
Chapter 9
Multi-Objective Supervisory Controller
for Hybrid Electric Vehicles

Stefano Marelli and Simona Onori

Abstract In this article, we address the problem of energy management control
design in hybrid electric vehicles (HEVs) to achieve minimum fuel consumption
while optimally limiting battery degradation. We use Pontryagin’s minimum prin-
ciple (PMP) to solve the optimal control problem. To the end of controlling battery
aging to guarantee battery performances over 150,000 miles, a battery capacity loss
reference trajectory is defined and a battery aging model is used by the optimizer.
The resulting optimal supervisory control strategy is able to regulate both state of
charge and capacity loss to their reference values. Simulation results conducted
on a pre-transmission HEV show that the battery capacity loss can be regulated
to achieve the long-term objective without sacrificing much fuel economy.

Keywords Electric vehicles • Supervisory control • Multi-objective

9.1 Introduction

Battery aging plays an important role in hybrid electric vehicles (HEVs) perfor-
mance: if not properly controlled, faster battery degradation leads to lower energy
recovery and lower power output capacity, requiring the battery early replacement
and causing a reduction in the HEV monetary saving. A hybrid vehicle has two
(or more) sources of energy on-board, whose operation is coordinated by an energy
management system (EMS) typically in a way that minimum fuel consumption is
achieved [1–3]. Realistic figures of achievable improvement in fuel economy in
HEVs range from 10% for mild hybrids to more than 30% for highly hybridized
vehicles. This potential can be realized only with a sophisticated control system
that optimizes energy flows within the vehicle. This consideration has spurred a
considerable amount of research in the last 15 years towards model-based optimal
supervisory control techniques moving away from heuristic or rule-based methods.
Systematic model-optimization methods such as dynamic programming (DP) and
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Pontryagin’s minimum principle (PMP) have been successfully adopted to design
controllers to improve the energy management in HEVs using meaningful objective
functions [4–9].

These optimal control techniques are referred to as non-causal, in that their
solution relies on a perfect knowledge of the driving cycle, and as such not
implementable in real-time. Nonetheless, they are useful for two reasons: (i) they
can be used to understand how an optimal solution works, from which rules can
be extracted to design real-time implementable control strategies [10], (ii) they can
be used to benchmark realizable strategies. For a more comprehensive overview of
different control methods developed for HEVs, the reader can refer to [5].

Traditionally, the HEV energy management problem was formulated with the
aim of minimizing fuel consumption (or emissions, [11]) while trying to guarantee
a charge-sustaining operation of the battery. No considerations about battery use
(or misuse) were included in the original problem formulation. Only recently,
though, industry has become more concerned about efficiently managing the energy
on-board HEVs and, at the same time, monitoring and controlling the battery
degradation. If a model-based optimization approach has to be taken to this regards
in order to systematically include battery deterioration concerns within the problem
formulation, an aging model of the battery is needed. In fact, the study conducted
at Argonne National Laboratory [12] showed that the best monetary savings in
HEVs are obtained when the battery life matches the vehicle life. Battery End Of
Life (EOL) is generally defined as the point in time when battery capacity reduces
to 80% of its initial value [12]. If the goal is to make the vehicle life (usually
150; 000mi or 15 years) match the battery life, this translates into achieving a 20%
capacity degradation over 150; 000mi, thus avoiding battery early replacement.

Only over the past few years, optimal supervisory control methods have included
aging considerations. One of the first works in this vein is [13] that proposes a cost
function that is a convex combination of instantaneous energy (fuel and electricity)
and aging costs (given in terms of solid electrolyte interphase layer growth) and
solves the problem via stochastic dynamic programming (SDP) for plug-in hybrid
electric vehicles (PHEVs). In [14] a PMP-based solution is proposed where a convex
combination of fuel and aging cost is used in the cost function; in this case, the
capacity loss in HEV is being minimized. A weighting coefficient was used in the
cost function to generate a family of Pareto front solutions. A similar approach is
followed in [15], where the cost function proposed by [14] is normalized to simplify
the physical interpretation of the control parameters.

These latter works tried to minimize the battery deterioration without any explicit
goal on battery life duration. The first attempt to achieve such an objective is found
in [16]. A battery aging model from [17] is used in the problem formulation, and
a PMP-based solution is presented based on a two-state model (state of charge and
capacity loss). A solution of the PMP problem was not given, rather an approximate
solution based on extending the adaptation law, used in [10], to the two costates was
presented, based on the simplistic assumption that the capacity loss trend over the
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vehicle life span is linear. In [18] an adaptive version of PMP is proposed as well, to
minimize fuel consumption and battery aging, while limiting battery temperature.
Qualitative results were presented for rather limited conditions of operation.

The objective of this paper is to use an experimentally validated battery aging
model into the EMS, to systematically control capacity degradation during the
operational life of the vehicle, with a minimum impact on the vehicle performances.
The problem of fuel consumption minimization and battery degradation limitation
for HEVs is inherently a two-time scale control problem in that nominally the
two objectives have to be reached over two different time horizons: driving cycle
and battery life, respectively. In fact, we normally test vehicles performance over
standard driving cycles while battery life is measured in terms of total ampere-
hours throughput. The proposed optimal supervisory control strategy is able to
reduce the two-time scale problem to a one-time scale problem, by minimizing an
instantaneous cost function and guaranteeing a predefined battery degradation trend
on a short-time horizon, leading to 20% cumulative capacity loss over 150; 000mi.

In this manuscript, we first use an experimentally validated battery aging model
from [19] to monitor and control degradation within the multi-objective optimal
control framework. We then express the costate dynamics of PMP, including the
dependence of the mass fuel flow rate of the engine from the state of charge of the
battery. Third, we formulate an aging limiting control problem with two states which
requires a capacity loss reference trajectory to be defined. In this way, the multi-
objective supervisory control problem (hereinafter referred to as “aging-limiting
PMP” problem) is solved as a regulation problem on the two states (state of charge
and capacity). The aging-limiting PMP (AL-PMP) problem is finally solved by
proposing a novel analytic/numerical methodology along with a tuning algorithm.
An analytic comparison between the newly proposed AL-PMP problem and the
optimization presented in [1] is shown, and a new interpretation of the well-known
ECMS strategy, extended to the case with battery aging, is proposed.

The paper is organized as follows: in Sect. 9.2 the adopted aging model is
presented, and the capacity loss reference trajectory is defined; in Sect. 9.3 the
vehicle simulator is presented, and a focus is put on the battery cell and pack
model including aging; in Sect. 9.4 the meaningfulness of the control problem is
explained and two situations are defined; in Sect. 9.5 the aging-limiting optimal
control problem is formulated, and it is solved with AL-PMP in Sect. 9.6; in Sect. 9.7
the novel control strategy is compared with other two different approaches, which
show to be equivalent to AL-PMP, but more problematic in the implementation; in
Sect. 9.8 the penalty function on battery capacity loss is shown and analyzed; in
Sect. 9.9 AL-PMP is optimally tuned and simulation results are shown in Sect. 9.10;
finally, conclusions are given in Sect. 9.11.
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9.2 Battery Aging Model and Capacity Loss
Reference Trajectory

Aging is an irreversible process caused by parasitic chemical reactions that take
place inside the battery. Batteries can undergo two types of aging: calendar aging
[20, 21] and cycle-life aging [17, 19, 22]. In this paper only cycle-life aging is
being addressed, and an empirical capacity degradation model is used in the control
strategy.

The factors responsible for battery aging are usually referred to as severity factors
[23]. In HEV applications, those are typically: state of charge, SOC, C-rate, defined
as Ic D I=Q (where I is the battery current in ŒA� and Q is the actual capacity in
ŒAh�), and battery internal temperature, � . The capacity loss model, from [19], is
identified on real HEV battery data with a complete dependence on severity factors
by means of a severity factor function, �funct. The following functional relationship
exists between �funct and Qloss:

Qloss.SOC; Ic; �;Ah/ D �funct.SOC; Ic; �/ � Ahz (9.1)

where Qloss is the percent capacity loss, defined as Qloss D .1� Q=Q0/ � 100, where
Q0 is the initial capacity in ŒAh�; z is an empirical power exponent; and Ah is the
accumulated ampere-hour throughput of the battery, given by Ah D R t

0
jIj
3600

d� . SOC
is expressed as a fraction, Ic is in Œ1=h� and � is in ŒıC�. The severity factor function
assumes the following form:

�funct.SOC; Ic; �/ D .˛ SOC C ˇ/ � exp

� �Ea C � jIcj
Rg .273:15C �/

	
(9.2)

where ˛, ˇ and � are model parameters (identified in [19]), Ea is the activation
energy in ŒJ=mol� and Rg is the universal gas constant in ŒJ=mol=K�.

