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ABSTRACT 

The predictive modeling of flow and transport processes in geothermal reservoirs is challenging due to the complex nature of fracture 
networks. Tracer tests are traditionally used to characterize such reservoirs for sustainable injection and production strategies. 

Interpretation of tracer tests for acquiring correct flow parameters is usually carried out using oversimplified mathematical models. The 

analytical approaches particularly developed for modeling tracer tests in porous and fractured media provide uniform flow parameters 

that are not suitable for detailed geothermal reservoir characterization due to anisotropy and macro-dispersion. Moreover, numerical 

dispersion parameters that represent the macro-dispersion of a tracer are usually not pertinent. In this study, a tracer test is analyzed to 
characterize and predict the thermal breakthrough time of a geothermal reservoir located in western Turkey. A new analytical model 

particularly developed for the analysis of tracer tests conducted in porous and fractured reservoirs is coupled with Monte-Carlo simulations 

acquiring effective parameters from well-to-well data to obtain fracture aperture values in an anisotropic fractured medium. Subsequently, 

fracture aperture values are evaluated by analyzing mud-loss data provided by well-logs and compared with the analytical model results. 

The objective is to estimate the fracture aperture size and to inspect the relationship between anisotropic flow, fracture ap erture orientation, 
and longitudinal dispersivity in a deep geothermal reservoir. Results demonstrate that the anisotropic flow paths have an imp act on the 

macro-dispersivity both in longitudinal and transversal directions. 

1. INTRODUCTION 

The use of tracer tests to estimate the progression of the cold front between injection and production wells, as well as energy depletion, is 

critical. Therefore, quantitative characterization of flow, transport mechanisms, and interpretation of tracer test results are important issues 

in a deep geothermal reservoir. 

Computer-based models may be used to examine the tracer transport process, and important reservoir parameter values can be obtained 

through calibration using field responses. Analytical models based on solutions of the convection-dispersion-diffusion differential 

equation are commonly used (Sauty 1980; Bullivant & O'Sullivan, 1989; Maloszewski & Zuber, 1993; Gerke & van Genuchten, 1996; 

Cihan & Tyner, 2011; Houseworth et al., 2013; Somogyvári & Bayer, 2017). One of the major problems is that geothermal reservoirs 
have mostly a strong anisotropy for the flow due to differing rock types and the presence of oblique fault angles, and the injected tracer is 

strongly dispersed. One-dimensional (1-D) or two-dimensional (2-D) radial symmetry is a typical assumption for such analytical models. 

For anisotropic porous and fractured media, lower-dimensional models give very limited isotropic information. Full 3-D numerical models  

can be used as an alternative to radial analytical simulation, but they demand a significant amount of processing time and data (Cihan & 

Tyner 2011; Egert et al, 2020; Wu et al., 2021). Erol et al. (2022) recently developed a 3-D analytical model that accounts for anisotropy 
and dispersivity to reduce the computational effort of implementation and calibration. This model allows for inspecting anisotropic 

reservoir characteristics and examining the distribution of solute residence time. In this study, the developed novel analytical model 

combined with Monte-Carlo simulations to estimate fracture aperture values in an anisotropic fractured medium will be presented. The 

analytical model is iteratively fitted to tracer breakthrough curve (BTC) data collected at production wells of the Kızıldere geothermal 

field located in the Büyük Menderes Graben in western Turkey (Şimşek et al., 2005). In addition, fracture aperture values are evaluated 
by analyzing mud-loss data obtained from the well log and compared with the analytical model results. The overall aim of this research 

is to assess the relationship between anisotropic flow, hydraulic aperture orientation, and longitudinal dispersivity in a deep geothermal 

reservoir. 

2. METHODOLOGY  

2.1 Analytical model and Monte-Carlo simulations 

The 3-D analytical model developed for anisotropic media to extract effective parameters from well-to-well data is used in this study. 

This model is derived based on Green's function approach to generate an analytical 3-D convection-dispersion equation. The moving line 

source idea is applied to solve Green's function for anisotropic media. Afterward, a rectangular injection function and Green's function of 

3-D solute transport are analytically convoluted to represent a pulse injection. 
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A continuous medium approach serves as a basis for the description of transport in fractured reservoirs. The governing partial differential 
equation (PDE) of the solute convection-dispersion-diffusion in 3-D cartesian coordinates in continuum media is given as (Leij et al.  

2000): 
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where t is time, c is the solute concentration, R is the solute retardation factor, Dx, y, z are hydrodynamic dispersion coefficients, ux, uy and 

uz are flow velocities along the x-, y-, and z-directions, and s is the production term.  

