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ABSTRACT 

Engineered geothermal reservoirs are defined as low permeability hot dry rocks that are stimulated via the injection of a high pressure 

fluid. During the stimulation process, sealed weak planes are fractured forming a cluster of connected activated fractures. A weak plane 

is assumed to activate when the fluid pressure inside it reaches a critical value. The interconnectivity of the cluster of activated fractures 

varies depending on the importance of the viscous pressure drop when compared to the variability in the fracture’s critical pressures. A 

well-connected cluster can form when the viscous pressure drop dominates while a fractal network is formed when the viscous pressure 

drop is negligible. Assuming one-dimensional heat transfer into the rock adjacent to each fracture and neglecting the interference 

between neighboring activated fractures, the circulation process within clusters of activated fractures, formed at different stimulation 

conditions, is analyzed. It is found that for the same ratio of the separation between the circulating wells to the cluster’s radius, a well-

connected cluster performs better than a fractal network. In the well-connected network, multiple flow paths connecting the two 

circulating wells are created while a fractal network provides a single flow path. For the well-connected network, the length of shortest 

path is on the order of magnitude of the Euclidean distance between the two wells providing a small surface area for thermal exchange. 

On the other hand, the shortest path of the fractal network is highly tortuous and its length is much greater than the separation distance 

between the two wells. Nevertheless, increasing the number of flow paths by a viscous-dominated fracturing process increases the 

thermal exchange between the cluster’s longer paths and the shortest one. Additionally, it decreases the flow rate within each path 

leading to a net increase in the average residence time within the shortest path and better thermal performance.  

1. INTRODUCTION 

The goal of geothermal systems is to extract the thermal energy stored within rocks. Depending on the temperature of the rock, the 

extracted energy can be either used to generate electricity or/and can be used for heating applications. Ideal geothermal sites such as the 

ones found in Iceland and Turkey are composed of a porous layer with a high permeability that is near the surface and contains water as 

steam. These sites are typically denoted as hydrothermal rocks and are typically found near volcanoes (Sener et. al., 2000, Arnorsson, 

1995). Such reservoirs are not abundant and extracting the stored thermal energy at other locations requires drilling to a deeper stratum 

where the temperature is sufficient for the desired application. If the permeability at the required depth is low, stimulation by injection 

of a high-pressure fluid is used to create a network of flow paths for the circulated fluid. Such systems are denoted as engineered 

geothermal systems (EGS) and their performance depends strongly on the connectivity of the formed network (Willis-Richards et. al., 

1996, Fairley and Hinds, 2004).  

Fluid transport during the stimulation process can lead to the creation of distinct network topologies that in turns affect the thermal 

performance of EGS. In this paper, we elucidate the effects of the network’s connectivity induced by the fracturing process on the 

thermal performance of EGS by identifying the generated flow paths and quantifying their individual contribution to the thermal 

drawdown over a typical lifetime of EGS. We use a simple model that captures the effects of the fluid transport on the connectivity of a 

cluster of activated fractures to create networks at different process conditions. Then, we analyze their thermal performance by solving 

for the production temperature after a certain period of circulation. 

The model assumes that the rock layer of interest contains many pre-existing fractures that form a network whose correlation length is 

on the order of the fractures’ average length. When a high-pressure fluid is injected, these fractures slip and thus create flow paths for 

the circulating fluid. The slippage mechanism follows Mohr’s criterion which yields a critical fluid pressure the fracturing fluid must 

reach to activate the fractures (Megel, 2007). The value of the critical pressure depends on the fracture orientation with respect to the in-

situ stress field. Stress perturbations due to slippage are ignored and slippage occurs when the fracturing fluid reaches the fracture at a 

pressure that is higher than its critical pressure. After the stimulation process, a production well is drilled to intersect the network of 

activated fractures. Using the same injection well employed for stimulation, a low viscosity fluid is injected at a lower pressure than the 

fluid pressure used in the stimulation. We will assume that no fractures are activated during the circulation process. As the circulating 

fluid flows within the network of activated fractures, heat is conducted from the rock matrix to the fluid within the activated fractures. 

Thermal interference between the fractures is ignored and heat conduction in the flow direction is ignored.  

The paper is organized as follows. In section 2, we first briefly describe the stimulation model that was used to generate networks of 

activated fractures at different process conditions. In section 3, we describe the heat transfer model that was used to calculate the 

production temperature after a certain period of circulation for the reservoirs generated using the model described in section 2. Then, we 
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analyze the thermal performance of an ensemble of reservoirs that are fractured under the same conditions in section 4. In the analysis, 

we identify the critical parameters that affect the thermal performance the most and analyze how the fracturing conditions alter such 

parameters.  

2. RERSERVOIR STIMULATION MODEL 

In this section, we describe the model used to create networks of activated fractures to analyze the thermal performance of stimulated 

rocks at different process conditions. The model captures the effects of fluid transport on the connectivity of the created cluster of 

activated fractures. Since the scope of the paper is the thermal performance of the created clusters of activated fractures and not the 

behavior of a growing cluster of activated fractures, we will briefly discuss the cluster’s topology in different growth regimes without 

presenting the full analysis of the scaling laws that govern the cluster growth in such regimes.    

Many hot dry rocks are developed via the stimulation of a nearly impermeable rock layer that contains an interconnected network of 

pre-existing sealed natural fractures. Upon fluid injection, these sealed natural fractures are hydrosheared leading to their activation. 

Once a fracture is activated, fluid filling volume is created that allows for fluid flow (Bruel, 2007; Kohl and Megel, 2007). Depending 

on the orientation of these natural fractures with respect to the in-situ stress field, they hydroshear at different fluid pressures. According 

to Mohr’s law, a natural fracture is sheared when the fluid pressure within the fracture reaches a critical value such that the effective 

frictional force becomes equal or less than the shear stress acting on the fracture’s surface. This critical value is a function of the 

fractures orientation with respect to the in-situ stress as (Wang, 1979): 

𝑃𝑐 =  𝜎𝑛 − 𝜏/𝜂            (1) 

where 𝜎𝑛  and 𝜏 are the normal and shear stresses acting on the fracture’s surfaces, respectively, and 𝜂 is the friction coefficient.  

