PROCEEDINGS, 48" Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, February 6-8,2023
SGP-TR-224

A Progress Report on GeoThermalCloud Framework: An Open-Source Machine Learning
Based Tool for Discovery, Exploration, and Development of Hidden Geothermal Resources
Bulbul Ahmmed', Maruti K. Mudunuru?, Luke Frash', and Velimir V. Vesselenov’

"Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545. *Watershed and Ecosystem
Science, Pacific Northwest National Laboratory, Richland, WA 99352. SEnviTrace LLC. Santa Fe, NM 87501

Email: ahmmedb@]lanl.gov
Keywords: Play fairway analysis, unsupervised machine learning, NMFk, prospectivity analysis

ABSTRACT

GeoThermalCloud is a Department of Energy’s Geothermal Technologies Office funded project to develop an open-source tool
(https:/github.com/Smart Tensors/GeoThermalCloud.jl) to discover hidden geothermal resources using machine learning and prospecting
enhanced geothermal systems (EGS). We named the geothermal resources exploration component GeoThermal Cloud-RE while the EGS
prospectingcomponent GeoThermalCloud-EGS. GeoThermal Cloud-RE utilizes unsupervised machine learning (ML) to automate data
analyses and interpretations by extracting hidden signatures to elucidate geothermal prospects. Also, it enables the identification of critical
measurements needed to identify geothermal resource signatures. GeoThermal Cloud-RE can be applied to (1) analyze large sparse field
datasets, (2) assimilate model simulations, (3) perform transfer learning (between sites with different exploratory levels), (4) label
geothermal datatypes, resources, and processes, (5) identify high-value data acquisition targets, and (6) guide geothermal exploration and
production by selecting optimal exploration, production, and drilling strategies. GeoThermalCloud-EGS is a machine learning-based
alternative to GeoDT, a fast, simp lified multi-physics solver to evaluate EGS designs in uncertain geologic systems. This paper will briefly
update our progress from the project's onset to the present.

1. INTRODUCTION

The project is motivated by the challenges, risks, and costs associated with geothermal exploration and production (V. V. Vesselinov et
al., 2022). Many processes and parameters impacting geothermal conditions are poorly understood. Diverse datasets are available to help
characterize subsurface geothermal conditions (public and proprietary; satellite, airborne surveys, vegetation/water sampling, geological,
geophysical, etc.). Yet, it is unclear how to properly leverage these datasets for geothermal exploration due to an incomp lete understanding
of how physical processes impacting subsurface geothermal conditions are represented in these observations. Recent advancements in
machine learning (ML) promise to resolve theseissues (V. V Vesselinov et al., 2022).

The tremendous challenges and risks of geothermal exploration and production bring the demand for novel M L methods and tools that
can (1) analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4) perform
transfer learning (between sites with different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation
data, (6) label geothermal resources and processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration
and production by selecting optimal exploration, production, and drilling strategies (Mudunuru et al., 2022). Our goals and work under
Phases 1 and 2 (as proposed) of this project address all these needs.

Under Phase 1&I1, we have developed GeoThermal Cloud-RE and GeoThermalCloud-EGS. GeoThermal Cloud-RE is an unsupervised
M L-based tool to discover and extract new (unknown/hidden) geothermal signatures in existing site, synthetic, and regional datasets. Our
ML analyses also identified high-value data acquisition strategies that can reduce geothermal exploration/production costs and risks.
Moreover, GeoThermal Cloud-RE categorized geothermal data, which is applied to generate geothermal data labels (e.g., geothermal
resource types). GeoThermal Cloud-RE allows for the treatment of both public and proprietary datasets. This is an essential feature
considering the high sensitivities associated with using proprietary data. M oreover, the GeoThermal Cloud-RE framework includes a
series of advanced pre-processing, post-processing, and visualization tools, which tremendously simplify its application for real-world
problems. These tools make the M L results understandable and visible even for non-experts. Thus subject-matter expertise is not a critical
requirement to use the GeoThermal Cloud-RE framework.

GeoThermalCloud-EGS is an enhanced geothermal system (EGS) prospectingtool. It is an ML version of GeoDT (Frash et al., 2023;
Frash, 2022, 2021; Mudunuru et al., 2023). GeoDT is very fast modeling toolto run thousands of realization tweaking reservoir, drilling,
and geothermal plant parameters. The main mechanism is to use GeoThermalCloud-RE for geothermal resources exploration to find
favorable geothermal locations and then use GeoThermal Cloud-EGS for exploring EGS prospectivity. Figures 1 and 2 demonstrate the
schematics of GeoThermal Cloud-RE and GeoThermalCloud-EGS,respectively.

We have used GeoThermal Cloud-RE on ten geothermal datasets. Eight datasets include site/real data, including a large and sparse dataset
of the Great Basin, and two datasets are synthetic data. The analyses found critical information that could not be found using supervised
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ML or exploratory statistical analyses. M ost of the data and analyses are available on GitHub as well. Obtained results can be reproduced
and further expanded by adding additional data. Practitioners and researchers are welcome to utilize GeoThermal Cloud-RE to solve other
geothermal problems. GeoThermal Cloud-EGS can be used for studyingFORGE EGS prospectivity.
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Figure 2: Schematic of GeoThermal Cloud-RE for geothermal resources exploration and GeoThermalCloud-EGS for EGS design
and prospectivity analysis.

