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ABSTRACT  

GeoThermalCloud is a Department of Energy’s Geothermal Technologies Office funded project to develop an open-source tool 
(https://github.com/SmartTensors/GeoThermalCloud.jl) to discover hidden geothermal resources using machine learning and prospecting 

enhanced geothermal systems (EGS). We named the geothermal resources exploration component GeoThermalCloud-RE while the EGS 

prospecting component GeoThermalCloud-EGS. GeoThermalCloud-RE utilizes unsupervised machine learning (ML) to automate data 

analyses and interpretations by extracting hidden signatures to elucidate geothermal prospects. Also, it enables the identification of critical 

measurements needed to identify geothermal resource signatures. GeoThermalCloud-RE can be applied to (1) analyze large sparse field 
datasets, (2) assimilate model simulations, (3) perform transfer learning (between sites with different exploratory levels), (4) label 

geothermal data types, resources, and processes, (5) identify high-value data acquisition targets, and (6) guide geothermal exploration and 

production by selecting optimal exploration, production, and drilling strategies. GeoThermalCloud-EGS is a machine learning-based 

alternative to GeoDT, a fast, simplified multi-physics solver to evaluate EGS designs in uncertain geologic systems. This paper will briefly 

update our progress from the project's onset to the present. 

1. INTRODUCTION 

The project is motivated by the challenges, risks, and costs associated with geothermal exploration and production (V. V. Vesselinov et 

al., 2022). Many processes and parameters impacting geothermal conditions are poorly understood. Diverse datasets are available to help  

characterize subsurface geothermal conditions (public and proprietary; satellite, airborne surveys, vegetation/water sampling, geological, 

geophysical, etc.). Yet, it is unclear how to properly leverage these datasets for geothermal exploration due to an incomplet e understanding 

of how physical processes impacting subsurface geothermal conditions are represented in these observations. Recent advancements in 

machine learning (ML) promise to resolve these issues (V. V Vesselinov et al., 2022). 

The tremendous challenges and risks of geothermal exploration and production bring the demand for novel ML methods and tools that 

can (1) analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), (3) process sparse dataset s, (4) perform 

transfer learning (between sites with different exploratory levels), (5) extract hidden geothermal signatures in the field and simulation 

data, (6) label geothermal resources and processes, (7) identify high-value data acquisition targets, and (8) guide geothermal exploration 

and production by selecting optimal exploration, production, and drilling strategies (Mudunuru et al., 2022). Our goals and work under 

Phases 1 and 2 (as proposed) of this project address all these needs. 

Under Phase I&II, we have developed GeoThermalCloud-RE and GeoThermalCloud-EGS. GeoThermalCloud-RE is an unsupervised 

ML-based tool to discover and extract new (unknown/hidden) geothermal signatures in existing site, synthetic, and regional datasets. Our 

ML analyses also identified high-value data acquisition strategies that can reduce geothermal exploration/production costs and risks. 

Moreover, GeoThermalCloud-RE categorized geothermal data, which is applied to generate geothermal data labels (e.g., geothermal 

resource types). GeoThermalCloud-RE allows for the treatment of both public and proprietary datasets. This is an essential feature 

considering the high sensitivities associated with using proprietary data. Moreover, the GeoThermalCloud-RE framework includes a 

series of advanced pre-processing, post-processing, and visualization tools, which tremendously simplify its application for real-world 

problems. These tools make the ML results understandable and visible even for non-experts. Thus subject-matter expertise is not a critical 

requirement to use the GeoThermalCloud-RE framework.  

GeoThermalCloud-EGS is an enhanced geothermal system (EGS) prospecting tool. It is an ML version of GeoDT (Frash et al., 2023; 

Frash, 2022, 2021; Mudunuru et al., 2023). GeoDT is very fast modeling tool to run thousands of realization tweaking reservoir, drilling, 

and geothermal plant parameters. The main mechanism is to use GeoThermalCloud-RE for geothermal resources exploration to find 

favorable geothermal locations and then use GeoThermalCloud-EGS for exploring EGS prospectivity. Figures 1 and 2 demonstrate the 

schematics of GeoThermalCloud-RE and GeoThermalCloud-EGS, respectively.  

We have used GeoThermalCloud-RE on ten geothermal datasets. Eight datasets include site/real data, including a large and sparse dataset 

of the Great Basin, and two datasets are synthetic data. The analyses found critical information that could not be found using supervised 
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ML or exploratory statistical analyses. Most of the data and analyses are available on GitHub as well. Obtained results can be reproduced 

and further expanded by adding additional data. Practitioners and researchers are welcome to utilize GeoThermalCloud-RE to solve other 

geothermal problems. GeoThermalCloud-EGS can be used for studying FORGE EGS prospectivity. 

 

Figure 1: Schematic of GeoThermalCloud-RE for geothermal resources exploration. 

 

Figure 2: Schematic of GeoThermalCloud-RE for geothermal resources exploration and GeoThermalCloud-EGS for EGS design 

and prospectivity analysis.  

