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ABSTRACT  

Automation, control, and real-time surveillance of geothermal power plants require robust and accurate predictive models. However, 

building physics-based models is fraught with several challenges, including the complexity and uncertainty in describing the processes 

and technically involved and computationally demanding workflows for model calibration, uncertainty quantification and optimization. 

Advances in cost-effective monitoring data acquisition systems have motivated the development of data-driven predictive analytics as a 

flexible, efficient, and easy-to-deploy alternative for real-time application. We present a dynamic neural network model for performance 

prediction, control, and real-time monitoring of geothermal power plants. Measurements collected from geothermal power plants are often 

high dimensional, highly cross-correlated, and auto-correlated. In addition, the measurements are often influenced by disturbances and 

subsequent adjustments of operational settings. Therefore, we present a neural network architecture using with a low-dimensional latent 

space representation to learn the dynamical behavior of the power plant system under variable control settings. Our developed model 

consists of three parts: (i) a sliding-window encoder for capturing data correlations to enable latent-space representation, (ii) fully 

connected neural network layers to describe the evolution of the latent states to make predictions while accounting for the effects of 

control changes, and (iii) a decoder that maps the prediction results from the low-dimensional latent space back onto the original data 

space. The resulting dynamic neural network architecture is then trained using historical monitoring and performance data from the power 

plant to extract the underlying dynamics in the data and use that to generate predictions. Once trained, the model can be used to predict 

important time-varying responses of the power plant based on observed measurements and referenced control settings. The prediction 

results can be used for applications such as model predictive control and fault detection. We apply our proposed neural network model to 

field data from a binary cycle geothermal power plant to demonstrate its prediction and fault (abnormal event) detection performance. 

1. INTRODUCTION  

Accurate predictions of geothermal power plants' dynamics play an important role in the control, optimization, and real-time surveillance 

of the power plant. Physics-based simulation models have traditionally been applied to predict the behavior of geothermal power plants. 

However, they are typically too complex to construct and involve many uncertain parameters since the surface power plants are built 

based on a precise off-design model specific to the characteristic of the field and ambient conditions (Manente et al., 2013; Wang et al., 

2014). Traditional regression approaches such as autoregressive moving average (ARMA) and autoregressive integrated moving average 

(ARIMA) show disadvantages when solving complex nonlinear problems (Du et al. 2018). With recent advances in machine learning, 

deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN) have been used, with help from 

domain knowledge, to represent the nonlinearity in system dynamics. Arslan et al. (2011) and Tugcu et al. (2017) utilized the artificial 

neural network (ANN) to optimize the surface process by involving the economic parameter. Haklidir et al. (2020) suggested the DNN 

provides better performance over the traditional machine learning models in predicting the geothermal reservoir temperature. Shi et al. 

(2021) proposed a Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) combinational neural network to forecast the 

geothermal productivity with constraint conditions. Currently, most applications of deep learning methods in geothermal power systems 

focus on subsurface and steady-state surface processes. This study presents a dynamic neural network architecture that can learn the 

dynamics of geothermal power plants from multivariate time series data. By learning the dynamics influenced by the operation adjustments 

and environmental changes, the model is capable of making multi-step ahead predictions for a given set of control trajectories.  

2. METHODOLOGY  

We present a neural network architecture suitable to the characteristics of data collected from geothermal power plants and applications 

related to power plant operations. Due to the nature of physics involved in the power generation process, time-series data collected from 

geothermal power plants are cross-correlated and auto-correlated. Therefore, a desired property of the dynamic neural network model is 

the ability to capture the dependencies among different variables and their variations in time. Other desired properties for applications 

such as model predictive control and fault detection are parsimony and interpretability. However, neural networks are often referred to as 

'black-box' models since they approximate a function without providing insights into the function's structure. Some insights about how 

the predictions are generated may be achieved through domain-specific adaptations and designs to enhance the dynamic network model's 

interpretability and simplicity. 