Hydrodynamic dispersion coefficients are calculated based on longitudinal αL and transverse αT macro-dispersivities that are defined in 

the x-, y-, and z-directions as follows: 
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in which D0 is the molecular diffusion coefficient. The dispersivities depend on the velocity field. The x-direction is considered 

longitudinal, and the y- and z-directions are transversal. 

The Green’s function of a pulse point source is obtained by Leij et al., (2000) at the given point coordinates (x’, y’, z’) and time t = 0 by 

solving the fundamental formulation of the PDE given in equation (1). In the following step, the moving source theory for the x-, y-, and 

z-directions with constant drifts is applied (Carslaw & Jaeger, 1959). After applying the superposition technique for a finite length of a 
wellbore representative for the perforated well depth. After the integration by using the substitution method and simplification, the 

governing equation is reduced to: 
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where vTx, vTy, and vTz are the solute velocities, which yield the flow velocity vector: 
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where L is the characteristic length, and h is the fracture aperture.  

CL given in equation (3) is a Heaviside step function where CL(t) = 1, for t ≥ 0. If CL is superimposed per meter depth for a given time. 

The input rectangular pulse injection function is analytically convoluted by shifting over the convection-dispersion-diffusion part of 

equation (3) (impulse response) with a given time interval Δt. 

This convolution method is carried out by segregating equation (3) into two parts: cL represents a rectangular pulse function, and the 

convection-dispersion-diffusion part is expressed as an impulse response function I (x, y, z, t). Hence, the following equation can be 

obtained: 
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The convolution of the function I and cL can be formulated by applying a pulse injection for a specific time frame in which T is the period 

of rectangular pulse injection, cL is the injected tracer concentration rate per meter depth that can be given as: 
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This convolution integral equation can be solved by discretizing both the cL and I function with a differential interval of Δt. The sum of 

impulse responses at given coordinates (x, y, z) provides the convolution in analytical form and can be written as: 
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This convolution integral equation can be solved by discretizing both the cL and I function with a differential interval of Δt. The sum of 

impulse responses at given coordinates (x, y, z) provides the convolution in analytical form and can be written as: 
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where i Δt denote the time interval of each unit impulse (i.e., time delay), n is the period, and the delayed and shifted impulse response is 

expressed as cL (i Δt) I(t - i Δt) Δt. This analytical model given in equation [8] is called Anisotropic Solute Moving Line Source (ASMLS). 

This analytical model is implemented in an exhaustive Monte-Carlo analysis to identify feasible ranges and distributions of anisotropic 

flow velocities, fracture aperture, and longitudinal and transversal dispersivities. In this analysis, a sufficiently large number of uncertain 

model parameter values is randomly generated by sampling from predefined distributions. Each sample simulation is tested by computing 
a square error function to quantify the fitness between the calculated and measured tracer BTCs. Feasible parameter ranges are identified  

by selecting a set of best-fit results. 

We defined a triangular probability distribution function in the Monte-Carlo simulations as: 
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P is the value of the desired parameter for estimation, bounded with upper and lower limits; X is a continuous random variable of a 

probability density function that generates random numbers for each iteration within the range 0 < X < 1. The subscript j denotes the 

parameter, i is the number of realizations. The square error function is defined as (Wu et al., 2021): 
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the subscript i denotes the Monte-Carlo simulation results, mea the measured data,  peak the maximum value of the concentration. The 

corresponding arrival time is tpeak; t1 and t2 are the beginning and the end of the BTC, respectively. For each realization, we found the 

beginning and the peak of the BTC. The beginning and the end of the curve are determined in an iterative process. In the first step, a 

threshold value is set (e.g., 0.1) and concentrations larger than the threshold value are determined. In the second step, the large value 
differences along the dataset array are evaluated, and the indices of the high difference points on the curve are found at the beginning and 

the end of the curves. 

ξe is the standard error of the mean that can be estimated as: 

e
N


   (11) 

ξ is the standard deviation of the measurement dataset in dimensionless form (c/cmax) and N is the number of measured data. 

2.2. Fracture aperture evaluation with mud-loss data 

To compare the results obtained from the ASMLS model, fracture apertures are estimated using mud-loss data from the wells. Mud 

invasion from a wellbore into the surrounding formation can be used to determine fracture apertures of the formations. Huang et al. (2011) 

developed a method for estimating fracture aperture size that involves solving a quadratic equation with wellbore radius, overpressure 
ratio, and the maximum mud-loss volume as input parameters. According to this approach, it is assumed that mudflow will stop in time 

due to overpressure reaching to yield stress of the drilling fluid. The ultimate invasion radius of mudflow (equation [12]) depends on the 

wellbore radius rw (m), fracture aperture h (m), the yield stress of the mudflow τy (Pa), and pressure difference from the well to the 

formation ΔP (Pa). 
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Maximum mud-flow volume (m3) is given as  
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A combination of equation (12) and equation (13) gives the quadratic equation (Huang et al., 2011) 
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where ΔP/τy is the overpressure ratio. Maximum mud-loss volume can be determined using total mud-loss volume over the number of 

events of mud-losses in a given time. 