2. GEOTHERMALCLOUD CAPABILITIES 

2.1 GeoThermalCloud-RE 

GeoThermalCloud capabilities include (1) analyzing large field datasets, (2) assimilating model simulations (large inputs and outputs), 

(3) processing sparse datasets, (4) performing transfer learning (between sites with different exploratory levels), (5) extracting hidden 

geothermal signatures in the field and simulation data, (6) labeling geothermal resources and processes, (7) identifying high-value data 

acquisition targets, and (8) guiding geothermal exploration and production by selecting optimal exploration, production, and drilling 
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strategies. The GeoThermalCloud is an open-source tool available at https://github.com/SmartTensors/GeoThermalCloud.jl (a part of our 

SmartTensors framework; http://tensors.lanl.gov, https://github.com/SmartTensors) (Mudunuru et al., 2022; V. V Vesselinov et al., 2022). 

 

2.2 GeoThermalCloud-EGS 

GeoThermalCloud-EGS is an ML-based version of GeoDT, which is a fast, simplified multi-physics solver to evaluate EGS designs in 

uncertain geologic systems  (Frash et al., 2023; Frash, 2022, 2021; Mudunuru et al., 2023). It is numerically efficient enough to model 

thousands of realizations in a few hours using a desktop computer. The underlying assumptions of this model are empirically based on 

laboratory and field data to partially account for complex coupled processes obviating running expensive numerical simulations (Frash, 

2021). The intent of this model is to run it with full uncertainty, as informed by a broad spectrum of relevant prior laboratory and field 

measurements, and to reduce the uncertainty only when suitable information is available. When a promising EGS design is identified, it 

can be investigated in greater detail and at higher fidelity using other more powerful, but more expensive, numerical modeling codes.  

The primary features of GeoThermalCloud-EGS include (Figure 3): 

1. Pressure and flow rate prediction for 3D networks of intersecting wells and fractures modeled as pipes and nodes. 

2. Hydraulic stimulation prediction with shear and tensile mechanisms where fracture apertures depend on effective stress. 

3. Transient heat production predictions that depend on fluid enthalpy, rock conductivity, and stored energy change over time. 

4. Electrical power generation using the combined single-flash Rankine and isobutane binary cycle.  

5. Net present value prediction based on geothermal cost estimation tools, electricity sales, and a simple earthquake cost model. 

 

Figure 3: GeoDT or GeoThermalCloud-EGS stochastically predicts reservoir parameters, flow networks, hydraulic 

stimulation, heat production, power production, injection-induced seismicity potential, and ultimately net present value 

by fast and simplified methods. Most models complete in ~15 seconds using a common desktop computer with a single 

processor thread.  

3. GEOTHERMALCLOUD ANALYSES 

3.1 GeoThermalCloud-RE 

ML methods embedded in the GeoThermalCloud have been extensively tested and validated against various datasets (Figure 4) 

(Mudunuru et al., 2022; V. V Vesselinov et al., 2022). Outputs of these applications have been published in presentations, conference 

papers, and peer-reviewed papers. The analyzed ML applications are 
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Figure 4: Locations of seven out of 8 analyzed site datasets by the GeoThermalCloud framework. The other site dataset is in 

Hawaii, not shown here. 

1. Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes at 14,342 locations. This work extracted hidden 

geothermal signatures associated with low-, medium-, and high-temperature hydrothermal systems, their dominant characterization 

attributes, and spatial distribution within the study area (Ahmmed and Vesselinov, 2022). The analyses are based on the public data 

available on the Nevada Bureau of Mines and Geology website. 

2. Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and identified low- and medium-temperature 

hydrothermal systems; found dominant attributes and spatial distribution of extracted hidden hydrothermal signatures; 

demonstrated blind predictions of the regional physiographic provinces (Vesselinov et al., 2020; V. V. Vesselinov et al., 2022). 

3. Brady site, Nevada: We identified key geologic factors controlling geothermal production in the Brady geothermal field (Siler et 

al., 2021).  

4. Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 120 locations (Ahmmed et al., 2022); data 

comes from past PFA work in this region (Bennett and Nash, 2017). ML analyses identified geothermal signatures associated with 

low-, medium-, and high-temperature hydrothermal systems. Dominant attributes and spatial distribution of the geothermal 

signatures were also defined. 

5. Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations in Tohatchi Springs, New Mexico (Ahmmed et 

al., 2020b). Successfully defined geothermal signatures associated with low- and medium-temperature hydrothermal systems. Also, 

we found their dominant attributes and spatial distribution. 

6. Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-, and high-temperature hydrothermal 

systems and their dominant characterization attributes (Ahmmed et al., 2020a). 

7. Utah FORGE: Performed prospectivity analysis to identify future drilling locations using geological, geochemical, and 

geophysical attributes (Ahmmed and Vesselinov, 2021). Maps of temperature at depth and heat flow are constructed based on the 

available data. Processed data includes satellite (InSAR), geophysical (gravity, seismic), geochemical, and geothermal attributes.  

Prospectivity maps were generated, and drilling locations were proposed for future geothermal field exploration. 

8. EGS Collab: Field experiment data processed to extract dominant temporal patterns observed in 49 data streams; erroneous 

measurement attributes and periods automatically identified; interrelated data streams automatically identified. This work has not 

been published yet. 

