Feasibility Study of Tannin-Lignosulfonate Drilling Fluid System for Drilling Geothermal Prospect

Nurul Aimi Ghazali¹, Shigemi Naganawa² and Yoshihiro Masuda³

¹Department of Systems Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan
²School of International Resource Sciences, Akita University, 1-1 Tegata-gakuenmachi, Akita 010-8502 Japan
³Research into Artifacts, Center for Engineering, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8568 Japan

ghazali.nurulaimi@kelley.t.u-tokyo.ac.jp, naganawa@mine.akita-u.ac.jp, masuda@race.u-tokyo.ac.jp

Keywords: drilling fluid, deflocculant, tannin-lignosulfonate, tannin, and lignosulfonate

ABSTRACT
Deflocculant is added into drilling fluid to disperse the flocculated clay that may lead to the loss of rheological properties at a higher temperature. Drilling into a well at the temperature above 150 °C, drilling fluid components or additives is susceptible to degrade, thus it affects the performance of drilling fluid. This study aims to evaluate the potential of tannin-lignosulfonate as a deflocculant in drilling fluid for drilling a geothermal well. Tannin-lignosulfonate was synthesized by a crosslinking of four different weight ratios of Acacia spp. tannin and lignosulfonate. The functional group of synthesized tannin-lignosulfonate was confirmed using Fourier transform infrared (FTIR) spectrum over a range of 4000 and 400 cm⁻¹ wave number. Subsequently, the decomposition rate assessment by thermogravimetric analysis (TGA) provided an evidence of thermal stability tannin-lignosulfonate. Gel strength of tannin-lignosulfonate drilling fluid was measured using Fann-viscometer at room temperature for 7 different drilling fluids sample. The thermal stability of tannin-lignosulfonate was identified at 294 °C and remains more than 60% of weight at that temperature. It was found that the 10 seconds and 10 minutes gel strengths were reduced with the addition of deflocculant in each sample.

1. INTRODUCTION
Drilling fluid plays important roles in the whole drilling program and serves several purposes in circulation system. Among those are (1) cooling and lubricating the drilling strings while it is circulating, (2) transporting the cuttings that created at the bottom of the hole and release them at the surface, (3) controlling the formation pressure while maintaining the wellbore stability, (4) sealing the permeable formations across the wellbore, and (5) assisting the logging operations. In drilling operations, the basic properties of drilling fluids are usually defined by the well program and monitored includes rheology, density, fluid loss, solid content, and chemical properties. To avoid any drilling problems such as a blowout, stuck pipe and few more, engineers are always searching for a good performance of drilling fluid systems that is fit for the purpose.

Dealing with standard temperature and pressure condition, the properties of drilling fluid are much easier to handle. While in a hostile drilling condition like high temperature environment, the selection of drilling fluid is more crucial alongside with the lithology that is one of the factors to be considered. As shown in Figure 1, the range of pressure and temperature for oil and gas development were clustered into 4 different groups (Naganawa, 2015). The high temperature environment often said to be at the temperature more than 150 °C. In geothermal drilling, the down hole temperature can reach up to 250 °C – 350 °C at the depth of 1000 to 2000 m. At this temperature conditions, the selection of drilling fluid becomes more stringent due thermal stability of drilling fluid system as well as materials used in the system. High temperatures can cause chemical alterations of various drilling fluid components. Thus, it is affecting the filtration and viscosity as well as increase the tendency of gelation (Fabbri and Vidali, 1970). In addition to that, clay activities are greatly affected with high tendency to flocculate and gel.

Figure 1: Static reservoir pressure and temperature classification for oil and gas development and geothermal resources development
Ghazali et al.

Water-based drilling fluid is one of the main drilling fluid types used in geothermal drilling. In water-based drilling fluid, bentonite is used to aid the transportation of cuttings by providing a good viscosity and gel strength. However, at the temperature above than 121 °C or 250 °F, flocculation of bentonite suspension started to increase, which can lead to severe problem (Caenn, Darley, & Gray, 2017). Flocculation happens when the clay particles bind together to form a flocculated clay and at the same time, it creates an open network that cause the filtration loss (Altun et al., 2015). The extreme gelation of drilling fluid is possible to cause problems in logging operation. Deflocculant or thinning agent often added into drilling fluid system to bring back the rheological properties to the normal condition (Zhang and Yin, 1999). However, the degradation of those additives limits the functionality. Even though those additives are able to defloc the flocculated bentonite, it faced a serious degradation issue at elevated temperature whereby most additives started to degrade at a temperature of more than 107 °C (225 °F).