3. CASE STUDY 

The study is carried out at the Kızıldere geothermal field located in the Denizli and Aydın provinces of western Turkey (Aydın et al. 

2020). The geothermal reservoir consists of metamorphic rocks with faults and fracture networks. 

The field is considerably large and lies over an area of more than 250 km2, therefore, we only focus on a part of the geothermal field 

where the injection and production activities are intensive. The Kızıldere field is bounded by oblique-slip normal faults with various 
orientations. Based on the geological model of the Kızıldere geothermal field, four major faults generate a combination of sinks and 

sources between shallow and deep hydrothermal reservoirs in the local area of interest (Figure 1a).  

 

Figure 1: a) Geological settings and the major fault zones of the survey zone in the Kızıldere geothermal reservoir. 

The highlighted red color surface defines the lower boundary of the shallow reservoir. b) Illustration of the 

injection (blue) and production (red) wells intersecting fault-2. 

These combined fluxes result in various anisotropic flow paths in different directions and complicate the estimation of representative 

reservoir parameters. Our particular interest is in a single fault zone (fault-2) that is intersected by four production and one injection 

wellbore, as shown in Figure1b.  The injection was carried out at the shallower well and monitored from the deeper production wells 
along the fault-2. This tracer survey is suitable to examine the ASMLS model. For our study, the four production wells located closely to 

the injection wells were considered. 

The reservoir temperature is about 250 °C at around 2000 m depth (Şimşek, 2003). A mass of 200 kg of 1-naphthalene sulfonate, whose 

thermal decay kinetics are suitable for use in reservoirs with temperatures up to 300 °C (Rose et al., 2001), was mixed with the effluent 

fluid and injected into the injection well Well-Kinj.  

The tracer was injected in less than an hour. In the ASMLS model, the line source length H is specified based on the perforated depth of 

the injection well and it is assumed that the tracer is uniformly injected along the fully penetrated perforation depth. The total amount of 

tracer injected in one hour into Well-Kinj is simply divided by the perforated depth of Well-Kinj as 150 m, which means that cL must be 

specified as 1.33×106 mg m-1 h-1 in the ASMLS model depending on the time interval in the convolution (i.e., 370 mg m-1 s-1). 
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4. RESULTS 

The ASMLS model is coupled with Monte-Carlo simulations to evaluate values for the unknown parameters in the form of distributions. 

In the ASMLS model, there are eight unknown parameters (flow velocities and fracture aperture in x, y, z directions, and dispersivities) 

to assess with Monte-Carlo simulations. In each trial, the calculated results are fitted to the measured tracer data monitored in other 

observation wells shown in Figure 1b. The calibration is applied for each observation well couple separately (e.g., Well-Kinj to -Apro, Well-

Kinj to -Bpro, etc.). The concentrations are calculated at the Cartesian point coordinates nearest to the observation well where fault-2 is 

intersected. 

Firstly, global sensitivity analysis is carried out with 50,000 realizations to determine the average ranges of each parameter between the 

injection and observation wells (for Well-Apro, Figure 2). Then, in 5,000 realizations, the sensitivity of each parameter was tested following 

a one-at-a-time principle: the value limits of the concerned parameter were set in a wide range, while those of the other parameters were 

kept narrow (Figure 3). For instance, the flow velocity in the x-direction is analyzed within the limits from 1×10-7 to 1×10-3 m s-1, while 
for other parameters such as longitudinal dispersivity a tight limit of 200 to 300 m is set, and the other velocities are bounded between 

1×10-6 and 1×10-5 m s-1. Once the limits are restricted for the flow velocity components, the size of the fracture apertures in three directions 

is estimated. 

 

Figure 2: Monte-Carlo simulation results of the tracer transport (Well -Apro). Tracer was injected into Well-Kinj. The misfit 
function Rfit is plotted as a function of flow velocity in x-, y- and z-directions (a, b and c), longitudinal dispersivities (d). 

Each point represents a realization. 