In this work, the control-oriented severity factor map, �map, originally defined in
[14] for PHEVs and then further refined for HEV batteries in [19], is considered.
It is defined as the ratio of the total Ah-throughput under nominal conditions until
EOL is reached (i.e., �) to the total Ah-throughput under actual operating conditions
(i.e., 	 ):

�map.SOC; Ic; �/ D � .SOCnom; Ic;nom; �nom/

	 .SOC; Ic; �/

D
R tEOL
0

jInomj d�R tEOL
0

jIj d�

(9.3)

where SOCnom, Ic;nom, �nom, and Inom represent predefined nominal operating
conditions and tEOL is the time at EOL. The severity factor map is a measure of
the relative aging effect on the battery at a given operating condition with respect to
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the nominal operation. It can be used the same way as an engine fuel consumption
map, in that it allows to select the battery operating points in the domain .SOC; Ic; �/

to ensure lower capacity degradation. The capacity loss model (9.1), together with
the severity factor function (9.2) is used in the following to capture battery aging
dynamics and estimate the actual capacity, as described in Sect. 9.3.1.3. The severity
factor map, on the other hand, is used in the EMS by the optimizer to select the
optimal battery operating points to limit its aging, as described in Sect. 9.6.

9.2.1 Capacity Loss Reference for Cycle-Life

Since the electrochemical aging processes that take place inside the battery are irre-
versible, the capacity loss is a monotonically increasing function of Ah-throughput,
as it can only increase if the battery is being used (or stay constant if the battery
is not being used). In this paper, we define a capacity loss reference trajectory,
with the purpose of limiting capacity loss over each day of driving. In particular,
the capacity loss reference is expressed as a function of the driven distance d
(expressed in miles, Œmi�), and average severity factor values are used in �funct

for (9.1). Simulations performed over US06 and FUDS driving cycles at ambient
temperatures of �amb D 20, 30 and 40ıC produce the average values reported in
Table 9.1. In addition, a scaling factor, K, is introduced, resulting in:

Qloss;ref.d/ D K � �funct

�
SOC; Ic; �

�
� dz (9.4)

where z is from (9.1). K is selected to ensure that 20% capacity loss is reached after
150; 000mi, as follows:

K D Qloss;EOL

�funct

�
SOC; Ic; �

�
� dz

EOL

(9.5)

where the EOL capacity loss and traveled distance are Qloss;EOL D 20% and dEOL D
150; 000mi, respectively, resulting in K D 0:6837. Figure 9.1 shows the capacity
loss reference as a function of the driven distance until the distance dEOL is reached.

The two-time scale optimal control problem is reduced to a single time scale
problem by means of breaking up dEOL into intervals of single days of driving, over
which a daily capacity loss reference value is defined. Statistics shows that a typical

Table 9.1 Average severity
factor values used in the
capacity loss reference

Parameter Value

SOCŒ�� 0:446

IcŒ1=h� 2:43

�ŒıC� 36:1



172 S. Marelli and S. Onori

0 50,000 100,000 150,000
0

10

20

Q
lo
ss
,r
ef
 (d

)
[%

]

d [mi]

Fig. 9.1 Capacity loss reference based on driven distance
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Fig. 9.2 Vehicle speed profile resulting from linking 4 US06 driving cycles

daily trip for a US car driver is estimated to be 28:97mi [24]. To account for this
statistics, in this work, one day of driving is defined as the concatenation of four
US06 or four FUDS driving cycles, resulting in a total distance driven in one day of
df D 32:14mi and df D 30:02mi, respectively. The two one-day speed profiles are
shown in Figs. 9.2 and 9.3.

The daily Qloss reference is computed from the overall capacity reference
trajectory (9.4), over the daily distance traveled. The target value of capacity loss at
the end of a generic day k (with k 2 N; k � kEOL, where kEOL is the last day before
battery EOL is reached) is obtained evaluating Qloss;ref.d/ at d D kdf . Figure 9.4
shows the quantity just defined, for the first three days of US06 driving cycles.
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Fig. 9.3 Vehicle speed profile resulting from linking 4 FUDS driving cycles
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Fig. 9.4 Daily capacity loss reference points calculated from US06 driving cycles, for which
df D 32:1357mi

9.3 Vehicle Simulator

The vehicle simulator used in this work is an improved version of the one developed
in [15] that models the parallel pre-transmission Hybrid Honda Civic. The main
characteristics of the vehicle are listed in Table 9.2 and its layout is shown in Fig. 9.5.
It comprises an integrated motor assist (IMA) where the electric motor (EM) is
mounted on the same shaft of the internal combustion engine (ICE). A continuous
variable transmission (CVT) allows the vehicle to operate in (i) conventional, (ii)
full-electric, (iii) power-assist, or (iv) recuperation mode. In the first mode of
operation, only the ICE is running and supplies all the power requested by the
driver. In the second mode, only the EM is running, and the engine is switched
off. In power-assist mode, the EM and the ICE are running in parallel and the power
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Table 9.2 Hybrid Honda
Civic vehicle model
characteristics used in the
simulator

Component Specifications

Vehicle mass 1294kg
ICE 1:6l, 85kW

In-line 4-cylinders

Gasoline
EM Maximum peak power 30kW

Maximum continuous power 15kW
CVT Ratio 0:529–3:172

Final drive 3:94
Battery pack LiFePO4

Nominal capacity 4:6Ah (803Wh)

Maximum power 20kW

Fig. 9.5 Vehicle layout
Torque
damper

IMA

Battery

CVT

Fuel
tank

ICE

is split between the two, according to the supervisory control strategy. Finally, in
recuperation mode, the EM is used to send all the braking power into the battery
for energy recuperation; if the saturation limits of the EM or of the battery are
reached, the remaining part of the braking power is transferred to the friction brakes,
according to a series braking control strategy [25]. The CVT allows a smooth
transition between the four modes of operation.

A quasi-static energy-based forward modeling approach is used to simulate the
longitudinal dynamics of the hybrid vehicle [1], whose structure is shown in Fig. 9.6.
A driver model converts the error between the driving cycle desired speed and the
actual vehicle speed into the requested power Preq, which is sent to the Supervisory
controller, along with ICE speed, !ice, EM speed !em, and SOC to generate the
optimal actuators set points used in the Powertrain module. The actual vehicle
velocity is obtained in the Vehicle dynamics block by integration of the longitudinal
vehicle dynamics equation. The vehicle components, ICE and EM are modeled by
means of their efficiency maps [15].