2. GEOTHERMALCLOUD CAPABILITIES

2.1 GeoThermalCloud-RE

GeoThermalCloud capabilities include (1) analyzing large field datasets, (2) assimilating model simulations (large inputs and outputs),
(3) processing sparse datasets, (4) performing transfer learning (between sites with different exploratory levels), (5) extracting hidden
geothermal signatures in the field and simulation data, (6) labeling geothermal resources and processes, (7) identifying high-value data
acquisition targets, and (8) guiding geothermal exploration and production by selecting optimal exploration, production, and drilling
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strategies. The GeoThermalCloud is an open-source tool available at https:/github.com/SmartTensors/GeoThermalCloud.jl (a part of our
SmartTensors framework; http:/tensors.lanl.gov, https:/github.com/SmartTensors) (M udunuru et al., 2022; V. V Vesselinov et al., 2022).

2.2 GeoThermalCloud-EGS
GeoThermalCloud-EGS is an M L-based version of GeoDT, which is a fast, simplified multi-physics solver to evaluate EGS designs in
uncertain geologic systems (Frash et al., 2023; Frash, 2022, 2021; Mudunuru et al., 2023). It is numerically efficient enough to model
thousands of realizations in a few hours using a desktop computer. The underlying assumptions of this model are empirically based on
laboratory and field data to partially account for complex coupled processes obviating running expensive numerical simulations (Frash,
2021). The intent of this model is to run it with full uncertainty, as informed by a broad spectrum of relevant prior laboratory and field
measurements, and to reduce the uncertainty only when suitable information is available. When a promising EGS design is identified, it
can be investigated in greater detail and at higher fidelity using other more powerful, but more expensive, numerical modeling codes.
The primary features of GeoThermal Cloud-EGS include (Figure 3):

1. Pressure and flow rate prediction for 3D networks of intersecting wells and fractures modeled as pipes and nodes.
Hydraulic stimulation prediction with shear and tensile mechanisms where fracture apertures depend on effective stress.
Transient heat production predictions that depend on fluid enthalpy, rock conductivity, and stored energy change over time.
Electrical power generation using the combined single-flash Rankine and isobutane binary cycle.
Net present value prediction based on geothermal cost estimation tools, electricity sales, and a simple earthquake cost model.
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Figure 3: GeoDT or GeoThermalCloud-EGS stochastically predicts reservoir parameters, flow networks, hydraulic
stimulation, heat production, power production, injection-induced seismicity potential, and ultimately net present value
by fast and simplified methods. Most models complete in ~15 seconds using a common desktop computer with a single
processor thread.

3. GEOTHERMALCLOUD ANALYSES

3.1 GeoThermalCloud-RE

ML methods embedded in the GeoThermalCloud have been extensively tested and validated against various datasets (Figure 4)
(Mudunuru et al., 2022; V. V Vesselinov et al., 2022). Outputs of these applications have been published in presentations, conference
papers, and peer-reviewed papers. The analyzed M L applications are
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Figure 4: Locations of seven out of 8 analyzedsite datasets by the GeoThermalCloud framework. The other site datasetis in
Hawaii, not shown here.

1. Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes at 14,342 locations. This work extracted hidden
geothermal signatures associated with low-, medium-, and high-temperature hy drothermal systems, their dominant characterization
attributes, and spatial distribution within the study area (Ahmmed and Vesselinov, 2022). The analyses are based on the public data
available on the Nevada Bureau of Mines and Geology website.

2. Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and identified low- and medium-temp erature
hydrothermal systems; found dominant attributes and spatial distribution of extracted hidden hydrothermal signatures;
demonstrated blind predictions of theregional physiographic provinces (Vesselinov et al., 2020; V. V. Vesselinov et al., 2022).

3. Brady site, Nevada: We identified key geologic factors controlling geothermal production in the Brady geothermal field (Siler et
al., 2021).

4. Tularosa Basin, NewMexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120 locations (Ahmmed et al., 2022); data
comes from past PFA work in this region (Bennett and Nash, 2017). M L analyses identified geothermal signatures associated with
low-, medium-, and high-temperature hy drothermal systems. Dominant attributes and spatial distribution of the geothermal
signatures were also defined.

5. Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations in Tohatchi Springs, New M exico (Ahmmed et
al., 2020b). Successfully defined geothermal signatures associated with low- and medium-temperature hy drothermal sy stems. Also,
we found their dominant attributes and spatial distribution.

6. Hawaii: Analyzed four islands’ data separately and jointly; M L identified low-, medium-, and high-temperature hy drothermal
systems and their dominant characterization attributes (Ahmmed et al., 2020a).