Hence, the fracture can be activated due to different mechanisms by either perturbing the stress field around the fracture or perturbing 

the fluid pressure within the fracture. The activation of a natural fracture can lead to the creation of an excess shear stress on the 

neighboring fractures, thus lowering their critical pressure needed for slippage. This mechanism does not necessarily create a connected 

network of activated fractures. On the other hand, when the rock is saturated with a low viscosity fluid when compared to the viscosity 

of the fracturing fluid, the fluid pressure within the natural fractures is perturbed when the fracturing fluid reaches these fractures. 

Activating natural fractures via this mechanism ensures the creation of a connected network. In this paper, we neglect the effects of 

stress perturbations on the activation process and focus on the effects of fluid transport which lead to the creation of a connected 

network of activated fractures that can be used in the circulation process post stimulation.   

To capture the effects of the viscous pressure flow on the growth of an activated fracture as fluid is injected, a simple model was used to 

model the effects of pressure driven flow on fracture propagation. In this model, a fracture is activated as slippage between the 

fracture’s surfaces occurs following Mohr’s criterion given by (1). Fluid filling volume is created due to the mismatch between the 

asperities of the fracture’s surfaces upon their slippage. The fracture is initially saturated with a fluid with a viscosity that is much 

smaller than the fracturing fluid’s. Hence, the region past the fluid front within the fracture does not meet Mohr’s criterion, ignoring the 

effects of stress perturbations that result from the slippage of the fracture’s surfaces, as the pressure within this region is smaller than the 

critical pressure required for slippage. Therefore, the fracture tip is assumed to be located at the fluid front and the volume of the 

activated portion of the fracture is assumed to be equal to the volume of the fluid flowing through the fracture. The geometry of the 

fracture is assumed to be rectangular with a width that is much larger than its length and aperture.  

The fracture’s aperture is assumed not to be affected by the fluid pressure within the fracture. This assumption ignores the effects of 

shear dilation that might increase the fracture’s aperture (Rahman et. al., 2002) and it holds when the shear stiffness of the fracture is 

much larger than the characteristic pressure drop required to drive the flow of the fracturing fluid.  Furthermore, all the fractures are 

assumed to have the same aperture in order to probe the effects of the path tortuosity and its length without the need to correct for its 

hydraulic conductance. Assuming the rock is impermeable, fluid loss from the fracture to the rock matrix is ignored. This assumption is 

valid when the time it takes to completely activate a fracture is much smaller than the time it takes to grow the cluster of activated 

fractures to a characteristic size where leakage starts to play a role in slowing down the growth of the cluster of the fractures.  

In order to neglect the effects of the inherent interconnectivity of the pre-existing natural fractures, we assumed that the natural fractures 

form a well-connected network. This assumption applies when the number density of the natural fractures is large such that the network 

of pre-existing fractures looks homogenous at all length scales. Moreover, the critical pressures to activate the fractures are assumed to 

be uncorrelated with their orientation with respect to the in-situ stress field. This assumption applies when the in-situ stress is 

heterogeneous at large length scales and/or their friction coefficient are different. One can then assume that the pre-existing fractures 

form a network that we will approximate as a square lattice, where the critical pressures are statistically homogenous and are given by a 

probability density function, e.g. normal distribution.  

Based on the above assumptions, the governing equation of the fluid front propagation within an activated rectangular fracture is given 

by:  

𝑑𝜆𝑖

𝑑𝑡
=

𝑞𝑖

𝑏𝐻
,            (2) 

where 𝑏 and 𝐻 are the fracture’s aperture and width, respectively. 𝜆𝑖(𝑡) is the length of the propagating fracture and 𝑞𝑖 is the volumetric 

flux within the activated fracture. The initial condition is 𝜆𝑖(𝑡) = 0. If leakage is negligible, the local mass balance within the fracture 

for a Newtonian fluid can be given by: 
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𝜕2𝑃

𝜕𝑥2
= 0.            (3) 

(3) assumes that the fluid flow within the planer fractures follows the cubic law where 𝑞𝑖 =
𝑏3𝐻

12𝜇

𝜕𝑃

𝜕𝑥
 (Zimmerman and Bodvarsson, 1996). 

At the injection node, a constant injection rate, 𝑄 is assumed that is equal to the sum of the flux in the set of activated fractures, 𝑆𝑖𝑛𝑗, 

intersected by the injection well, i.e. ∑ 𝑞𝑖𝑖∈𝑆𝑖𝑛𝑗
= 𝑄. 

Since slippage of the fracture’s surface requires that the fluid pressure must be at least equal to the critical pressure, one can set the fluid 

pressure at the fluid front within each growing fracture to be equal to the fracture’s critical pressure, 𝑃𝑐𝑖
, i.e. 𝑃(𝜆𝑖 , 𝑡) =  𝑃𝑐𝑖

. Using Euler 

integration scheme, we solve for the time dependent length of the fracture using (2) after solving for the fluid pressure at all junctions to 

calculate 𝑞𝑖. To solve for the fluid pressure at all junctions, a linear system of equations can be used:  

𝐴𝑖𝑗𝑝𝑗 = 𝐵𝑖,                                (4) 

where 𝐴 is the coefficient matrix that contains information about the connectivity of the activated fractures and their lengths, 𝑝 is the 

fluid pressure at the junctions and 𝐵 is a vector that specifies the boundary conditions. A constant injection rate, 𝑄, was used as a 

boundary condition at the injection well. 

(4) applies a mass balance at each junction where the flux within a partially activated fracture is driven by the pressure drop 𝑝𝑗 −

𝑃𝑐𝑗𝑘where 𝑝𝑗 is the fluid pressure at the junction 𝑗 and 𝑃𝑐𝑗𝑘  is the critical pressure to activate a fracture that connects the two nodes 𝑗 and 

𝑘. For a fracture that is completely activated, i.e. its fracture tip has reached junction 𝑘, fluid flow within a fracture 𝑗𝑘 is driven by the 

pressure drop between the two nodes ( 𝑝𝑗 − 𝑝𝑘). 