The improvements introduced in the simulator for the scope of the present work
are related to the battery model, both in the Powertrain and in the Supervisory
controller modules. Battery aging dynamics are modeled in the Powertrain model,
whereas the formulation of a new instantaneous cost inside the Supervisory
controller makes use of the severity factor map, as described in Sect. 9.6.
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Fig. 9.6 Vehicle simulator block diagram
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Fig. 9.7 Battery model layout: electrical, thermal, and aging dynamics and their interconnections

9.3.1 Battery Cell Model

In this work an ANR26650 LiFePO4 battery system from A123 is considered, which
has a nominal capacity of 2:3Ah and a nominal voltage of 3:3V . The battery cell
model is composed of three components: electrical, thermal, and aging, as depicted
in Fig. 9.7. For each of these components, all the dynamics involved and their mutual
effects are analyzed in the following. The battery pack model is then obtained by
scaling up the cell parameters at pack level, according to the topology of the pack
used.
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9.3.1.1 Electrical Model

The electrical battery cell behavior is modeled with a 0th-order Randle’s model. The
input to the battery cell is the power, Pcell. The corresponding current is computed
through the non-linear algebraic function [26]:

I D Voc.SOC/�p
V2

oc.SOC/� 4R0.SOC; �/Pcell

2R0.SOC; �/
(9.6)

where I is positive in discharge, Voc in ŒV� is the cell open circuit voltage, which is
a non-linear function of SOC, and R0, in general a function of SOC and � , is the
cell internal resistance at the Beginning Of Life BOL. Figure 9.8 shows a typical
trend of the resistance as a function of SOC parameterized for different values of
temperature � [27].
The SOC cell dynamics are defined by the equation:

PSOC D � I

3600 Q0.�/
(9.7)

where Q0, the BOL capacity, is a function of � as shown in Fig. 9.9.
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Fig. 9.8 Experimental characterization of R0 as a function of SOC and � for A123 ANR26650
battery cell
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Fig. 9.9 Experimental characterization of Q0 as a function of � for A123 ANR26650 battery cell
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As the battery is used, it ages. For, Q0 must be updated with its actual value Q during
vehicle operation. The increase in internal resistance due to aging is neglected in this
work, and left as a future work.

The terminal voltage Vcell is given by

Vcell D Voc.SOC/� R0.SOC; �/ I (9.8)

and the cell power input is given by Pcell D Vcell I.

9.3.1.2 Thermal Model

The cell thermal model describes the cell temperature dynamics, taking into account
the internal heat generation due to the current flowing inside the cell and the heat
exchanged with the environment. The dynamics of the cell core temperature � are
described by the equation:

P� D 1

McCp

�
R0.SOC; �/ I2 � � � �amb

Ru

�
(9.9)

where R0 I2 in ŒW� is the thermal power generated by Joule effect, McCp in
ŒJ=ıC� is the effective cell heat capacity, considered constant, �amb in ŒıC� is
the ambient temperature, and Ru is the thermal resistance to model the cell heat
exchange with the environment. The parameter values of the first-order model used
to simulate (9.9) are given in [28].

9.3.1.3 Aging Model

In order to define the capacity loss dynamics, we take the derivative of (9.1) with
respect to time. Since the data used for the model identification are collected from
tests conducted under SOC, Ic, and � constant conditions, when computing the time
derivative of Qloss, �funct is considered as a constant. Thus dQloss

dt D @Qloss
@Ah

@Ah
@t , which

leads to

PQloss D �funct.SOC; Ic; �/ z � Ahz�1 � PAh (9.10)

The aging model (9.10) is integrated in the powertrain module to obtain the actual
value of Qloss. This is then used in the EMS to solve the multi-objective optimal
control problem.
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9.3.2 Battery Pack Model

The battery pack used in the vehicle is composed of Np D 2 modules in parallel
with Ns D 54 cells in series for each module. The battery pack quantities are
computed, for the sake of simplicity, under the assumption that all the cells are
equal and balanced, leading to a pack current of

Ibatt D Np I (9.11)

a pack open circuit voltage of

Voc;batt D Ns Voc (9.12)

and a terminal voltage of

Vbatt D Ns Vcell (9.13)

The battery pack power is given by

Pbatt D Np Ns Pcell (9.14)

and the pack resistance by

R0;batt D Ns

Np
R0 (9.15)

Moreover, the initial and actual pack capacities are:

Q0;batt D Np Q0; (9.16)

Qbatt D Np Q (9.17)

respectively.

9.4 Well-Posedness of Multi-Objective Control Problem

The aim of the multi-objective optimal control problem is to obtain minimum
fuel consumption, while guaranteeing charge-sustainability and limited capacity
degradation over a day of driving.

Because of the diverse nature of driving cycles (due to different terrains, drivers,
weather conditions, etc.) the multi-objective optimal control problem is well defined
(and meaningful) only for those cases where the driving conditions (in terms of
severity factors: SOC and Ic) and/or ambient conditions (�amb) would lead to a
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Fig. 9.10 Capacity loss over the first day (combination of 4 US06) of aggressive cycle for different
ambient temperatures. Simulation results are obtained by controlling fuel consumption only (using
the PMP method): capacity loss always exceeds the Qloss;ref.df / limit. If only fuel is minimized in
the vehicle EMS, the battery will degrade (reaching EOL) prematurely

degradation of the battery beyond the acceptable target Qloss;ref.df /. In this case,
battery aging must be controlled. The US06 is one of such cycle, as shown in
Fig. 9.10. In other cases, driving scenarios are inherently mild from an aging
standpoint, in that they would never lead to a battery degradation close to the daily
target value, as shown in Fig. 9.11 for the case of FUDS. Obviously, in such cases,
battery aging does not have to be controlled, and the traditional fuel minimization
problem can be employed.

Under aggressive cycles the EMS must monitor and limit the aging to meet
the long-term goal of 20% capacity loss over the vehicle life span to prevent
anticipated battery degradation. Inclusion of a battery aging cost in the optimization
problem is needed, at the price of slightly worsening in fuel economy. Under mild
driving, operating in only fuel consumption minimization mode would be sufficient
to guarantee a capacity loss below the target threshold.

The multi-objective optimal control problem is well-posed if the capacity
degradation resulting from fuel consumption minimization exceeds its daily target
limit. In this case, a multi-objective EMS is needed to optimally weigh fuel economy
and battery aging.

The novel control strategy proposed in this work, referred to as aging-limiting,
has the aim to control (limit) Qloss (along with minimizing fuel consumption) to
its daily target value Qloss;ref.df /. Ideally, in a real-world scenario, a vehicle driving
predictor would be used to interact with EMS. The EMS will then decide whether to
switch to battery saving mode by activating the aging-limiting strategy or stay in the
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Fig. 9.11 Capacity loss over the first day (combination of 4 FUDS) of mild cycle for different
ambient temperatures. Simulation results are obtained by controlling fuel consumption only (using
the PMP method): capacity loss never exceeds the Qloss;ref.df / limit. In this specific cases, battery
aging control is not needed

default fuel-consumption mode. The actual online strategy implementation is out of
scope and will be investigated in the future.

In this work, we focus on the development of the new aging-limiting approach
using US06 driving cycles as driving scenarios, for which the multi-objective control
problem is well-posed.

9.5 Aging-Limiting Energy Management Problem
Formulation

The aging-limiting control problem is formulated using the integral of the fuel
power as cost function, as follows:

J.u;Preq/ D
Z tf

0

Pmf .u;Preq/Qlhv dt (9.18)

where u is the control input, i.e. the battery power Pbatt D Ibatt Vbatt in ŒW� (positive
in discharge); Pmf is the mass fuel flow rate of the engine, in Œg=s�; Qlhv is the fuel
lower heating value in ŒJ=g�; and tf is the final time instant in Œs�, i.e. the duration of
the driving day.
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The goal of the aging-limiting supervisory controller is to find the optimal control
sequence u�, that minimizes (9.18) while (i) keeping SOC at the same reference
value SOCref at the beginning and at the end of the driving day (9.19a), (ii) limiting
the SOC excursion between fixed minimum and maximum values, respectively,
SOCmin and SOCmax (9.19b), and (iii) controlling capacity loss to not exceed the
target value (9.19c):

SOC.0/ D SOC.tf / D SOCref (9.19a)

SOCmin � SOC � SOCmax (9.19b)

0 � Qloss � Qloss;ref.df / (9.19c)

The use of power-based cost function makes the choice of depletion energy,
Edep in ŒJ�, to describe the battery dynamics, and the effective energy-throughput,
Eeff in ŒJ�, to describe battery aging dynamics, more practical as opposed to the
traditionally used SOC and Qloss. These quantities are defined as follows:

1. Depletion energy1:

x1 D Edep D

D Edep.0/C
Z t

0

Ibatt.SOC;Pbatt; �/Voc;batt.SOC/ d�
(9.20)

This state represents the amount of energy extracted from the battery pack and is
equivalent to SOC in the control problem. Considering a negligible dependence
of Voc;batt on SOC (typical in a charge-sustaining HEV), and a negligible variation
of Qbatt over one day of driving, then the state of charge can be written as a
function of Edep

2:

SOC D SOC.0/C Edep.0/� Edep

3600 Qbatt Voc;batt
(9.21)

2. Effective energy-throughput:

x2 D Eeff D
Z t

0

�map.SOC; Ic; �/

� jIbatt.SOC;Pbatt; �/j Voc;batt.SOC/ d�

(9.22)

1The dependence on time will be left implicit in this paper, for simplicity.
2Under this assumption, it is possible to write (9.20) as Edep D Edep.0/ C Voc;batt

R t
0 Ibatt.SOC;

Pbatt; �/ d� and the state of charge as SOC D SOC.0/ � 1
3600 Qbatt

R t
0 Ibatt.SOC;Pbatt; �/ d� . These

two equations are then combined into (9.21).
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It is equivalent in terms of energy to the effective Ah-throughput, Aheff, introduced
in [14]. In the control problem this state is equivalent to Qloss, in that it represents
a measure of the degradation of the battery: any loss in capacity registered
through an increase in Qloss corresponds to an increase in Eeff of a commensurate
magnitude.