 

Figure 3: Monte-Carlo simulation results of the tracer transport (Well-Bpro). The misfit function Rfit is plotted as a function of 

fracture aperture in x-, y- and z-directions (a, b, and c), and longitudinal dispersivity (d). Each point represents a 

realization. Tracer was injected into Well-Kinj. 
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In Figure 3, fracture apertures between the Well-Kinj and -Bpro in three directions are estimated with a one-at-a-time principle and the 
feasibility ranges of parameters are evaluated at a more optimal point. The fracture apertures hx, hy, and longitudinal dispersivity αL are at 

a clearer feasibility range on the misfit function Rfit whereas hz shows a wider range of feasibility due to the vertical heterogeneity. In 

other wells, we observed extensive feasibility ranges for fracture aperture in different directions as the distance between the injection and 

the observation wells becomes more significant (Table 1). As the distance gets longer, the concentration levels measured in t he field are 

relatively low due to dispersion which complicates the assessment of fitting parameters. 

Results for fracture apertures are reported in Table 1. The estimated fracture apertures with mud-loss data are consistent with the fracture 

aperture in the x-direction obtained with the ASMLS model. Flow velocities are mainly stimulated by the forced convection between the 

injection and production (tracer observation) wells. The flow velocity in the x-direction is one order of magnitude faster compared to y- 

and z-directions, but the observation wells are located in y- and z-axes directions where the velocity is slower. In contrast, we found that 

absolute permeability calculated based on Darcy’s law is larger in the y- and z-axes. The reason is that the pressure gradient is small (i.e.,  
low-pressure gradient). In addition, the fault-2 orientation is perpendicular to the surface with a dip angle between 65 º - 85 º, and the 

fracture aperture in the y- and z-directions are significantly larger which dissipates the flow in 3D. This leads to a larger macro-dispersion 

both in longitudinal and transversal directions in the reservoir. In an isotropic homogeneous medium, the vertical transverse dispersivity  

is typically an order of magnitude smaller than longitudinal dispersivity. During the Monte-Carlo application of the ASMLS model, the 

feasible range is obtained with a transversal dispersivity that is around 0.4 times smaller than the longitudinal dispersivit y. Therefore, 

larger macro-dispersivity may indicate a strong anisotropic behavior. 

Table 1. Monte-Carlo simulation results between fracture apertures obtained in an anisotropic medium with the ASMLS model 

and fracture apertures estimated based on the mud-loss data. 

From Well-
Kinj to other 

wells 

Distance 
at z-

direction 

- (m) 

ΔP a 

(bar) 

Depth range 
of perforated 

depth 

Fracture 
aperture 

(μm) mud-

loss b 

Fracture aperture (μm) ASMLS 

model c 

Dispersivities (m) 

 hm hx hy hz αL αT 

Well-Apro  750 70 1750 - 1900 120 - 170 70 - 140 55 - 85 65 - 95 220 - 250 αL×0.4 

Well-Hpro  1000 80 2000 - 2200 40 - 220 75 - 125 20 - 30 30 - 50 220 - 260 αL×0.4 

Well-Cpro  1500 100 2200 - 2400 70 - 220 140 - 380 40 - 75 20 - 400 240 - 260 αL×0.4 

Well-Bpro  1600 110 2100 - 2700 90 - 130 110 - 190 40 - 55 25 - 70 240 -260 αL×0.4 

a Pressures are obtained after the hydraulic regime has reached steady -state conditions. b Fracture aperture hm estimated with mud-loss 
data of the wells. c Fracture apertures in three directions were obtained by matching tracer measurements with minimum square root error 

between Well-Kinj and the production wellbores with the ASMLS model. 

4. CONCLUSION 

A novel analytical model developed for tracer injection to inspect solute transport in an anisotropic medium is utilized to evaluate 

longitudinal macro-dispersivity and fracture apertures in three directions. Monte-Carlo simulation algorithm is then implemented to 
determine optimal values for unknown reservoir parameters, particularly, the fracture apertures in x-,y-, and z-directions. Moreover, 

fracture aperture values estimated by assessing mud-loss data obtained from the well-log are compared with the analytical model results. 

The geothermal reservoir consists of metamorphic rocks that typically exhibit strong anisotropic behavior affecting the flow propagation. 

In the reservoir, the tracer injection and monitoring were carried out to inspect the course of energy depletion and to determine related 

anisotropic reservoir parameters. It is assumed that the flow is most dominant on a major fault with a dip angle of 65º to 85º that intersects 
the injection and the observation wells. The estimated fracture aperture with mud-loss data is mostly consistent with the fracture aperture 

in the x-direction obtained with the ASMLS model in Cartesian coordinates. In addition, the fracture apertures in the y- and z-directions 

are also moderately effective and drive and disperse the flow in three directions. This demonstrates that the injected tracer  propagates 

dominantly in the x-direction but the flow paths on the y- and z-direction significantly affect the dispersion of the tracer both in longitudinal 

and transversal directions in an anisotropic medium. 
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