At the initial stage of drilling, most of the solid particles in the drilling fluid come from the weighting agents that are used in formulating drilling fluid. As the drilling progress, excessive solid particles from the drilled solid produce a higher viscosity drilling fluid. When drilling hits a high temperature zone, the drilling fluid gets thicker hence solid particles are prone to sag and settle at the bottom part of the wellbore. Clay particles that initially added to the drilling fluid started to agglomerate and cause excessive of viscosity and gelation. Attraction between negative face charges and the positive edge charges will contribute to the flocculation thus the clay particles will stick together and creating a thick drilling fluid with high viscosity. When deflocculant is added into drilling fluid, the edge of clay particle as shown in Figure 2 will attracted to the different charges of the additive. Deflocculant will anchor and absorb at the surface of clay particles. The negatively charge additives will neutralize the positive charges of the edge particles thus repulsive charges will then create a distance from each other to avoid association between particles. Lignosulfonate is among the commonly used deflocculants in the industry. While chrome-lignosulfonate was invented to be used as deflocculant and work best in the high temperature conditions (Darley et al., 1988). Though it is capable to solve the problem, the existence of chromium ion in drilling fluid system raised the environmental concern.

![Figure 2: Mechanism of dispersion and deflocculation](Image)

Several findings in the past development of adhesives show that the thermal stability of lignosulfonate is improved by addition of tannin (Chupin et al., 2015) as shown in Figure 3. The crosslinking of tannin with sodium lignosulfonate shows an improvement to the thermal stability of adhesive. Thus, in this study tannin-lignosulfonate is proposed to be an environmentally friend deflocculant with a prediction to have a good thermal stability. Tannin and lignin are known as the most abundant compounds extracted from biomass. Tannin is a polyphenolic compound that is natural, non-toxic and biodegradable and can be found in various parts of vascular plants. Lignosulfonate on the other hand is a byproduct from paper pulping process. Tannin and lignosulfonate are cross-linked to obtain tannin–lignosulfonate for the use as a high-temperature drilling fluid deflocculant. Wide availability of tannin and lignosulfonate is also an advantage from a manufacturing cost viewpoint.

Many researches have been done to understand the rheology and the factor that affect the rheological properties at elevated temperature, but still there is no consensus on the mechanism of viscosity enhancement is achieved (Kelessidis, 2017). Thus, in this study an environmental friendly tannin-lignosulfonate is proposed as an additive to enhance the performance of drilling fluid in high temperature. This paper discloses the method of synthesizing the tannin-lignosulfonate. The characterization of synthesized deflocculant was carried out using FTIR to verify the chemical compound in the materials followed by analysis of thermal stability by using FTIR. The performance of tannin-lignosulfonate and industrial range deflocculant in water-based drilling fluid system were compared in the rheological analysis.
2. MATERIALS AND TANNIN-LIGNOSULFONATE PREPARATION

2.1 Materials
Tannin used in this study was extracted from Australian species of *Acacia sp.* and was purchased from Kawamura & Co. Ltd. (Japan). The commercial calcium lignosulfonate (CaLS) was purchased from Kono New Material Development Co. (Japan). The analytical grade of other chemicals, formaldehyde and sulfuric acid (H$_2$SO$_4$) including sodium hydroxide (NaOH) and ferrous sulfate heptahydrate (FeSO$_4$.7H$_2$O) were all purchased from Kanto Chemical Co. Inc. (Japan).

2.2 Synthesizing of tannin-lignosulfonate
Calcium lignosulfonate (CaLS) was dissolved in hydrochloric acid solution for decalcification process. The amount of CaLS added into the solution is depending on the weight ratio of CaLS and tannin. The mixture was frequently stirred and sodium hydroxide was added to adjust the pH of the solution between 3 to 4. Then, calcium sulfate was removed from the solution through filtration to obtain the lignosulfonic acid. On the hot plate with the temperature 105˚C, 4ml of formaldehyde was added to the solution to initiate the crosslinked process. Tannin was added according weight ratio for each sample. Then, solution was continuously stirred for 2 hours. Later, ferrous sulfate heptahydrate was chelated with the solution for 30 minutes at the same temperature. Finally, the tannin-lignosulfonate (TLS) solution was dried under vacuum oven at temperature 60 °C.