Owing to the above definitions of the system states, the variables used in the control
problem are rewritten as follows.

• Because SOC is a function of both Edep (i.e., x1) and Qbatt (or x2), from (9.21),
the battery current is also a function of the states x1 and x2:

Ibatt D Ibatt.SOC;Pbatt; �/ D Ibatt.x1; x2; u; �/ (9.23)

• Similarly, the severity factor map is a function of both states:

�map.SOC; Ic; �/ D �map .x1; x2; Ibatt; �/ (9.24)

recalling that Ic D Ibatt=Qbatt.

Thus, the state dynamics are as follows:

Px1 D PEdep D Ibatt.x1; x2; u; �/Voc;batt.x1/ (9.25)

Px2 D PEeff D �map .x1; x2; Ibatt; �/ jIbatt.x1; x2; u; �/j Voc;batt.x1/ (9.26)

Finally, the following constraints are imposed to make the powertrain actuators
operate within their physical limits (9.27a,9.27b,9.27c) and meet the total power
request (9.27d):

0 � Pice � Pice;max.!ice/ (9.27a)

Pem;min.!em/ � Pem � Pem;max.!em/ (9.27b)

Pbatt;min � Pbatt � Pbatt;max (9.27c)

Preq D Pice C Pem (9.27d)

where Pice;max is the maximum engine power and it depends on !ice (in Œrpm�);
Pem;min and Pem;max are the minimum and maximum limits for the EM power, Pem,
and they depend on the motor angular speed !em (in Œrpm�); Pbatt;min and Pbatt;max are
the constant minimum and maximum limits for the battery power. For the sake of
simplicity, it is assumed that Pem D Pbatt, which implies that the losses between the
battery power output and the EM input are neglected.

Problem 1 (AL-EMP). The aging-limiting energy management problem (AL-EMP)
consists in finding the optimal control sequence u� which minimizes the cost
function (9.18) under the dynamic constraints (9.25) and (9.26) and the global and
local constraints (9.19) and (9.27).
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In the standard energy management problem, battery aging is not accounted for
and fuel consumption is the only cost being minimized; thus the constraint (9.19c)
is not defined, as well as state (9.26) is not considered. The standard energy
management problem is thus reduced to Problem 2.

Problem 2 (S-EMP). The standard energy management problem (S-EMP) con-
sists in finding the optimal control sequence u� which minimizes the cost func-
tion (9.18) under the dynamic constraint (9.25) and the global and local con-
straints (9.19a,9.19b) and (9.27).

9.6 Aging-Limiting Pontryagin’s Minimum Principle
Problem Solution

The Pontryagin’s minimum principle (PMP) is used in this work to solve the AL-
EMP. We refer to the solution of the AL-EMP through PMP as aging-limiting PMP
(AL-PMP). To account for battery aging, an additional state (and, consequently, an
additional costate) is added, as proposed in [16]. The Hamiltonian function for the
AL-PMP is given by

H.u;Preq/ D Pmf .u;Preq/Qlhv C �1 Px1 C �2 Px2 (9.28)

where �1 is the first costate variable, relative to the depletion energy, and �2 is
the second costate, relative to the effective energy-throughput; the state dynamics
are defined in (9.25) and (9.26). If u� is the optimal control input which mini-
mizes (9.18) under the specified dynamic and global/local constraints, the following
necessary conditions must hold true:

• u� must minimize the Hamiltonian function H instantaneously;
• the governing equations of the optimal costates are given by

P��
1 D � @H

@x1

D �@ Pmf .u�;Preq/

@x1
Qlhv � ��

1

@Px1
@x1

� ��
2

@Px2
@x1

(9.29)

P��
2 D � @H

@x2

D �@ Pmf .u�;Preq/

@x2
Qlhv � ��

1

@Px1
@x2

� ��
2

@Px2
@x2

(9.30)
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Fig. 9.12 Multiplicative penalty function for SOCref D 50%, SOCmin D 30%, SOCmax D 70%,
a D 10 and b D 9

The Hamiltonian (9.28) is modified by introducing a penalty function, p.SOC/,
to limit the excursion of SOC during vehicle operation, thus enforcing the local state
constraint (9.19b):

H.u;Preq/ D Pmf .u;Preq/Qlhv C �1 p.SOC/ Px1 C �2 Px2 (9.31)

The penalty function on state of charge can be either additive or multiplicative,
[1], and in this work the latter is chosen. Mathematically, a multiplicative penalty
function is expressed as

p.SOC/ D 1 � a

�
SOC � SOCref

.SOCmin � SOCmax/ =2

	b

(9.32)

This function acts modifying the cost of battery depletion in H according to the
deviation of SOC from its target value SOCref. For positive a and odd b, p D 1

when SOC D SOCref; when SOC < SOCref, p > 1, resulting in an increase in the
battery depleting cost in H; when SOC > SOCref, p < 1, thus decreasing the battery
depleting cost in H. The penalty function, for the parameters values chosen in this
work of a D 10 and b D 9, is shown in Fig. 9.12.

The choice of the initial costate values is referred to as tuning of the AL-PMP
control strategy, and is discussed in Sect. 9.9.

Because Pmf does not depend (at least in first approximation) on the second
state, (9.29) and (9.30) can be expressed as

P��
1 D �@ Pmf .Pbatt;Preq/

@Edep
Qlhv � ��

1

@ PEdep

@Edep
� ��

2

@ PEeff

@Edep
(9.33)

P��
2 D ���

1

@ PEdep

@Eeff
� ��

2

@ PEeff

@Eeff
(9.34)

The infinitesimal variation of Edep upon an infinitesimal variation of SOC is obtained
from (9.21). Thus, by means of using the following relations:
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(
@Edep D �3600 Qbatt Voc;batt @SOC

@ PEdep D �3600 Qbatt Voc;batt @ PSOC
(9.35)

the partial derivatives in (9.33) and (9.34) can be easily calculated from maps
available in the powertrain model.

Thus (9.33) can be written as follows:

P��
1 D@ Pmf .Pbatt;Preq/

@SOC

Qlhv

3600 Qbatt Voc;batt
� ��

1

@ PSOC

@SOC

C ��
2

@ PEeff

@SOC

1

3600 Qbatt Voc;batt

(9.36)

The term @ Pmf

@SOC is expressed as

@ Pmf .Pbatt;Preq/

@SOC
D @ Pmf .Pbatt;Preq/

@Pbatt

@Pbatt.SOC/

@SOC
(9.37)

where the first contribution is computed as

@ Pmf .Pbatt;Preq/

@Pbatt
D �@ Pmf .Pice;Preq/

@Pice
(9.38)

since Pbatt D Preq � Pice. The term @ Pmf

@Pice
is the engine map, used in the vehicle

simulator. The term @ Pmf

@Pbatt
, on the other hand, is shown in Fig. 9.13.
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From (9.14):

@Pbatt.SOC/

@SOC
D Ns Np

@Pcell.SOC/

@SOC
(9.39)

where @Pcell
@SOC is available from the battery model. The resulting @Pbatt

@SOC map is shown in
Fig. 9.14.
The term @ PSOC

@SOC is also extracted from the battery model and is shown in Fig. 9.15.
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Fig. 9.14 Map depicting @Pbatt
@SOC on the SOC–Ibatt plane

30
40

50
60

70 −100
0

100

−10

−8

−6

−4

−2

0

2

x 10−4

Pcell [W]
SOC [%]

∂
S
Ȯ
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Finally, @ PEeff
@SOC is computed from (9.26) as

@ PEeff

@SOC
D@�map

�
Edep;Eeff; Ibatt; �

�

@SOC

� jIbatt.Edep;Eeff;Pbatt; �/j Voc;batt

C @jIbatt.Edep;Eeff;Pbatt; �/j
@SOC

� �map
�
Edep;Eeff; Ibatt; �

�
Voc;batt

(9.40)

where the terms @�map

@SOC and @jIbattj
@SOC are shown in Figs. 9.16 and 9.17, respectively.