By using the standard deviation of the critical pressures, 𝛿𝑝𝑐, as a characteristic fluid pressure,  the length of the pre-existing fractures, 𝑙,  

as the characteristic length scale and 
𝑏𝐻𝑙

𝑄
 as the characteristic time,  one can derive a dimensionless number, 𝐹𝑁 ≡

𝛿𝑝𝑐𝑏3𝐻

12𝜇𝑄𝑙
 where 𝜇 is the 

fracturing fluid viscosity, that captures the importance of the characteristic viscous pressure drop within a fracture when compared to the 

variability in the critical pressures. This dimensionless number is related to the characteristic correlation length, 𝜉𝑐ℎ, of the cluster of 

activated fractures through, 𝜉𝑐ℎ =  𝑘𝜉𝜉0𝐹𝑁

𝜈

𝜖+1. 𝜉0 is the correlation length of the network of pre-existing fractures. In the case of a perfect 

square lattice of bonds, 𝜉0 is equal to the lattice spacing 𝑙. 𝜈 is a universal exponent that captures the scaling of the correlation length 

with the distance of a percolating parameter, such as the fluid pressure for instance, from a threshold value. It depends on the dimension 

of the network and for a two-dimensional network, it is equal to 4/3. 𝜖 is the scaling exponent for the effective permeability of the 

cluster of activated fractures and is approximately equal to 1.3 for a two-dimensional network. Finally, 𝑘𝜉  is a proportionality constant 

that is of order one and depends on the geometry of the network of pre-existing fractures. Derivation of the relationship between the 

cluster’s correlation length and the dimensionless number 𝐹𝑁 comes from applying percolation theory to analyze the growth of a cluster 

of activated fractures when pressure-driven flow drives the growth dynamics. Details of the theory will be published elsewhere. 

The connectivity of the network of activated fractures depends on the relative value of 𝜉𝑐ℎ when compared to the correlation length of 

the pre-existing fractures and the radius of the cluster of activated fractures, 𝑅. Depending on the value of 𝐹𝑁 and thus 𝜉𝑐ℎ, the 

fracturing process can either be controlled by the viscous dissipation of the fluid or the range of resistances the fluid has to overcome in 

order to form percolating paths within the stimulated rock. If 𝜉0 ≪ 𝑅 ≪  𝜉𝑐ℎ, the viscous pressure drop is negligible over the length 

scale of the cluster’s radius and the fluid activates the smallest resistance available. In this regime, a fractal network is formed where the 

structure of the cluster is equivalent to a percolating network formed at the threshold value. The fractal dimension of the network is 

equal to 1.9 in two dimensions and the network’s properties scale with the length scale used to analyze the network. For example, the 

permeability, 𝐾, of the fractal network depends on the length scale at which a pressure drop is applied, i.e. 𝐾 ∼ 𝑑𝜖  where 𝑑 is the length 

scale of interest. Another property that is relevant to the analysis of the thermal performance of a cluster of activated fractures is the 

length of the shortest path between two points within the network. The length of the shortest path, 𝐿𝑠, between two points within the 

fractal network scales with the Euclidean distance, 𝑑, between the two points as 
𝐿𝑠

𝑙
∼ (

𝑑

𝑙
)

𝑑𝑚𝑖𝑛

 where 𝑑𝑚𝑖𝑛 ≈ 1.13 for a two dimensional 

network (Zhou et. al. 2012). In fact, for an infinite fractal network, there is only one path connecting two points within the network 

whose length is given by the scaling of 𝐿𝑠. Throughout this paper, we will refer to the fractal regime when we analyzed the thermal 

performance of reservoirs that are stimulated under conditions where the viscous pressure drop is negligible over the length scale of the 

cluster’s radius. 

Moreover, in the regime where the viscous pressure drop is important over the length of the pre-existing fractures, 𝑙, the fracturing fluid 

easily overcomes the critical pressures of the natural fractures. This regime, denoted as the homogenous regime, applies when 𝜉0 ∼
𝜉𝑐ℎ ≪ 𝑅. The formed network is well-connected and it looks homogenous at all length scales, i.e. its fractal dimension is equal to the 

dimension of the network. In this regime, the average separation of between the activated fractures is of the same order of magnitude as 

the average separation of the pre-existing natural fractures. The cluster of activated fractures can be described as an effective continuum 

medium where its properties are homogenous everywhere and do not change with the length scale of interest. For example, the 

permeability of the network is given by 𝐾 ∼
𝑏3

𝑙
. The shortest path between two points within the network in this regime is of the same 

order of magnitude as the Euclidean distance such that 𝐿𝑠 ∼ 𝑑 and there exists an infinite number of paths connecting the two points 

when the size of the network is infinity.  
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Figure 1: Example of networks stimulated in the three different regimes. Figure 1a shows a network that is activated for 𝑭𝑵 =
𝟎. 𝟎𝟎𝟓 representing the homogenous regime. Figure 1b shows a network that is activated at 𝑭𝑵 = 𝟏𝟓 and figure 1c shows 

a network that is formed when 𝑭𝑵 = 𝟐𝟎𝟎𝟎 where the fractal regime is reached.  

Between the fractal and homogenous regimes, there is an intermediate regime where the network’s properties depend on the length scale 

of interest and the characteristic correlation length, 𝜉𝑐ℎ, of the cluster of activated fractures. In this regime, the viscous pressure drop is 

negligible over 𝜉𝑐ℎbut is important on the scale of the cluster radius, 𝑅.  The cluster of activated fractures looks fractal at length scales 

that are smaller than 𝜉𝑐ℎ but is heterogeneous, due to the viscous pressure drop, on the scale of the cluster radius. The activation process 

over a length scale that is much smaller than 𝜉𝑐ℎ but much larger than 𝜉0 is governed by the same rules used to generate a percolating 

network near the percolation threshold. Over a length scale that is much larger than 𝜉𝑐ℎ, the network can be approximated as an 

effective continuum medium where its local properties scale with the local correlation length, 𝜉𝑙, of the cluster of activated fractures. 𝜉𝑙 

varies spatially with the network and it is a function of the local fluid pressure during the stimulation process. For this regime to fully 

develop, 𝜉0 ≪ 𝜉𝑐ℎ ≪ 𝑅 and the length of the shortest path between two points that are separated by a distance 𝑑 that is much smaller 

than 𝜉𝑙 will scale as 𝑙 (
𝑑

𝑙
)

𝑑𝑚𝑖𝑛

 (Dokholyan et. al., 1999). However, the scaling of 𝐿𝑠 when 𝑑 is much larger than 𝜉𝑐ℎ is a function of 𝑑, 𝑅 

and the local correlation length; i.e. 𝐿𝑠 ∼ 𝑐𝑑 (
𝜉𝑐ℎ

𝑙
)

𝑑𝑚𝑖𝑛−1
 where 𝑐 is a pre-factor that is a function of 

𝑑

𝑅
. Derivation of this scaling comes 

from analyzing the growth of the cluster of activated fractures in this regime using percolation theory. It is worth mentioning that in 

each of these three regimes, the structure of the network is self-similar. The size dependence of the network structure only arises during 

the transitions between the regimes.    