3. CHARACTERIZATION
The functional groups of each sample were characterized by using a Fourier transform-infrared (FTIR), JASCO FT/IR 6100. The spectra were obtained in a wavelength of 400 - 4,000 cm$^{-1}$. The thermogravimetric analysis (TGA) was used to measure the thermal stability and decomposition rate of the sample over wide range of heating condition from 20 – 500˚C with constant heating rate at 10 °C/min and nitrogen flow rate at 100mL/min. The TGA used to perform this experiment was Hitachi Hitech TG/DTA 7200.

4. DRILLING FLUID RHEOLOGY
In this study, tannin-lignosulfonate based drilling fluid was prepared by having water as base fluid, bentonite, barite and other additives such as sodium hydroxide (caustic soda) and sodium carbonate (soda ash). Bentonite, barite and 3 different defloculants were purchased from Telnite Co. Ltd. Caustic soda and soda ash were purchased from Wako Pure Chemical Industries Ltd. Drilling fluid systems were design to compare the performance of synthesized tannin-lignosulfonate in drilling fluid with the industrial range defloculants. All drilling fluid components were mixed by using Hamilton Beach FANN single mixer. Each drilling fluid system was designed to have 9-12 lb/gal of weight with the pH range 9.5 to 11.0. The rheological properties of drilling fluids were measured by Fann-35SA viscometer according to API RP 13-B1 Recommended Practice for Field Testing Water-based Drilling Fluid and API RP 13-I Recommended Practice for Laboratory Testing of Drilling Fluid (American Petroleum Institute, 2009a; American Petroleum Institute, 2009b).

5. RESULT AND DISCUSSION
5 samples of tannin-lignosulfonate with 4 weight ratios were prepared for the purposed of characterization. A total of 10 samples were studied their functional group using FTIR which include 5 synthesized samples, 2 pure calcium lignosulfonate and tannin and the 3 industrial grade defloculants. 1 sample of tannin-lignosulfonate was studied using TGA to analyze the thermal stability. As for rheological evaluation, all 4 synthesized tannin-lignosulfonates and 3 industrial grade defloculant samples were used in preparing the drilling fluid samples to compare the gelation effect in the presence of defloculant.
5.1 FTIR spectroscopy

The functional groups of synthesized tannin-lignosulfonate were confirmed through characterization using FTIR. Table 1 shows the summary of FTIR spectrum for all samples. A broad absorption band between 3500 and 3300 cm\(^{-1}\) was observed due to the presence of phenolic compound. Tannin shows a peak of 3308 cm\(^{-1}\) which is the normal peak of a phenolic compound in tannin (Lisperguer, Saravia, and Vergara 2016). Meanwhile, calcium lignosulfonate has a slightly higher absorption band at 3436 cm\(^{-1}\) as shown in Table 1 and Figure 5. A similar result of phenolic compound observed for calcium lignosulfonate characterized by Wang, Yang, and Zou (2015). The phenolic FTIR spectrum for all synthesized tannin-lignosulfonate was found in between the two-absorption band. The absorption around 2940 cm\(^{-1}\) reflected the stretching vibration of C-H bond. The aromatic rings were observed at the peak around 1600, 1500 and 1400 cm\(^{-1}\) for all samples. Various peaks from 1000 to 1300 cm\(^{-1}\) were identified as the stretching band of C-O. It can be confirmed that all synthesized tannin-lignosulfonate samples in Figure 4 are having a similar range of adsorption band with industrial grade deflocculant in figure 6.