The dynamics of the first costate can be numerically computed from the maps
just shown.

The second costate dynamics, (9.34), can be written (from (9.25) and (9.26)) as

P��
2 D � ��

1

@Ibatt.Edep;Eeff;Pbatt; �/

@Eeff
Voc;batt.Edep/

� ��
2

@


�map

�
Edep;Eeff; Ibatt; �

� ˇ̌
Ibatt.Edep;Eeff;Pbatt; �/

ˇ̌�

@Eeff

� Voc;batt.Edep/

(9.41)
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The partial derivatives in (9.41) are expressed as

@Ibatt.Edep;Eeff;Pbatt; �/

@Eeff
D@Ibatt.SOC;Pbatt; �/

@SOC

� @SOC.Edep;Eeff/

@Eeff

(9.42)

and

@


�map.Edep;Eeff; Ibatt; �/

ˇ̌
Ibatt.Edep;Eeff;Pbatt; �/

ˇ̌�

@Eeff

D
�
@�map.Edep;Eeff; Ibatt; �/

@SOC

ˇ̌
Ibatt.Edep;Eeff;Pbatt; �/

ˇ̌

C@
ˇ̌
Ibatt.Edep;Eeff;Pbatt; �/

ˇ̌

@SOC
�map.Edep;Eeff; Ibatt; �/

#

� @SOC.Edep;Eeff/

@Eeff

(9.43)

respectively. The term @SOC
@Eeff

, appearing in both (9.42) and (9.43), was found to be
negligible in simulation when compared to all the other costates dynamics terms
(order of magnitude 10�8), thus leading to the second costate dynamics to be
approximated to P��

2 � 0, i.e. ��
2 approximately constant:

��
2 � ��

02 D const: (9.44)
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9.6.1 Comparison with Standard PMP Solution

The standard PMP solution is computed by minimizing the Hamiltonian
function [1]:

H.u;Preq/ D Pmf .u;Preq/Qlhv C � Px (9.45)

where the state x is the SOC, the costate is indicated with � and its dynamics are

P�� D �@H

@x
D ��� @Px

@x
(9.46)

When including battery aging consideration, the costate dynamics for the first state,
as introduced in the present work, are

P�� D �@H

@x
D �@ Pmf .u�;Preq/

@x
Qlhv

„ ƒ‚ …
�a

� �� @Px
@x„ƒ‚…

�b

(9.47)

When comparing (9.46) and (9.47), one can see that the first term of (9.47), labeled
as �a, is usually neglected in the standard PMP solution [14]. Simulation results
(Fig. 9.18) show that this term gives a contribution to the costate dynamics which
is of the same order of magnitude of the second term, labeled as �b. When the
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Fig. 9.18 Comparison of terms in P��: �a D � @ Pmf
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Qlhv
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(top) and �b D �� @ PSOC

@SOC (bottom)
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term �a is kept in the overall solution, a slightly smaller SOC swing is observed,
from Fig. 9.19, as well as a slight reduction of Qloss, Fig. 9.20. The fuel economy is
also slightly improved, 37:3206MPG from 37:3048MPG obtained when �a is not
accounted for.
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9.7 Remarks on Multi-Objective Optimal
Control Formulation

In this section we show that the formulation of AL-PMP, as proposed in this paper, is
equivalent to two other optimal control approaches, namely a multi-objective PMP
and ECMS including aging consideration.

9.7.1 Multi-Objective PMP Problem

In this section, we show that the approach proposed in [14], i.e. a multi-objective
optimal control formulation including fuel consumption and battery capacity degra-
dation costs is equivalent to the method proposed in this paper. It is shown, though,
that the AL-PMP gives some substantial advantages in terms of reduced tuning
effort.

In [14] the cost function to be minimized is defined as the convex combination
of two competing costs, i.e. fuel cost and aging cost, as follows:

J D
Z tf

0

.1 � ˛/ Pmf C 1

3600
˛

ca

�
�map jIbattj dt (9.48)

where ˛ is a scalar parameter used to weight the two costs, ca is a scalar, measured
in Œg�, which translates battery wear into equivalent fuel consumption, and � D
1

3600

R EOL
0 jIbatt;nomj dt is the total Ah-throughput under nominal cycling conditions.

In [14], the dynamics of Aheff are given by

PAheff D 1

3600
�map jIbattj (9.49)

and the Hamiltonian is written as

H D .1 � ˛/ Pmf C 1

3600
˛

ca

�
�map jIbattj C � PSOC (9.50)

from which a PMP solution is computed, with dynamic constraints (9.7) and (9.49)
and static constraints (9.19a, 9.19b) and optimal initial value of the costate ��

0 found
through the shooting method. The challenges with this formulation are that i) the
choice of parameter value ca is arbitrary and not necessarily trivial, and ii) a family
of Pareto solutions is obtained as ˛ is varied between 0 (only fuel consumption is
considered in J) and 1 (only battery aging is considered in J), generating a trade-off
between fuel and aging costs.
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If we now normalize (9.50) (by 1�˛ division and Qlhv multiplication), we obtain

NH D Qlhv

1 � ˛
H D Pmf Qlhv C Qlhv

3600

˛

1 � ˛

ca

�
�map jIbattj

C Qlhv
�

1 � ˛
�

� 1

3600Qbatt
Ibatt

	 (9.51)

Defining N�1 D Qlhv
�
˛�1

1
3600Qbatt

and N�2 D Qlhv
3600

˛
1�˛

ca
�

, the Hamiltonian is
rewritten as

NH D Pmf Qlhv C N�1 Ibatt C N�2 �map jIbattj (9.52)

We can consider (9.52) as the Hamiltonian function associated with a control
problem with a single objective cost function:

NJ D
Z tf

0

Pmf dt (9.53)

and the state dynamics given by (9.7), to account for battery depleting cost, with
associate costate N�1, and (9.49) to account for battery aging with corresponding
costate N�2.

Ultimately, the two degrees of freedom given by the choice of ˛ and ca are being
translated into the costates N�1 and N�2.

The Hamiltonian of the AL-PMP solution, (9.28), can be written expressing
explicitly the states dynamics as

H D Pmf Qlhv C �1 Voc;batt Ibatt C �2 Voc;batt �map jIbattj (9.54)

Comparing (9.54) and (9.52), one can clearly see the equivalence of the two
problem formulations (same costs, (9.53) and (9.18), equivalent states, Edep and
Eeff and SOC and Aheff, respectively, as discussed in Sect. 9.5). In particular, the
Hamiltonians (9.52) and (9.54) are identical under the conditions:

( N�1 D �1 Voc;batt

N�2 D �2 Voc;batt

(9.55)

or:
8
<
:
�1 D Qlhv

3600 Qbatt Voc;batt

�
˛�1

�2 D ca Qlhv
3600 � Voc;batt

˛
1�˛

(9.56)
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The advantages of using AL-PMP, though, is in that the challenge of selecting
ca and ˛ is translated into optimally tuning the two costates �1, �2, which, in turn,
boils down to solving Problem 1 with the AL-PMP algorithm presented in Sect. 9.9.