Figure 1 shows the schematic of the dynamic neural network architecture, which consists of three components: an encoder, a latent-space 

dynamical model, and a decoder. In this diagram, information and dynamics flow from left to right. First, the encoder brings the past k 

measurements into a reduced-dimension latent space. This step is designed to exploit the correlations among the variables to enable 
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dimensionality reduction and latent-space representation. Next, a dynamical model processes the encoded latent states and additional 

(control) input to make a 1-step ahead prediction in latent space. The dynamical model represents the latent states' evolution and the effects 

of input changes. In the end, the predictions in the latent space are mapped back to the original data space using a decoder structure. For 

further predictions in time, the same dynamical model is used to process the information stored in previous latent states and new inputs. 

In addition, the same decoder is used to take the latent state prediction back to the original space.  

 

Figure 1: Dynamic neural network model structure. 

To specify a dynamic neural network model, three parameters need to be determined: the number of past samples used, the latent space 

dimension, and the prediction horizon. The details of a dynamic neural network model are illustrated with an example in Figure 2. In this 

example, a neural network model is used to maps three past samples into a three-dimensional latent space for a 2-steps ahead prediction. 

The encoder represented by a fully connected layer is used to bring the past 3 samples into a latent space. The encoder can be treated as a 

function that maps an n-dimensional sample vector 𝒙 to a reduced dimension ℎ by linearly combining the original variables. The 3 

encoded samples are then stacked as a 3 ∗ ℎ dimensional vector, which can be presented as 

[𝒛𝑘−3, 𝒛𝑘−2, 𝒛𝑘−1] = [𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝒙𝑘−3), 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝒙𝑘−2), 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝒙𝑘−1)], 

where 𝒛𝑘−1 represents the latent state at time 𝑘 − 1. One step ahead prediction of 𝒛̂𝑘 is then performed in the latent space using the 

dynamical model by operating on the stacked vector [𝒛𝑘−3, 𝒛𝑘−2, 𝒛𝑘−1] and the input 𝒖𝑘. The dynamic model is represented using 4 fully 

connected layers along with an elementwise addition. The first 2 layers represent the evolution of the latent states, which take in the 

stacked vector [𝒛𝑘−3, 𝒛𝑘−2, 𝒛𝑘−1] and output a ℎ dimensional vector. The remaining 2 layers are used to map the input 𝒖𝑘 onto the ℎ-

dimensional latent space. The effect of inputs on the latent state is represented as an elementwise addition of the layers' outputs. As a 

result, the prediction of 𝒛̂𝑘 can be expressed as 

𝒛̂𝑘 = 𝑔([𝒛𝑘−3, 𝒛𝑘−2, 𝒛𝑘−1]) + 𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝒖𝑘). 

After 𝒛̂𝑘 is calculated from the dynamical model, a fully connected layer is used as a decoder to map the predictions in latent space back 

to the original data space. The prediction of 𝒙̂𝑘 can be written as  

𝒙̂𝑘 = 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝒛̂𝑘) 

The same dynamic model and decoder are used to evolve the latent state's dynamics and to make further predictions in time. To this end, 

in addition to the input 𝒖𝑘+1, the most recent latent states, that is, the predicted value 𝒛̂𝑘 and two previously encoded vectors 𝒛𝑘−2, 𝒛𝑘−1 

are used to make the prediction for the next time step. Hence, the prediction 𝒛̂𝑘+1 is the output of the function 𝑔([𝒛𝑘−2, 𝒛𝑘−1, 𝒛̂𝑘]) +
 𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝒖𝑘+1), and the prediction 𝒙̂𝑘+1 is the output of the decoder 𝑓𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝒛̂𝑘+1). 
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Figure 2: An example of a dynamic neural network model. 

3. RESULTS 

3.1 Training the dynamic neural network model 

Field data from a binary cycle geothermal power plant is used to evaluate the performance of the dynamic neural network model. The 

datasets used for training the neural network are from a geothermal power plant operated by Cyrq Energy Inc. After examining the datasets, 

16 variables related to the primary cycle, secondary cycle, and turbine of the power generation units are used for training. To incorporate 

the changes in operational settings, three control variables, the brine outlet flow, the IGV set point, and the R134 pump speed, are selected 

as input variables. The ambient temperature is also included as an input since it closely relates to the power plant's operation and 

performance.  