To illustrate the network structure in the three regimes, we simulated the fracturing process at different values of 𝐹𝑁 and plotted the 

structure of the network in figure 1. As can be seen in the figure, there are no fractures in the interior of the cluster that are not activated 

when the network is stimulated in the homogenous regime. As mentioned before, as the viscous pressure drop becomes dominant over 

the variability in the critical pressures, the fluid easily overcomes the resistance to activate the fractures that are connected with the 

percolating network through which the fracturing fluid flows. Once the fluid front reaches a natural fracture, it is activated forming a 

network with homogenous properties, as shown in figure 1a, that are equal everywhere within the network. As the viscous pressure drop 

decreases and becomes negligible over the length scale of 𝜉𝑐ℎ, the network is nearly fractal at small length scales but is heterogeneous 

over the length scale of the cluster radius as shown in figure 1b.  Finally, when 𝐹𝑁 is too large such that 𝜉𝑐ℎ ≫ 𝑅, the network looks 

fractal at all length scales as shown in figure 1c.  

The thermal performance of an engineered geothermal system depends on the connectivity of the network and the positioning of the 

production well. As shown in figure 1, the relative magnitude of the viscous pressure drop and the variability in the critical pressures 

during the stimulation process can lead to a wide range of network connectivities ranging from a well-connected network to a fractal 

one. If the interference between the activated fractures is neglected, it can be easily seen that one needs to activate all available pre-

exsiting fractures to create a high surface area for heat exchange and reduce the impedance of the network due to the creation of many 

paths connecting the two wells. To increase the residence time within the network, one can position the production well at the edge of 

the cluster of activated fractures. Based on this model, one can set the stimulation process conditions such that 𝐹𝑁 approaches zero, in 

order create a well-connected network of activated fractures. Due to the uncertainty in the statistical information of the rocks such as the 

aperture of the fractures, their orientation distribution and the value of the principal stress field using current tools, it is still a difficult 

task to accurately tune the value of 𝐹𝑁. Hence, geothermal reservoirs are most likely stimulated at a wide range of values of 𝐹𝑁. In fact, 

Sahimi (2011) has argued that all networks of activated fractures are either fractal or are fractal at small length scales but homogenous at 

large length scales. For example, the Gyesters geothermal reservoir in California has been found to form a fractal network of activated 

fractures (Tayeb et al. 2011). This corresponds to the range of values for 𝐹𝑁 that is much larger than the fracture spacing between the 

pre-existing fractures, i.e. 𝜉𝑐ℎ ≫ 𝑅. Using the present model, the critical structural features of the network of activated fractures that 

affect the thermal performance the most will be identified and the manner in which such features are affected by the viscous pressure 

drop during the stimulation process will be discussed.  

3. HYDROTHERMAL MODEL 

To model the circulation process, we have adopted the exact solution for the production temperature derived by Fox et al.(2016). In this 

section, we first summarize the major assumptions of the model. We then discuss simple cases that illustrate the physical features of the 
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model.  Finally, we give the procedure for applying the model to simulate the circulation process for the clusters of activated fractures 

created using the stimulation model discussed in the previous section.  

The major assumptions of the model are as follows: the heat transfer between the circulating fluid and the rock matrix is assumed to be 

dominated by one-dimensional heat conduction and is coupled with heat convection within the circulating fluid. Heat transfer due the 

temperature gradient along the direction of the flow is neglected. Moreover, the interaction between the neighboring fractures are 

assumed to be negligible because the penetration length of the conducted heat within the rock matrix is much smaller than the fracture 

separation. Finally, the activation of sealed fractures during the circulation process is ignored. Based on these assumption, Fox et 

al.(2016) derived an exact expression for the production temperature, 𝜃𝑝, of a discrete network of active fractures given information 

about the flow paths between the injection and production wells. 𝜃𝑝 is given by: 

𝜃𝑝 = 1 − ∑ 𝐶𝑘
𝑛𝑝

𝑘 .           (5) 

𝜃𝑝 ≡
𝑇𝑝−𝑇𝑖𝑛𝑗

𝑇𝑟−𝑇𝑖𝑛𝑗
 where 𝑇𝑝 is the production temperature, 𝑇𝑖𝑛𝑗 is the temperature of the injected fluid and 𝑇𝑟 is the far-field temperature of 

the rock matrix. 𝑛𝑝 is the number of flow paths connecting the production and injection wells and 𝐶𝑘 is the contribution of a flow path 𝑘 

to the thermal drawdown after a certain period of circulation which is given by: 

𝐶𝑘 =   𝑀𝑘 erfc [
𝛽𝑙

√𝛼𝑡
∑

1

𝑓𝑗
𝑗∈𝑆𝑘

],           (6) 

where 𝑓𝑗  is the fraction of the injected fluid flowing within segment 𝑗 that belongs to the path set 𝑆𝑘. 𝑀𝑘 =  ∏ 𝜒𝑗𝑗∈𝑆𝑘
 where 𝜒𝑗 is a 

function of the connectivity of the path segments with other paths. The value of 𝜒𝑗 for segment 𝑗 is equal to the ratio of the fluid flow 

within segment 𝑗 to the sum of the fluid flow of the other segments connected at the downstream junction of these segments. 𝛽 is a 

dimensionless parameter and is defined as 𝛽 ≡
2𝐻𝑘𝑟

𝑄𝜌𝑓𝑐𝑝𝑓
 
 while 𝛼 ≡

𝑘𝑟

𝜌𝑟𝑐𝑝𝑟

 is the thermal diffusivity of the rock. 𝑘𝑟 is the rock’s 

conductivity. 𝜌𝑓 and 𝑐𝑝𝑓
 are the circulating fluid’s density and specific heat capacity, respectively. 𝜌𝑟 and 𝑐𝑝𝑟

 are the density and heat 

capacity of the rock matrix, respectively. 𝑄 is the injection rate of the circulated fluid.  