9.7.2 ECMS with Aging

In [26] it was shown that the PMP solution (of the S-EMP) is equivalent to the one
given by ECMS. In this section, we want to show that a similar equivalence exists
in the case of aging inclusion.

Under system dynamics:

PEbatt D Ibatt.x1; x2; u; �/Vbatt.x1/ (9.57)

PEeff D �map .x1; x2; Ibatt; �/ jIbatt.x1; x2; u; �/j Voc;batt.x1/ (9.58)

we want to instantaneously minimize the equivalent fuel power, Pf ;eqv, given by the
sum of the actual fuel power, Pf , and Pdep and Pagn:

Pf ;eqv D Pf C Pdep C Pagn (9.59)

where Pdep is the virtual fuel power associated with battery depletion and Pagn is the
virtual fuel power associated with battery aging.

In particular, Pdep is defined as follows:

Pdep D s1 PEbatt (9.60)

where s1 is the equivalency factor which translates the battery depletion power into
equivalent fuel power.

Usually, a value for s1 when the battery is being charged, s1;chg, and one when
the battery is being discharged, s1;dis are used.

Pagn is defined as follows:

Pagn D s2 PEeff (9.61)

where s2 is the equivalency factor associated with the battery aging power. This term
introduces an additional equivalent fuel power when the battery is irreversibly aged.

Substituting equations (9.60) and (9.61) into the equivalent fuel power (9.59),
yields to

Pf ;eqv D Pmf Qlhv C s1 Vbatt Ibatt C s2 Voc;batt �map jIbattj (9.62)
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The relation between the battery open circuit voltage and terminal voltage is by
means of battery efficiency �batt:

Vbatt D
(
�batt Voc;batt if Ibatt � 0
1
�batt

Voc;batt if Ibatt < 0
(9.63)

Defining:

Ns1 D
(

Ns1;dis D s1;dis �batt if Ibatt � 0

Ns1;chg D s1;chg

�batt
if Ibatt < 0

(9.64)

(9.62) is written as follows:

Pf ;eqv D Pmf Qlhv C Ns1 Voc;batt Ibatt C s2 Voc;batt �map jIbattj (9.65)

which simply shows that ECMS with aging consideration and AL-PMP are
equivalent. In addition,

(
�1 D Ns1
�2 D s2

(9.66)

hence:

s1 D
(

�1
�batt

if Ibatt � 0

�1 �batt if Ibatt < 0
(9.67)

9.8 Penalty Function on Capacity Loss

A penalty function on capacity loss, q.Qloss; d/, is introduced in the AL-PMP
formulation to guarantee the targeted loss of capacity over each single day of
driving. The Hamiltonian (9.31) becomes as follows:

H.u;Preq/ D Pmf .u;Preq/Qlhv C �1 p.SOC/ Px1 C �2 q.Qloss; d/ Px2 (9.68)

where p.SOC/ enforces the local constraint on the state of charge. Contrary to the
state of charge, for which positive and negative variations are allowed, the capacity
loss (or effective energy-throughput) is a monotonically increasing function. To
account for this characteristic, the proposed penalty function, q.Qloss; d/, is a
function of the driven distance.
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loss;ref.d/, and Qloss;ref.kdf / over the first three days of US06 driving cycles,

with df D 32:1357mi

We indicate as Qday
loss;ref.d/ the reference capacity loss trajectory on a given day,

d, with d 2 

.k � 1/df ; kdf

�
, in between the capacity loss of the previous day,

Qloss;ref..k � 1/df /, and the following day Qloss;ref.kdf /:

Qday
loss;ref.d/ D Qloss;ref.kdf / � Qloss;ref..k � 1/df /

df
� d (9.69)

In Fig. 9.21, Qday
loss;ref.d/ is shown along with Qloss;ref.d/ for the case of three days

of US06 driving.
The linear reference Qday

loss;ref represents the maximum achievable capacity loss
trajectory over one day of driving and its purpose is to control fast capacity loss at
the beginning of each the driving day.

For implementation reasons, we define the maximum daily capacity loss to be
equal to the daily reference loss plus a tolerance value (in the positive direction only,
indicated as QC

loss;tol; this is assumed of the same value as the one used in Sect. 9.9
for the tolerance on �Qloss, i.e. final state deviation from the daily target, namely
D 0:00324%):

Qloss;max.d/ D Qday
loss;ref.d/C QC

loss;tol (9.70)
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The penalty function assumes then the following expression:

8
ˆ̂̂<
ˆ̂̂:

q.Qloss; d/ D 1C g

�
Qloss�Q

day
loss;ref.d/

QC

loss;tol

	h

for Qday
loss;ref.d/ < Qloss � Qloss;max.d/

q.Qloss; d/ D 1 for Qloss � Qday
loss;ref.d/

(9.71)

It is worth noting that the q.Qloss; d/ function is asymmetrical with respect to
Qloss. The parameter g is the gain of the penalty function, and increasing its value
will result in an increase of the overall function value, as shown in Fig. 9.22;
the parameter h is the exponent of the penalty function, and its effect is to
change the function shape, as shown in Fig. 9.23. The ultimate effect of this change
in shape is in a delayed intervention of the function (as h increases) on the aging
cost in the instantaneous optimization. For large values of h the aging is weighted
more and more only for large values of Qloss �Qday

loss;ref.d/, whereas smaller values of
h are used when a more conservative approach on the aging is needed. In Fig. 9.24
the three-dimensional shape of the penalty function on capacity loss is presented
when driven distance is included as well.

In the following section, the tuning of AL-PMP is presented, which, ultimately,
consists in finding the optimal pair of initial values for the two costates .��
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d D Nd. Negative values on the abscissa indicate that the battery can age less than its target daily
value
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9.9 AL-PMP Solution via Map-Based Tuning

In this section, the problem of finding the optimal pair of values .��
01; �

�
02/ in the

AL-PMP strategy, that gives minimum fuel consumption mf in Œkg� over the first
day of driving with both state of charge and capacity loss regulated to their target
values, is solved.
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In the standard PMP solution, shooting method is used to iteratively tune �0
in order to obtain charge-sustainability [5]. This is possible given the bijective
relationship between �0 and SOC.df /. In the AL-PMP the two costate dynamics are
highly non-linear and coupled with no clear relation among them. For this reason, a
new approach is proposed to tune the optimal supervisory controller.

An initial guess value for both costates is defined through the set ƒ0:

ƒ0 D f.�01; �02/ j �01 2 ƒ01; �02 2 ƒ02g (9.72)

where the vectorsƒ01 and ƒ02 are given by

ƒ01 D Œ�01;min W �01;incr W �01;max�

ƒ02 D Œ�02;min W �02;incr W �02;max�
(9.73)

where the subscripts max and min are the maximum and minimum value for each
costate and the subscript incr stands for the increment selected for the costates
within that interval. Starting from each pair of initial values within the set ƒ0 AL-
PMP is solved (state and costate dynamics are integrated forward in time) and three
values are stored, namely:

• mf ,
• �SOC D SOC.df / � SOCref,
• �Qloss D Qloss.df / � Qloss;ref.df /,

where�SOC and�Qloss are the deviation of SOC and Qloss from their target values
at the end of the driving horizon, SOCref for the state of charge and Qloss;ref.df / for
the capacity loss, respectively. Three matrices are built registering those final values
for each pair of initial costates. These maps are easily plotted as function of �01 and
�02. From the generation of the three maps the optimal pair of costate is found as

.��
01; �

�
02/ D f.�01; �02/ j �SOC D 0 ^�Qloss D 0g (9.74)

The numerical value is found by means of the tuning algorithm presented next.

