applied to spatially discretize
the CSa-ESPM built for LFP batteries. The resulting state-
space model greatly reduces the solid-phase state variables
to less than 6 (Nr=4 for c̄s,p plus rp) while guaranteeing
mass conservation. As shown from experimental validation
results, the reduced-order CSa-ESPM matches well with
both cell voltage and electrode SOC. Moreover, CSa-ESPM
observability is analyzed and quantified by running the rank
test and using condition numbers. The proposed FVM-based
CSa-ESPM together with the nonlinear observability analysis
is a first step for the development of control-oriented models
for electrode-based observers in BMS applications.
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