A major advantage of the model is that one can explicitly quantify the contribution of participating flow paths, 𝐶𝑘, on the thermal 

drawdown. Hence, one can compare the effects of paths with distinct properties such as their length and average flow within each path 

on the thermal performance. As can be seen from (6), the contribution of the individual path to decreasing the production temperature, 

𝑇𝑝, depends on the residence time of the circulating fluid within the segments constituting the path, and the degree of thermal exchange 

between the fluid flowing within a path with the fluid coming from other paths. The degree of thermal exchange is depicted by the 

multiplicative term 𝑀𝑘 which can be defined as the ratio of the path’s contribution to the contribution it would have if there was no 

mixing between the paths. Increasing the degree of interaction decreases the value of 𝑀𝑘 and if there is no mixing, 𝑀𝑘 = 1.  To 

elucidate the physical mechanisms by which these parameters affect the thermal drawdown of an arbitrary path 𝑘, we will explore 

extreme cases where (6) can be simplified.  

Consider the simplest case where there exists only one path connecting the two wells. This case applies when an infinite cluster of 

activated fractures is fractal. In this case, the contribution of the path to the thermal drawdown is simply given by 𝐶𝑘 = erfc [
𝛽𝐿1

√𝛼𝑡
 ] where 

𝐿1 is the total length of the only path connecting the two wells. In this case, 𝑓𝑗 = 1 and 𝑀𝑘 = 1 since all the circulating fluid flows 

through this path. As can be seen, the thermal drawdown of the path depends on its length and the injection rate of the circulating fluid. 

Decreasing the residence time by increasing the injection rate for example shortens the lifetime of the reservoir. 

Now, consider a more complex but tractable case. When the two wells are connected via multiple paths that are parallel to each other, 

(6) reduces to: 

 𝐶𝑘 =  〈𝑓𝑗〉𝑘erfc [
𝛽

√𝛼𝑡

𝐿𝑘

〈𝑓𝑗〉𝑘
],         (7) 

where 〈𝑓𝑗〉𝑘 is the average fraction of the injected fluid flowing within the path and in this case, the flow within each segment 

constituting the path is equal to the average value. Similar to the single path case, the contribution to the thermal drawdown depends on 

the average residence time within the path. Moreover, the degree of interaction in this case is inversely proportional to the average flow 

rate within the path. As the fluids coming from different paths add up at the production well, the effects of the paths with the lowest 

flow rate on the production temperature will be small compared to other paths. 

By applying a mass balance at the production well for the parallel path model, 𝑄 = ∑ 𝑞𝑘
𝑛𝑝
𝑘 where 𝑞𝑘 is the flow rate within path 𝑘. From 

the definition of 𝜒𝑗, its value for all the fractures within the path is equal to 1 except for the fracture that is intersected by the production 

well. The value of  𝜒𝑗 for this fracture is given by 
𝑞𝑘

𝑄
 and thus 𝑀𝑘 = 1 ⋅ 1 ⋅ 1 ⋯

𝑞𝑘

𝑄
=  〈𝑓𝑗〉𝑘.  In contrast to the single path case where 

〈𝑓𝑗〉𝑘 is independent of the length of the path when the injection rate is fixed, the average flow within a path for the parallel paths’ case 

decreases when the length of the path and the network’s connectivity increases. In fact, 〈𝑓𝑗〉𝑘 =
𝑏3𝐻

12𝜇

𝑍

𝐿𝑘
 where 𝑍 is the impedance of the 

network. The impedance of the network is a measure of the required pressure drop across the network, Δ𝑃, to drive the flow of the 
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circulating fluid and is defined as 𝑍 ≡
Δ𝑃

𝑄
. Since the average viscous flow within path 𝑘 is given by 𝑞𝑘 =

𝑏3𝐻

12𝜇

Δ𝑃

𝐿𝑘
 when the aperture and 

width of the fractures are the same, one can show that 〈𝑓𝑗〉𝑘 =
𝑏3𝐻

12𝜇

𝑍

𝐿𝑘
.  

To see how the connectivity of the network affects the average flow within the path, consider how 𝑍 changes with the number of paths. 

By substituting the average viscous flow relation, 𝑞𝑘, and the definition of 𝑍 in the mass balance over the production well, one can find 

that 𝑍 ∼
1

∑
1

𝐿𝑘

𝑛𝑝
𝑘

. As the number of paths available for the fluid to flow through increases, the resistance within the network decreases due 

to the increase in the options for the fluid to flow through. Hence, the average flow within each path decreases. Moreover, 〈𝑓𝑗〉𝑘 

increases as the length of the other paths connecting the two wells increases.  

Although the dependence of 〈𝑓𝑗〉𝑘 on the number of flow paths and the path’s length is derived for the case of parallel paths, it applies 

for a network where the paths are interconnected, i.e. 〈𝑓𝑗〉𝑘 ∼
𝑍

𝐿𝑘
. As the network becomes well-connected, the number of paths 

connecting the two wells increases which in turn reduces the impedance of the network. In the case of interconnected networks, the 

contribution of an arbitrary path to the thermal drawdown can be approximated as 𝐶𝑘 ≈ 𝑀𝑘erfc [
𝛽

√𝛼𝑡

𝐿𝑘

〈𝑓𝑗〉𝑘
]. The value of 𝑀𝑘 is difficult 

to approximate for interconnected networks as it depends on how the path of interest is intersected by another path. Figure 1A in the 

appendix shows a simple example of two intersecting paths and how 𝑀𝑘 depends on the nature of intersection.  

Based on the above analysis, one can see that the dependence of the thermal performance on the stimulation conditions will depend on 

the way the value of 𝐹𝑁 affects the length of the paths and their interconnectivity measured by the impedance of the formed network. 

Now, let us briefly describe the method used to simulate the circulation process after forming a cluster of activated fractures using the 

model described in section 2. The hydrothermal simulation of the circulation process consists of four main steps: 1) placement of the 

production well; 2) solving for the fluid flow within the network; 3) determining the flow paths connecting the injection and production 

wells; and 4) calculating the production temperature after a certain period of circulation by numerically solving (6).  