9.9.1 Tuning Algorithm Flowchart

The tuning procedure, summarized in the flowchart of Fig. 9.25, is composed of the
following steps.3

3An important aspect of the tuning algorithm concerns the tolerances on the final state values. The
approach followed in this work is as follows. Regarding SOC, a tolerance interval SOCtol D ˙1%
is accepted for the charge-sustainability target. This means that all the values �SOC 2 Œ�1; 1�%
are considered within the tolerance, and as such they are defined sub-optimal values. The optimal
value is only one, i.e. �SOC� D 0, and it falls inside the tolerance interval. For Qloss a similar
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Select initial intervals for λ01 and λ02

Build the three maps: 
1) mf (λ01,λ02) 
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Fig. 9.25 AL-PMP tuning algorithm flowchart

1. The initial intervals for �01 and �02 are selected, thus vectors ƒ01 and ƒ02 and
set ƒ0 are defined.

2. For each point of the set ƒ0, i.e. pairs .�01; �02/, Problem 1 is solved.
3. mf ,�SOC, and�Qloss are stored for each pair inƒ0 and the corresponding maps

are built.
4. The iso-value curves are plotted from the maps obtained in Step 3.
5. The contour plots of �SOC and �Qloss intersect.

relative tolerance is considered and computed as follows. Given an SOCtol D ˙1% and a state of

charge target of SOCref D 50%, the relative tolerance for SOC is given by SOCrel
tol D ˙1Œ%�

50% 100 D
˙2%; the relative tolerance for Qloss is then Qrel

loss;tol D SOCrel
tol D ˙2%. The target for capacity

loss, as explained in Sect. 9.2.1, for 4 US06 driving cycles (df D 32:14mi) is Qloss;ref.df / D
0:16205%, which leads to Qloss;tol D 0:16205%

100
.˙2%/ D ˙0:00324%. The sub-optimal values of

capacity loss deviation are �Qloss 2 Œ�0:00324; 0:00324�% and the optimal value is�Q�

loss D 0.
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6. If the sets where both SOC.df / and Qloss.df / are within the tolerance, i.e.
�SOC 2 SOCtol and �Qloss 2 Qloss;tol exists, go to Step 8, otherwise go to
Step 7.

7. The solution is not found within the originally defined initial guess values for the
costates, and the vectorsƒ01 and ƒ02 are updated.

8. The subset of ƒ0 for which both SOC.df / and Qloss.df / lie on their respective
target value, i.e. �SOC D 0 and �Qloss D 0, is found.

9. The point .��
01; �

�
02/ in the setƒ0 such that Step 8 is verified is the optimal tuning.

9.10 Simulation Results

Simulation results are shown in this section that implements the algorithm of
Fig. 9.25. Four US06 driving cycles are simulated at an external temperature �amb D
30ıC, where it is imposed SOCref D 50%, SOCmin D 30% and SOCmax D 70%.

First, the initial intervals for the costates, as defined in (9.73), are chosen (Step 1):

ƒ01 D Œ2:00 W 0:04 W 2:60�
ƒ02 D Œ0:080 W 0:004 W 0:140� (9.75)

Note that the values of the initial costates are in general different from each other,
and that the resolutions are selected in order to have vectors of length not more
than 20; in this way ƒ0 contains not more than 400 points and the simulations take
around 2:5h as the most, on a machine with an Intel i7 quad-core processor @2GHz
and 6GB RAM. If better accuracy is required, a narrower and finer interval can
be defined around the optimal point. The AL-PMP is solved for each pair in ƒ0

(Step 2), and the output maps are obtained (Step 3) and depicted in Fig. 9.26.
The contour plots shown in Fig. 9.27 are obtained from the maps of Fig. 9.26

(Step 4). Next, the contour plots relative to �SOC and �Qloss are intersected
(Step 5) and their intersection is shown in the dark grey area of Fig. 9.28 (Step 6).
Within the shaded region of Fig. 9.28, the optimal tuning (the magenta dot on the
right-hand side of the figure) of AL-PMP is found (Step 8), and the optimal pair of
initial costates (Step 9) is

(
��
01 D 2:3257

��
02 D 0:113

(9.76)

When using the proposed tuning to execute the AL-PMP, the variation of the final
states from their reference is found to be practically zero: �SOC D �0:036763%
and �Qloss D �0:000046505%. When applying the standard PMP (nominally,
solving Problem 2), a similar performance is obtained for SOC, as from Fig. 9.29,
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Fig. 9.26 Maps obtained for
4 US06 driving cycles at
�amb D 30ıC, with the choice
of initial costates from (9.75).
(a) Fuel consumption. (b)
Final state of charge variation
with respect to target. (c)
Final capacity loss variation
with respect to target
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Fig. 9.27 Contour plots
obtained for 4 US06 driving
cycles at �amb D 30ıC, with
the choice of initial costates
as in (9.75). (a) Fuel
consumption. (b) Final state
of charge variation with
respect to target. (c) Final
capacity loss variation with
respect to target
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Fig. 9.28 Intersection of contour plots of Figs. 9.27b and c (left plot). The optimal solution
(i.e.,, tuning) is found by the intersection of the 0-contour levels of �SOC and �Qloss (as shown
on the right-hand side plot)

0 500 1000 1500 2000 2500
30

35

40

45

50

55

60

65

70

t [s]

S
O
C
 [

%
]

PMP
AL-PMP

Fig. 9.29 Comparison of state of charge over the first day of driving for PMP and AL-PMP: both
the strategies are able to regulate SOC to its reference value at the end of the day of driving

but Qloss is not limited, as shown in Fig. 9.30: the capacity loss is more than 40%
higher than the target value (over the first day of driving). As a result, the target EOL
will not be met, leading to a prematurely aged battery (when compared to vehicle
life). From a fuel economy standpoint, on the other hand, only a slight difference is
observed between PMP and AL-PMP, with just 0:56% loss in terms of MPG for the
latter (37:3206 for PMP and 37:1115 for AL-PMP).

Hence, significant reduction in battery aging at the price of a little worse fuel
consumption is achieved when applying AL-PMP.
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Fig. 9.30 Comparison of capacity loss over the first day of driving for PMP and AL-PMP: only
AL-PMP is able to regulate Qloss to its reference value at the end of the day of driving

Table 9.3 Comparison of
optimal initial costate pairs
.��

01; �
�

02/ in AL-PMP for
different external
temperatures over 4 US06
driving cycles

�amb Œ
ıC� œ�

01 œ�

02

20 3:1964 0:005954

25 3:0811 0:019333

29 2:565 0:082397

30 2:3257 0:113

31 1:8185 0:18396

32 1:0068 0:30417

In the following, AL-PMP solution is presented for different temperature
scenarios.

9.10.1 Results for Different Ambient Temperatures

Simulation results are presented for different external ambient temperatures, over
four US06 driving cycles. For each value of temperature considered, AL-PMP is
tuned as described in Sect. 9.9. The optimal initial values of the costates are reported
in Table 9.3 and shown in Fig. 9.31.

The optimal initial value of the first costate decreases with increasing tempera-
ture, while the optimal second costate is increasing. This can be explained thinking
that higher temperatures represent more harmful conditions for the battery capacity
loss. Given that, the aging term in the Hamiltonian (9.28), multiplied by �2, needs
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Fig. 9.31 Graphical representation of optimal initial costate values in AL-PMP for different
external temperatures

to be weighted more in the optimization strategy than the fuel consumption and the
battery charging/discharging term, the latter multiplied by �1.

The activation of the aging penalty function on capacity loss is not required when
ambient temperature is below 33ıC. For temperatures equal or above 33ıC, the
penalty function needs to be activated to obtain optimal capacity loss regulation, i.e.
to find the optimal pair .��

01; �
�
02/ so that both�SOC and �Qloss are exactly zero.

Nevertheless, simulation study shows that when the aging penalty function is not
used in high temperature conditions, sub-optimal solutions are found. Namely, two
ways are proposed to tune AL-PMP, which are presented in the following.

1. Tuning 1: optimal tuning is done for �SOC, and only sub-optimality is guaran-
teed for�Qloss; this means that�SOC D 0, while�Qloss is chosen to be as close
as possible to 0: the first condition selects the points on the plane that lie on the
optimal SOC line, which is also within Qloss tolerance.

2. Tuning 2: optimal tuning is done for �Qloss, and only sub-optimality is guaran-
teed for�SOC; the points lie on the optimal Qloss line, i.e. �Qloss D 0, and SOC
is within the allowable tolerance.