Table 1 FTIR summary table

<table>
<thead>
<tr>
<th>Functional group</th>
<th>Wave number (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample A TLS</td>
<td>Sample B TLS</td>
<td>Sample C TLS</td>
<td>Sample D TLS</td>
<td>Sample E TLS</td>
<td>Sample F TLS</td>
<td>Sample G TLS</td>
<td>Sample H TLS</td>
<td>Sample I TLS</td>
</tr>
<tr>
<td>O-H (stretch)</td>
<td>3437</td>
<td>3429</td>
<td>3437</td>
<td>3430</td>
<td>3437</td>
<td>3308</td>
<td>3413</td>
<td>3412</td>
<td>3402</td>
</tr>
<tr>
<td>C-H (stretch)</td>
<td>2943</td>
<td>2932</td>
<td>2940</td>
<td>2936</td>
<td>2939</td>
<td>2936</td>
<td>2935</td>
<td>2947</td>
<td>2939</td>
</tr>
<tr>
<td>Aromatic ring</td>
<td>1634</td>
<td>1632</td>
<td>1623</td>
<td>1621</td>
<td>1604</td>
<td>1613</td>
<td>1617</td>
<td>1567</td>
<td>1613</td>
</tr>
<tr>
<td></td>
<td>1514</td>
<td>1510</td>
<td>1512</td>
<td>1508</td>
<td>1511</td>
<td>1508</td>
<td>1513</td>
<td>1455</td>
<td>1511</td>
</tr>
<tr>
<td></td>
<td>1453</td>
<td>1455</td>
<td>1455</td>
<td>1455</td>
<td>1459</td>
<td>1453</td>
<td>1454</td>
<td>1409</td>
<td>1453</td>
</tr>
<tr>
<td>C-O (C-O-C stretch)</td>
<td>1125</td>
<td>1110</td>
<td>1111</td>
<td>1126</td>
<td>1209</td>
<td>1236</td>
<td>1131</td>
<td>1170</td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td>1047</td>
<td>1044</td>
<td>1041</td>
<td>1039</td>
<td>1043</td>
<td>1070</td>
<td>1038</td>
<td>1091</td>
<td>1091</td>
</tr>
<tr>
<td>C-H (out-of-plane bend)</td>
<td>614</td>
<td>614</td>
<td>614</td>
<td>615</td>
<td>653</td>
<td>662</td>
<td>616</td>
<td>625</td>
<td>612</td>
</tr>
</tbody>
</table>

Sample A - 75% Calcium Lignosulfonate (CaLS):25% tannin
Sample B - 65% Calcium Lignosulfonate (CaLS):35% tannin
Sample C - 55% Calcium Lignosulfonate (CaLS):45% tannin
Sample D - 45% Calcium Lignosulfonate (CaLS):55% tannin
Sample E - Calcium Lignosulfonate
Sample F - Tannin
Sample G - 55% Calcium Lignosulfonate (CaLS):45% tannin without Ferrous ions
Sample H - Industrial grade deflocculant A
Sample I - Industrial grade deflocculant B
Sample J - Industrial grade deflocculant C

Figure 4: FTIR spectra of tannin-lignosulfonate
5.2 Thermal properties of tannin-lignosulfonate

The thermal stability and decomposition behaviour were evaluated through TGA analysis. Sample C was chosen for thermal stability assessment based on observation by Chupin et al. on the increasing of tannin ratio. The thermal stability reached the optimum value at the same temperature with 55% of tannin ratio (Chupin et al., 2015). Figure 7 presents the decomposition curves of tannin-lignosulfonate (TLS C). Based on this result, tannin-lignosulfonate showed a good thermal stability up to 294°C. Tannin-lignosulfonate are also able to hold more than 60% of weight after being heat up 500°C as shown this figure. This result proved that tannin-lignosulfonate is resistant at higher temperature more than 250°C, thus, made it possible being a good candidate of deflocculant in drilling fluid for drilling higher temperature conditions.
5.3 Rheological properties

In rheological properties evaluation, gel strength was assessed to observe the performance of deflocculant in reducing the gelation. 10 seconds and 10 minutes of gel strength was recorded as shown in Figure 8. A thick and viscous drilling fluid was formulated to imitate an excessive gelation condition. The physical of drilling fluid was changed drastically after adding deflocculant which is becoming less viscous. IGD A, IGD B and IGD C were representing the industrial grade of deflocculant. IGD A performed best in reducing the gel strength with low concentration of deflocculant. The performance of synthesized tannin-lignosulfonate TLS A, TLS B, TLS C and TLS D is comparable with IGD B and IGD C. The gelation was reduced with 0.5 g and 1.0 g of deflocculant.
6. CONCLUSIONS AND RECOMMENDATIONS

1. A biopolymer tannin-lignosulfonate as deflocculant was synthesized and the functional group synthesized tannin-lignosulfonate was confirmed by the FTIR spectrum.

2. Tannin-lignosulfonate has a good thermal stability as it shows high thermal resistance in TG analysis.

3. The performance of tannin-lignosulfonate performance reducing the gelation is comparable with the industrial grade deflocculant but further assessment on other rheological properties need to be carried out.

4. Drilling fluid system need to be aged to imitate the down hole condition which is high temperature.

ACKNOWLEDGMENTS
This study was supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research (C) Number 26420842.

REFERENCES