 

Figure 2: Example of clusters stimulated at different values of 𝑭𝑵. The production well is placed at a distance 𝒅 = 𝟎. 𝟖𝑹. Figure 

2a shows a network stimulated at 𝑭𝑵 = 𝟐𝟎 while figure 2b shows a network stimulated at 𝑭𝑵 = 𝟐𝟎𝟎𝟎. Red fractures are 

dead-ends while the blue ones carry the fluid. As can be seen, as the network becomes sparser, the fraction of the dead 

end fractures increases.  

In the first step, the injection node used in the stimulation process is also used as an injection well for the circulation process. For a 

specific well separation, 𝑑, a random node within the cluster, located at a distance 𝑑 from the injection node, is chosen as the production 

well. The choice of the production well’s position determines the flow paths between the two wells since not all the fractures, for a 

sparse network, will carry the fluid during the circulation process. Figure 2 shows examples of clusters of activated fractures formed at 

different values of 𝐹𝑁 where the production well is placed at a distance 𝑑 such that 𝑑/𝑅 is equal to 0.8 where 𝑅 is the extent of the 

cluster from the injection well. The red segments represent the dead end fractures that will not participate in the heat transfer during the 

stimulation process since fluid flow within them is zero while the blue bonds represent the activated fractures that will carry out fluid 

during the circulation process. The asterisk symbol represents the position of the injection well and the square symbol represents the 

position of the production well. As the network becomes sparser, the flow structure becomes more sensitive to the placement of the 

production well since there are many fractures that are not well connected with other activated fractures. For a well-connected network, 

stimulated at small 𝐹𝑁, the sensitivity of the flow structure to the position of the production well is weak and the number of dead-end 

fractures is small. Finally, due to the viscous pressure drop, the connectivity of the network varies locally. Thus, the further away the 

production well is placed, the more likely it will fail to intersect the network of activated fractures. 

Since the heat conduction within the circulating fluid is neglected, fluid flow can be solved as a separate problem from the heat transfer 

one where the flux within the fractures become an input to solve (6). To determine 𝑞𝑗 for all fractures within the network, a linear 

system of equations, for the pressure at the junctions, similar to that used to solve for the fluid flow during the stimulation process is 

used but with different boundary conditions. The boundary conditions in this case are the pressure, 𝑃𝑖𝑛𝑗, at the injection well and the 
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production flow rate at the production well. For more details on the algorithm used to solve for the system of equations, the reader is 

referred to Fox et al.(2016).  

In the third step, we used a recursive depth-first method to identify the flow paths between the two wells. This method requires a large 

memory because the matrix used to identify the paths grows as one traverses through the network using a recursive function, so we 

limited the path search to the ones that significantly contribute to the thermal drawdown after the specified period of circulation and 

omit the ones that have a negligible contribution. A criterion based on (6) was used to stop the search for a particular path when the term 

within the complementary error function, 
𝛽𝑙

√𝛼𝑡
∑

1

𝑓𝑗
𝑗∈𝑆𝑘

 ,  becomes larger than 2.5; an arbitrary value that was chosen such that the error 

introduced by this approximation is less than 0.1%. Not only did this method reduce the memory requirement to find the paths to be 

used in solving for the production temperature, but it also sped up the simulation since most lengthy paths will not be searched as 
𝛽𝑙

√𝛼𝑡
∑

1

𝑓𝑗
𝑗∈𝑆𝑘

 becomes larger as the length of the path increases. Nevertheless, the search algorithm is slow for simulating the large 

clusters of activated fractures needed to avoid finite size effects.  

Finally, after identifying the paths that contribute to the thermal drawdown, the production temperature of the circulated fluid is 

calculated at different times and compared for different network topologies produced via the stimulation model. In the next section, we 

show that the length of the shortest path and the average flow within it are the most important parameters to determine the thermal 

performance of a network. By identifying their dependence on the process conditions at which the network is stimulated, one can 

correlate the thermal performance of a network with the value of 𝐹𝑁.  

4. RESULTS AND DISCUSSION  

In section 2, it was shown that the importance of the viscous pressure drop when compared to the variability in the critical pressures lead 

to distinct network topologies. The cluster’s correlation length, 𝜉𝑐ℎ, over which the viscous pressure drop is important depends on the 

properties of the fracturing fluid, the injection rate, and some physical properties of the rock such as the variability in the critical 

pressures of the natural fractures, their length and aperture. Depending on the value of 𝜉𝑐ℎ compared to the cluster’s radius, 𝑅, three 

growth regimes where the network’s properties scale differently are identified. In the homogenous regime where 𝜉0 ∼ 𝜉𝑐ℎ ≪ 𝑅, a well-

connected network is formed where all the natural fractures are activated when the fluid front reaches them. Moreover, a fractal cluster 

of activated fractures was shown to form in the fractal regime when 𝜉0 ≪ 𝑅 ≪ 𝜉𝑐ℎ where the fractal dimension of the network is the 

same as the fractal dimension of a percolating network formed at the threshold value. Finally, a nearly fractal network is formed in the 

intermediate regime when 𝜉0 ≪ 𝜉𝑐ℎ ≪ 𝑅 where the connectivity of the network mainly depends on the value of 𝜉𝑐ℎ. In this section, we 

show how the thermal performance varies with 𝜉𝑐ℎ in the three regimes. In particular, we identify the important parameters that affect 

the thermal performance and are functions of the fracturing process protocol.  