The initial costate values found for the simulations performed are

1. Tuning 1:

(
�01 D 0:01

�02 D 0:4640
(9.77)
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only) and a black spot (2—close-to-optimal for �Qloss only)

Table 9.4 Results for the proposed tuning 1 and tun-
ing 2 for �amb D 33ıC, in terms of relevant quantities:
fuel consumption and final SOC and Qloss deviations
from targets

Tuning mf Œkg� �SOC Œ%� �Qloss Œ%�

1 2:4844 �0.031599 0:00084542

2 2:4862 0.87247 0:0000053273

2. Tuning 2:

(
�01 D 0:01

�02 D 0:4687
(9.78)

as also shown in Fig. 9.32. Figures 9.33 and 9.34 show the results of the two tunings
in terms of SOC and capacity loss profiles and Table 9.4 reports the numerical values
of simulation outputs.

It is worth noting that the error on the target values for Qloss in the tuning 1 and
the error for SOC in the tuning 2 are very small. On the other hand, the capacity loss
obtained from standard PMP is not even close to Qloss;ref.df /: AL-PMP reduces Qloss

by more than 30%, at the limited price of an increase of fuel consumption between
1:69 and 1:77% (mf D 2:4430kg for PMP, see Table 9.4 for AL-PMP).
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Fig. 9.34 Capacity loss profile for the proposed tuning 1 and tuning 2 for �amb D 33ıC. PMP
solution is also reported

9.10.2 Results with Penalty Function

If the penalty function on aging dynamics is used, on the other hand, an optimal
solution is found. From simulation results, at �amb D 33ıC, when using the
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following calibration parameters for the aging penalty function:

(
g D 3

h D 1
(9.79)

the optimal pair for the initial costate values is

(
��
01 D 2:5859

��
02 D 0:025833

(9.80)

The resulting overlapped contour plots of �SOC and �Qloss are shown in
Fig. 9.35. In this case a well-defined intersection is obtained, hence the optimal
solution is found.

Figure 9.36 shows the distribution of the operating points of the battery on the
severity factor map contour plot, as a function of state of charge and C-rate, for a
fixed battery temperature, both for PMP and AL-PMP. The distribution of points
indicates that AL-PMP (b), compared to standard PMP (a), is effectively able to
reduce the harshness of the battery operating conditions, since the maximum value
reached in �map is less than 20 instead of almost 30, with lower C-rate of operation
and larger state of charge range used. The engine efficiency map used by PMP and
AL-PMP is shown in Fig. 9.37.
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Fig. 9.35 Zoom on the intersection region of contour plots for 4 US06 driving cycles at �amb D
33ıC: the optimal tuning for AL-PMP with penalty function on Qloss is indicated with a purple
spot
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a

b

Fig. 9.36 Battery operating points on the severity factor map, for 4 US06 driving cycles at
�amb D 33ıC: comparison between standard PMP (a) and AL-PMP (b)

Simulation results have shown that for extreme external temperatures combined
with aggressive driving cycles like US06, AL-PMP cannot prevent the battery from
aging more than the final daily target, even with the introduction of the penalty
function. As an example, simulation results performed at �amb D 40ıC and penalty
function parameters

(
g D 3

h D 0:1
(9.81)

are shown in Fig. 9.38 sub-optimal initial costates:

(
�01 D 0:1

�02 D 0:077
(9.82)

One can see that both with or without penalty function, AL-PMP is not able to
control capacity loss to its daily target. Nonetheless, the capacity loss is reduced
by approximately 35% from the PMP solution, and by about 7:5% with respect to
the AL-PMP solution without penalty function; furthermore, the final value of Qloss,
although not equal to Qloss;ref.df /, is quite close to the target value.
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a

b

Fig. 9.37 Engine operating points for 4 US06 driving cycles at �amb D 33ıC: comparison between
standard PMP (a) and AL-PMP (b)

Table 9.5 Simulation results
for AL-PMP with penalty
function (g D 3; h D 0:1)
at �amb D 40ıC; comparison
between discharge and charge
phases

Total Discharge Charge

Average Ic Œ1=h� 3:0257 1:9055 7:4036

Average � ŒıC� 43:3322 43:2484 43:6600

Average �map Œ�� 4:5368 3:7351 7:6703

Extracted Ah 4:5472 2:2807 2:2665

Aheff 34:9286 10:1631 24:7655

In Table 9.5, discharge and charge battery events are compared for �amb D 40ıC.
When using AL-PMP, only the discharge is being optimized. One can see that the C-
rate in charge is on average almost four times larger than in discharge, with slightly
higher temperature. Thus, on average the severity factor map is more than two times
higher in charge, and so are the Aheff, which are directly related to aging, [14]. This
means that the aging process takes place mostly during the charge phase (braking),
which is not controlled with the present strategy. On the other hand, the extracted Ah
are almost equal, as expected for a charge-sustaining HEV. This analysis emphasizes
the importance to control battery charging, as also shown in Fig. 9.39, where the
capacity loss profile is shown distinguishing between the discharge and charge
phases. When Qloss is controlled (discharge), it stays approximately constant, or
increases at a small rate. When it is not controlled (charge), it undergoes important
upwards steps that prevent to meet the daily target.
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Fig. 9.38 Capacity loss results for �amb D 40ıC: comparison between PMP, AL-PMP with and
without penalty function

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

t [s]

Q
lo

ss
 [%

]

Qloss  discharge
Qloss  charge

1000 1200 1400

0.11

0.12

0.13

Fig. 9.39 Capacity loss profile for �amb D 40ıC with the discharge and charge phases plotted
separately

Simulations over a week of US06 driving (six days) are shown in Fig. 9.40, with
�amb D 30ıC. The capacity loss reference values at the end of each day is tracked
when using AL-PMP. Therefore, if battery degradation is not properly taken into
account by the EMS, ultimately, the situation arises that an early replacement of
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Fig. 9.40 Capacity loss profile over one week of simulation at �amb D 30ıC; comparison between
reference values, results with standard PMP and with AL-PMP

the battery is needed. In Table 9.6 the results relative to the fuel consumption over
the first week are shown. AL-PMP does not show a significant worsening in fuel
economy when compared to PMP, showing that battery aging is much more sensitive
to the choice of the control parameters than fuel consumption.

9.11 Conclusions

In this paper a new capacity loss model identified from real HEV data is adopted,
from which a reference capacity loss profile is extracted and used in the multi-
objective optimization strategy, referred to as AL-PMP. The AL-PMP is first
formulated, and then solved with a new tuning algorithm. It is shown that both
the state of charge and capacity loss are regulated to their respective reference
values at the end of the first day of driving, at the price of a small increase in fuel
consumption. For more severe driving conditions, a penalty function on capacity
loss allows to obtain the same optimal results, but for extreme scenarios aging
control is dominated by the uncontrolled charging phase. The same results obtained
for the first day of driving are confirmed by simulations performed over an entire
week of driving: both states are optimally controlled and the fuel consumption
is comparable to that of a standard (i.e., that does not account for aging) control
strategy.



9 Multi-Objective Supervisory Controller for Hybrid Electric Vehicles 213

Table 9.6 Fuel consumption obtained in simulation over the first
week of driving at �amb D 30ıC: results for standard PMP and AL-
PMP, and increase in fuel consumption of AL-PMP with respect
to PMP

Day # mf Œkg� PMP mf Œkg� AL-PMP Increase in mf Œ%�

1 2:4471 2:4573 0:417

2 2:4471 2:4696 0:922

3 2:4471 2:4717 1:008

4 2:4470 2:4721 1:022

5 2:4471 2:4724 1:036

6 2:4470 2:4727 1:050

As a possible future development of this work, in order to overcome the
limitations of AL-PMP, two paths are proposed, to be integrated within the present
solution:

• A simple approach is to apply a rule-based braking strategy, to limit the
maximum braking power when temperature is above a certain safety threshold;
in this way a milder aging effect will be obtained in charging and this will be
sufficient to optimally meet the daily goal Qloss;ref.df /, while maintaining charge-
sustainability.

• Series braking, as implemented in this work, could be replaced by a more ad hoc
parallel braking strategy with the purpose of optimizing recuperation as proposed
in [25], and, at the same time, accounting for battery aging.
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