Future Case Study: In the coming months, we will add recently released geothermal exploration data by Great Basin Center for 

Geothermal Energy (Ayling et al., 2022) to the geochemistry data set we analyzed in Ahmmed and Vesselinov (Ahmmed and Vesselinov, 

2022; Nevada Bureau of Mines and Geology, 2012).   
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https://www.zotero.org/google-docs/?Vc8syJ
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https://www.zotero.org/google-docs/?HSRdVD
https://www.zotero.org/google-docs/?1YpnHw
https://www.zotero.org/google-docs/?dKSzfO
https://www.zotero.org/google-docs/?OmTy1c
https://www.zotero.org/google-docs/?OmTy1c
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3.2 GeoThermalCloud-EGS 
Multiple datasets have been generated using GeoDT for EGS Collab and Utah FORGE site. One was used for the PIVOT 2022 Datathon 

to simulate the whole geothermal development cycle from the initial well design to the end of production. This dataset includes the Utah 

FORGE site characteristics and its measured uncertainties. The database includes 44,492 unique realizations, each with at least 30 years 

of production. Based on site characteristics, fractures are stochastically created (Figure 5). Next, simulations are performed to compute 

power outputs for each situation.    

   

Figure 5: Example stochastically generated fracture and well scenario with injection into one well across seven isolated inte rvals 

and production from two bounding wells. The parallel hydraulic fractures propagated from each injection interval are 

shown in red, the color indicating that these fractures require relatively low pressure for activation (Pc). Note that most, 

but not all, of the scattered natural fractures require significantly higher pressures to activate. 

 

Figure 6: Geothermal power production simulations based on the parameters described in Table 3.8.1 in (Vesselinov, n.d.). In the 

time series plot, a high-performing case is highlighted in red, and a poor performer is highlighted in green. There is also a 

clear link between the well spacing and power output in addition to the number of injection intervals (i.e., isolated zones) and 

power output (plots on the right). 

 

4. HOW TO USE IT? 

GeoThermalCloud can be used in three ways (i) on Julia, (ii) on Python, and (iii) on a Cloud platform (e.g. JuliaHub, Google Cloud 

Platform, Amazon Web Services, Azure Cloud Services through Docker). Julia's installation is explained at 

https://github.com/SmartTensors/GeoThermalCloud.jl and also given below. 
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import Pkg 

Pkg.add("GeoThermalCloud") 

import GeoThermalCloud 

 

GeoThermalCloud.SWNM() # performs analyses of the Sounthwest New Mexico region 

GeoThermalCloud.GreatBasin() # performs analyses of the Great Basin region 

GeoThermalCloud.Brady() # performs analyses of the Brady site, Nevada. 

 

The Python installation process is described below: 

 

$ python3 

import julia 

julia.install() 

from julia import Base 

from julia import Main 

Main.eval("import Pkg; Pkg.build(\"GeoThermalCloud\")") 

Docker container development is still in progress. We will provide an update on how to use GeoThermalCloud when it is ready for use.  

5. CONCLUSIONS  

GeoThermalCloud is an open-source cloud-based ML framework for geothermal exploration that can simultaneously handle both public 

and proprietary datasets. Also, it consists of a series of advanced pre-processing, post-processing, and visualization tools that tremendously 

simplify its application for real-world problems. These tools make the ML results understandable and visible even for non-experts; 

therefore, ML and subject-matter expertise are not critical requirements to use our ML framework. GeoThermalCloud utilizes a series 

of novel LANL-developed patented ML tools called SmartTensors (https://github.com/SmartTensors). SmartTensors has already been 

applied to solve a wide range of real-world problems, from COVID-19 to wildfires (http://tenosrs.lanl.gov), and it has won two 2021 R&D 

100 awards, including a bronze award for market disruptor tools. Now, it has two components (i) GeoThermalCloud-RE and (ii) 

GeoThermalCloud-EGS.   

GeoThermalCloud-RE is developed to process and analyze diverse small and large datasets. Also, it can handle sparse datasets with 

missing values. It analyzes and finds actionable information to enable decision-makers to make sound decisions for geothermal 

exploration, development, and production. It finds such actionable information by finding mapping functions between all input  parameters. 

We analyzed eight diverse site datasets and found critical information that would not be possible by visual inspection or any other statistical 

tools. Overall, GeoThermalCloud-RE can (1) analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), 

(3) process sparse datasets, (4) perform transfer learning (between sites with different exploratory levels), (5) extract hidden geot hermal 

signatures in the field and simulation data, (6) label geothermal resources and processes, (7) identify high-value data acquisition targets, 

and (8) guide geothermal exploration and production by selecting optimal exploration, production, and drilling strategies. 

GeoThermalCloud-EGS is an ML-based version of GeoDT, a fast, simplified multi-physics solver to evaluate EGS designs in uncertain 

geologic systems. It is numerically efficient enough to model thousands of realizations in a few hours using a desktop comput er. It is 

designed to find prospective enhanced geothermal systems in hot, dry rocks.  
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