To assess how the thermal performance varies with 𝜉𝑐ℎ, we stimulated the rock at different values of 𝐹𝑁 for a specific amount of fluid 

injected at a constant rate for a certain period of time; a typical strategy used in the stimulation process. We have considered two cases 

where the injected amount is different. In case I, 900 m3 of the fracturing fluid is injected while 600 m3 is used to stimulate the rock in 

case II. In both cases, the dimensions of the activated fractures are those listed in table 1A in the appendix. Such values were chosen to 

keep the calculations fast enough while producing large enough clusters to probe the three growth regimes. Varying the value of 𝐹𝑁 can 

represent either using different viscosities for the fracturing fluid, injecting the fluid at different rates, or using the same fracturing fluid 

injected at the same rate for different rocks with various statistical properties of the natural fractures. A large square grid representing 

the network of natural fractures was used where the critical pressures for the natural fractures are randomly drawn from a normal 

distribution. The size of the square grid is arbitrary and is chosen such that the fracturing fluid does not reach the grid’s boundaries 

during the stimulation process. The stimulation process is stopped when a certain number of activated fractures are formed to keep the 

total volume of the injected fluid the same for all cases. Then, a production well is placed at a distance 𝑑 from the injection well such 

that 
𝑑

𝑅
= 0.8 where 𝑅 is the furthest extent of the front of the fracturing fluid. The value of 𝑅 represents the position of the front of the 

resulting micro seismic cloud formed during the fracturing process. For each value of 𝐹𝑁, all the properties of the network and the 

corresponding thermal performance parameters were averaged over 2000 realizations.  

Before introducing the trend of the production temperature after ten years of circulation for both cases, let us see how the size and 

connectivity of the cluster of activated fractures change with the stimulation conditions. Figure 3a shows the average radius of the 

cluster of activated fractures, 𝑅, for different values of 𝐹𝑁, represented by the ratio of the correlation length of the cluster of activated 

fractures, 𝜉𝑐ℎ, to 𝑅. The blue curve represents case I where 900 m3 of the fracturing fluid is injected to stimulate the rock while the red 

curve represents case II where 600 m3 is injected. In general, as the viscous pressure drop becomes important when compared to the 

variability in the critical pressures, the size of the cluster of activated fractures decreases. When the fluid’s pressure increases to drive 

the flow, it activates more fractures near the injection well. Hence, the amount of fluid available to extend the radial extent of the cluster 

decreases. Intuitively, the more fluid is injected underground, the larger the cluster is by comparing 𝑅 for cases I and II for the same 

value of 𝐹𝑁.  Furthermore, the radius of the cluster is independent of the value of 𝐹𝑁 in the homogenous and fractal regimes while it 

increases with 𝐹𝑁 in the intermediate regime. In the homogenous regime, i.e. 𝜉0 ∼ 𝜉𝑐ℎ, the viscous pressure drop is dominant over the 

length scale of the fractures’ length, 𝑙, and therefore the fracturing fluid activates all fractures it encounters regardless of the range of 

resistances to activate the natural fractures. In contrast, the viscous pressure drop is negligible in the fractal regime, i.e. 
𝜉𝑐ℎ

𝑅
≫ 1, and the 

injected fluid is only able to activate the fractures with the lowest critical pressures that are connected to the percolating path of the 

fluid. In between such regimes, the radius of the cluster increases with decreasing the viscous pressure drop as less fluid is used to 

activate fractures near the injection well as it becomes harder to overcome their critical pressures.   
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Figure 3: The size and connectivity of the network of activated fractures as a function of 𝝃𝒄𝒉 = 𝒌𝝃𝝃𝟎𝑭𝑵

𝝂

𝝐+𝟏. Figure 3a shows the 

maximum extent of the cluster of activated fractures from the injection well, 𝑹 as a function of 𝝃𝒄𝒉. Figure 3b shows the 

ratio of the surface area of the backbone fractures, which carries the circulated fluid, to the total surface area of the 

activated fractures.  The blue curves correspond to the case of injecting 900 m3 of water while the red curves correspond 

to the case of injecting a total amount of fluid of 600 m3. As can be seen in the figures, increasing 𝑭𝑵 and hence 𝝃𝒄𝒉 

produces a larger but sparser network of activated fractures. Due to finite size effects, the two curves do not collapse 

completely.   

The connectivity of the cluster of activated fractures can be depicted by the ratio of the surface area of the backbone fractures, 𝐴𝑏𝑏 to 

the total surface area of the activated fractures, 𝐴𝑠. The backbone fractures are the ones that carry the circulating fluid between the two 

wells and are represented by the blue links in figure 2. In the homogenous regime, all the activated fractures form paths between the two 

wells, i.e. 
𝐴𝑏𝑏

𝐴𝑠
→ 1 for infinite networks regardless of the position of the production well as shown in figure 3b. 

In the intermediate regime where 𝜉0 ≪  𝜉𝑐ℎ ≪ 𝑅, the fraction of activated fractures that belongs to the backbone of the cluster decreases 

as the cluster becomes sparser. Since the network in this regime is self-similar and we have fixed the ratio between the distance between 

the wells and the radius of the cluster, 
𝐴𝑏𝑏

𝐴𝑠
 does not depend on the size of the cluster as shown in the figure. Nevertheless, the network’s 

connectivity depends on the location of the production well, i.e. the distance between the two wells, 𝑑. Since the connectivity of the 

network is heterogeneous as it depends on the local fluid pressure that varies spatially when the viscous pressure drop is important, the 

region far away from the injection well is sparser than the interior region of the cluster. Hence, as the distance between the two wells 

decreases, more of the fractures that are near the edge of the cluster will not participate in carrying the fluid.  

When 
𝜉𝑐ℎ

𝑅
≫ 1, the activated natural fractures form a fractal network. In this regime, 

𝐴𝑏𝑏

𝐴𝑠
 becomes independent of 𝐹𝑁 since the viscous 

pressure drop is negligible and does not control the fracturing process. Similar to the intermediate regime, the formed fractal network of 

activated fractures is self-similar at length scales smaller than the correlation length of the cluster and the connectivity depends on the 

separation distance between the two wells. In fact, 
𝐴𝑏𝑏

𝐴𝑠
→ 0 as 𝑅 → ∞ since 

𝐴𝑏𝑏

𝐴𝑠
∼ 𝑑𝐷𝑏𝑏−𝐷𝑓 ∼ 𝑑−0.26 where 𝐷𝑏𝑏 is the fractal dimension 

of the backbone and is equal to 𝐷𝑏𝑏 = 1.64 while the fractal dimension of the whole cluster, 𝐷𝑓, is equal to 1.9. 