After removing samples during shutdown periods, data collected during normal operation from three power generation units are 

normalized and partitioned into a training dataset and a validation dataset. As for the dynamic neural network model, the number of past 

samples used is selected to be 11. The latent space dimension is selected to be 13, and the prediction horizon is determined to be 48. 

During training, the mean squared error of the 48-step ahead predictions is minimized by adjusting the weights through backpropagation. 

The network weights are regularized using L1-norm minimization. The validation dataset is used to select the best performing model.  

3.2 Prediction performance  

Once trained, the model is applied to two periods of data that are not in the training and validation datasets. To ensure that the trained 

model generalizes to different datasets, the two periods of data are selected from two different power generation units. Figure 3 and Figure 

4 show the 1-step ahead and 48-steps ahead prediction results of the first period of data. The top 16 subplots correspond to 16 variables, 

and the bottom 4 subplots are the inputs. When performing the 48-steps ahead predictions, the model uses 11 real measurements from the 

past and 48 future control inputs (one per each step). After 48 timesteps, the model receives the real measurements from the past and uses 

the most recent 11 samples to predict forward. As such, the model does not integrate the incoming data in a continuous fashion. Moreover, 

the model is not retained using the incoming data. The 1-step ahead prediction and 48-steps ahead prediction results of the second period 

of data are shown in Figure 5 and Figure 6. Compared to the data from the first period, this part of the data is more challenging for the 

model to perform long-term predictions since the changes in control variables are more complex. In addition, the turbo exhaust pressure 

and condenser pressure variables are truncated at certain values, which makes them difficult to predict. Overall, from these results, it can 

be observed that the outputs from the model can follow the general trend in the data closely and show consistent responses to the changes 

in operating conditions.  

To further interpret the model, Figure 7 shows the contribution of latent state dynamics and inputs to the predicted values. For each 

variable, the blue line represents the prediction contributions related to the latent space internal state dynamics using only the previous 

latent states without any input control. The red line represents the effect of new input control changes on the prediction. The final prediction 

is obtained by adding up these two values. The prediction results for the variables that are closely related to ambient temperature changes, 

such as condenser pressure and preheaters' temperatures, show that the model is able to learn the relationship between the variations in 

those variables with the changes in temperature. As a result, a large part of the predicted dynamics is represented by the input contributions. 

When the control variables undergo sudden changes, both latent state dynamics and input controls contribute to the predictions. This 

indicates that the model is able to make predictions by balancing the contributions of input changes and the latent states.  
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Figure 3: 1-step ahead prediction results of the first period of data. 

 

Figure 4: 48-steps ahead prediction results of the first period of data. 
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Figure 5: 1-step ahead prediction results of the second period of data. 

 

Figure 6: 48-steps ahead prediction results of the second period of data. 
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Figure 7: Contributions of latent dynamics and inputs changes to the prediction results. 

3.3 Abnormal event detection for power plant data 

Assuming that the trained dynamic neural network has a good predictive performance, the resulting prediction errors are expected to be 

small, and monitoring indices related to the prediction errors can be used to detect abnormal dynamics. As a result, any abnormal changes 

in new data will result in large prediction errors and can be detected using the monitoring indices. The neural network model's ability to 

capture the dynamics implies that most of the autocorrelation in the data is removed, and the prediction errors are likely to be static and 

uncorrelated. With this assumption, a widely used monitoring index based on multivariate analysis in Statistical Process Monitoring 

(SPM) can be applied. The Squared Prediction Error (SPE) Statistic is commonly used in combination with the Principal Component 