7. Utah FORGE: Performed prospectivity analysis to identify future drilling locations using geological, geochemical, and
geophysical attributes (Ahmmed and Vesselinov, 2021). M aps of temperature at depth and heat flow are constructed based on the
available data. Processed data includes satellite (InSAR), geophysical (gravity, seismic), geochemical, and geothermal attributes.
Prospectivity maps were generated, and drilling locations were proposed for future geothermal field exploration.

8. EGS Collab: Field experiment data processed to extract dominant temporal patterns observed in 49 data streams; erroneous
measurement attributes and periods automatically identified; interrelated data streams automatically identified. This work has not
been published yet.

Future Case Study: In the coming months, we will add recently released geothermal exploration data by Great Basin Center for

Geothermal Energy (Aylinget al., 2022) to the geochemistry data set we analyzed in Ahmmed and Vesselinov (Ahmmed and Vesselinov,

2022; Nevada Bureau of Mines and Geology, 2012).
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3.2 GeoThermalCloud-EGS

Multiple datasets have been generated using GeoDT for EGS Collab and Utah FORGE site. One was used for the PIVOT 2022 Datathon
to simulate the whole geothermal development cycle from the initial well design to theend of production. This dataset includes the Utah
FORGE site characteristics and its measured uncertainties. The database includes 44,492 unique realizations, each with at least 30 years
of production. Based on site characteristics, fractures are stochastically created (Figure 5). Next, simulations are performed to compute
power outputs for each situation.
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Figure 5: Example stochastically generated fracture and well scenario with injection into one well across seven isolatedinte rvals
and production from two bounding wells. The parallel hydraulic fractures propagated from each injection interval are
shown in red, the color indicating that these fractures require relatively low pressure for activation (Pc). Note that most,
but not all, of the scattered natural fractures require significantly higher pressures to activate.
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Figure 6: Geothermal power production simulations based on the parameters described in Table 3.8.1 in (Vesselinov, n.d.). In the
time series plot, a high-performing case is highlighted in red, and a poor performer is highlighted in green. There is also a
clearlink between the well spacing and power output in addition to the number of injection intervals (i.e., isolated zones) and
power output (plots on the right).

4. HOW TO USEIT?

GeoThermalCloud can be used in three ways (i) on Julia, (ii) on Python, and (iii) on a Cloud platform (e.g. JuliaHub, Google Cloud
Platform, Amazon Web Services, Azure Cloud Services through Docker). Julia's installation is explained at
https:/github.com/Smart Tensors/GeoThermalCloud.jl and also given below.
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import Pkg
Pkg.add("GeoThermalCloud")
import GeoThermalCloud

GeoThermalCloud.SWNM()
GeoThermalCloud.GreatBasin()
GeoThermalCloud.Brady()

The Python installation process is described below:

$ python3
import julia
julia.install()

from julia import Base
from julia import Main
Main.eval ("import Pkg; Pkg.build(\"GeoThermalCloud\")")

Docker container development is still in progress. We will provide an update on how touse GeoThermalCloud when it is ready for use.

5. CONCLUSIONS

GeoThermalCloud is an open-source cloud-based M L framework for geothermal exploration that can simultaneously handle both public
and proprietary datasets. Also, it consists of a series of advanced pre-processing, post-processing, and visualization tools that tremendously
simplify its application for real-world problems. These tools make the ML results understandable and visible even for non-experts;
therefore, ML and subject-matter expertise are not critical requirements touse our ML framework. GeoThermalCloud utilizes a series
of novel LANL-developed patented ML tools called SmartTensors (https:/github.com/SmartTensors). SmartTensors has already been

applied to solve awide range of real-world problems, from COVID-19 to wildfires (http:/tenosrs.lanl.gov), and it has wontwo 2021 R&D

100 awards, including a bronze award for market disruptor tools. Now, it has two components (i) GeoThermalCloud-RE and (ii)
GeoThermalCloud-EGS.

GeoThermalCloud-RE is developed to process and analyze diverse small and large datasets. Also, it can handle sparse datasets with
missing values. It analyzes and finds actionable information to enable decision-makers to make sound decisions for geothermal
exploration, development, and production. It finds such actionable information by finding mapping functions between all input parameters.
We analyzed eight diverse site datasets and found critical information that would not be possible by visual insp ection or any other statistical
tools. Overall, GeoThermalCloud-RE can (1) analyze large field datasets, (2) assimilate model simulations (large inputs and outputs),
(3) process sparse datasets, (4) perform transfer learning (between sites with different exploratory levels), (5) extract hidden geot hermal
signatures in the field and simulation data, (6) label geothermal resources and processes, (7) identify high-value data acquisition targets,
and (8) guide geothermal exploration and production by selecting optimal exploration, production, and drilling strategies.

GeoThermal Cloud-EGS is an M L-based version of GeoDT, a fast, simplified multi-physics solver to evaluate EGS designs in uncertain
geologic systems. It is numerically efficient enough to model thousands of realizations in a few hours using a desktop computer. It is
designed to find prospective enhanced geothermal systems in hot, dry rocks.
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