Analysis (PCA). The SPE index is defined as SPE = ‖𝐱̃‖2
 where 𝐱̃  is the prediction error of a given sample. The sample is considered 

abnormal if its SPE index exceeds a specific control limit, which is calculated from the fitting results of training and validation datasets, 

that is 

SPE ≤ 𝛿𝛼
2 

where 𝛿𝛼
2 is the upper limit of SPE index with a confidence level 𝛼  in 𝜒2 distribution, i.e.,   

𝛿𝛼
2 = 𝑔𝜒ℎ;𝛼

2    where  𝑔 =
𝜃2

𝜃1
    ,   ℎ =

𝜃1
2

𝜃2
 

The parameter 𝜃𝑖  is defined as 𝜃𝑖 = ∑ 𝜆𝑗
𝑖𝑚

𝑗=𝑙+1  in which  l  is the number of retained principal components. In our case, 𝑙 equals 0.  

The trained model is applied to selected data that is not in the training and validation datasets. The monitoring indices for the prediction 

errors and one control variable (IGV setpoint) are plotted in Figure 8. The horizontal red line in the top plot is the control limit calculated 

based on the model's prediction errors from training and validation data. The plot corresponding to the control variable IGV setpoint on 

the bottom is used to identify the period in which the power generation unit is in operation. When the setpoint is 0 the unit is shut down. 

If the unit is shut down, the corresponding monitoring indices are not valid for determining faults. Therefore, in the plot of SPE indices, 

the period in which the plant is shutdown is marked using gray color. By excluding the indices related to the shutdown period, it can be 

observed that most of the monitoring indices are below the control limit, which means the prediction results are close to the actual 

measurements, and there is no fault. However, a few samples are above the control limit and therefore indicate abnormal dynamics around 

05/09/2020. The detected abnormal dynamics could result from faults in the system or just transient behaviors due to sudden control 

changes. Further analysis and validation with field fault logs are needed to verify these results. 

Fault detection of chemical plant benchmark datasets 

We test the performance of our fault detection algorithm with the proposed neural network architecture by applying it to a widely used 

benchmark dataset for process monitoring and fault detection, known as the TEP datasets. The benchmark dataset allows us to test the 

model's ability to capture normal dynamics and detect abnormal behavior. The TEP datasets consist of one normal dataset and several 

faulty datasets containing different types of faults. In our example, four types of faults are selected due to their similarity to the types of  
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Figure 8: Monitoring indices and control changes. 

faults that could occur in geothermal power plants. These include Fault 7: a step change of header pressure loss-reduced availability, Fault 

11: random variation of reactor cooling water inlet temp, Fault 12: random variation of condenser cooling water inlet temp, and Fault 13: 

slow drift of reaction kinetics. To detect these faults, the dynamic neural network architecture is trained using the normal (fault-free) 

dataset, and a control limit is also established. The neural network model is then applied to the faulty datasets. The fault detection results 

for five realizations of each fault are plotted in Figure 9, where the vertical red line indicates when the faults occur, and the horizontal red 

line is the calculated control limit. It can be observed that for all four fault types, the SPE indices change dramatically and grow above the 

control limit after faults are introduced starting from the 480th data point. This result demonstrates the learning capability of the dynamic 

neural network model and the effectiveness of our proposed fault detection procedure.  

 

Figure 9: Fault detection results of TEP datasets. 

4. CONCLUSION 

We present a dynamic neural network architecture for performance prediction and real-time monitoring of geothermal power plants. The 

architecture is designed using an encoder-decoder model to enable dimension-reduced latent space representation in which the dynamics 

are learned. The method offers a general framework for designing and training a neural network model to predict geothermal power plants' 

dynamics and responses of variables due to change in control settings and ambient temperature. Some of the preliminary prediction results 

are demonstrated using different periods of testing data. The dynamic neural network model is applied to fault detection using a benchmark 

chemical plant dataset as well as real measurements from a geothermal power plant. In the latter case, the detection results need to be 

validated using the fault logs from the field. Additional enhancement of the model for long-term prediction and application to model 

predictive control, for optimization of power plant operations, may be possible with additional data and finetuning of important 

hyperparameters.  
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