 

Figure 4: The dimensionless temperature of the produced water after ten years of circulating the fluid as a function of 𝝃𝒄𝒉.  As 

can be seen in the figure, stimulating a rock with a high viscosity fluid for example produces a well-connected network 

with the highest thermal performance. As the connectivity of the network decreases by increasing 𝑭𝑵, the thermal 

performance decreases reaching a minimum when the intermediate regime is approached. When the network becomes 

nearly fractal the thermal performance increases as the network becomes sparser. For fractal networks, the thermal 

performance becomes independent of 𝑭𝑵. 
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To probe the effects of the stimulation process on the thermal performance, we compared the dimensionless temperature, 𝜃𝑝, of the 

produced fluid after ten years of circulation for networks fractured at different values of 𝐹𝑁. Table 1 in the appendix lists the parameters 

used to simulate the circulation process. Figure 4 shows the value of 𝜃𝑝 for different values of 𝐹𝑁. As shown in the figure, well-

connected networks, formed in the homogenous regime, perform the best. As the intermediate regime is approached by increasing 𝐹𝑁, 

the thermal performance decreases. The intermediate regime is reached when 𝐹𝑁 ≫ 1 such that 
𝜉𝑐ℎ

𝜉0
≫ 1 be satisfied. The minimum 

production temperature in figure 4 is located at 𝐹𝑁 = 8 (
𝜉𝑐ℎ

𝑘𝜉𝑅
≈ 0.2). In the intermediate regime, 𝐹𝑁 > 8, the thermal performance 

increases with 𝐹𝑁 and it plateaus when the viscous pressure drop becomes negligible and the formed network becomes fractal. 

As mentioned in section 3, the thermal performance depends on the interconnectivity, average flow, and length, of the paths connecting 

the two wells. It was shown that the competition between the length of the path and the average flow within it affects the path’s 

contribution to the thermal drawdown. The average flow within a path was shown to depend on both the length of the path and the 

impedance of the network which decreases as the network becomes more interconnected. The length of the path depends on the distance 

between the two wells and it also increases as the network becomes sparser. One can explain the trend presented in figure 4 by 

considering the way the path properties change with 𝐹𝑁 in the three regimes.  Since the average flow and length is different for various 

paths, their contribution to the thermal drawdown will also be different. Some will contribute after 1 day of circulation for example 

while others will start to contribute after decades of circulation. In fact, each path will start to contribute when 
𝛽

√𝛼𝑡

𝐿𝑘

〈𝑓𝑗〉𝑘
∼ 𝑂(1).  Since 

〈𝑓𝑗〉𝑘 ∼
𝑍

𝐿𝑘
, the shortest path is expected to be the earliest path to drive the thermal drawdown as the fluid is circulated.  

 

  

Figure 5: This plot is to show that the shortest path is the most important path in the drawdown on of the production 

temperature. Figure 5a shows the ratio of the average length of the paths that contribute in the temperature drawdown 

when compared to the length of the shortest path. For all values of 𝑭𝑵, the average length of the paths is of the same 

order of magnitude as the shortest path. Figure 5b shows the fraction of the contribution of the shortest path in the 

drawdown of the temperature. For almost all values of 𝑭𝑵, more than 40 percent of the thermal drawdown comes from 

the shortest path only. As 𝑭𝑵 decreases and the average flow within the other paths increases, more paths start to 

contribute. 

Figure 5a shows the average length of the paths, 〈𝐿𝑘〉, that contribute to the thermal drawdown after ten years of circulation, normalized 

by the length of the shortest path, 𝐿𝑠. As can be seen in the figure, for all values of 𝐹𝑁, the average length of the contributing paths is of 

the same order of magnitude as the shortest path. One should note that as the intermediate regime is approached by increasing 𝐹𝑁, 
〈𝐿𝑘〉

𝐿𝑠
 

increases and it decreases in the intermediate regime until the fractal regime is fully developed where 
〈𝐿𝑘〉

𝐿𝑠
  plateaus. This behavior will 

be explained more clearly when we discuss the effects of 𝐹𝑁 on the properties of the shortest path later on. The general trend of 
〈𝐿𝑘〉

𝐿𝑠
 does 

not change with time but the absolute value increases with time as more paths begin to contribute during the lifetime of the reservoir. 

Furthermore, we quantified the contribution of the shortest path, 𝐶𝑠, when compared to the total contribution to the thermal drawdown 

from all other paths, i.e ∑ 𝐶𝑘
𝑛𝑝

𝑘 , as shown in figure 5b. For all values of 𝐹𝑁, more than 40 percent of the thermal drawdown comes from 

the shortest path alone. The absolute value of 𝐶𝑠/ ∑ 𝐶𝑘
𝑛𝑝

𝑘  changes with time as more paths begins to contribute over the course of the 

lifetime of the geothermal reservoir. However, the trend of 𝐶𝑠/ ∑ 𝐶𝑘
𝑛𝑝

𝑘  for different values of 𝐹𝑁 is expected to be the same since it 

depends on the structure of the network. In the homogenous regime, the number of  paths connecting the two wells is large. However, 

few of the existing paths contribute to the thermal drawdown since 
𝛽

√𝛼𝑡

𝐿𝑘

〈𝑓𝑗〉𝑘
 for most paths is much larger than one as 〈𝑓𝑗〉𝑘 is expected 

to be small for a well-connected network. As the network becomes sparse, more paths start to contribute and the average flow within the 

paths increases thereby reducing the relative contribution of the shortest path. In the fractal regime, there exists only one path 

connecting the two wells for an infinite cluster of activated fractures. Hence, 𝐶𝑠/ ∑ 𝐶𝑘
𝑛𝑝

𝑘  is expected to be equal to one. However, we are 
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simulating small clusters where finite size effects are present.  The number of paths connecting the two wells for a small cluster is finite 

and most of these paths contribute to the thermal drawdown since their length is of the same order of magnitude as the shortest path as 

shown in figure 5a.  This reduces the relative contribution of the shortest path.  

 

Figure 6: The critical properties of the shortest path that control the thermal performance as a function of the network’s 

correlation length.  Figure 6a shows the value of 𝑴𝒔 whose inverse value can be interpreted as the degree of mixing 

between the fluid of the shortest path and other paths within the network while figure 6b shows the residence time of the 

fluid within the shortest path. The behavior of both properties as a function of 𝑭𝑵 is different in the three regimes.  

As mentioned in section 3, the contribution of an arbitrary path is 𝐶𝑘 ≈ 𝑀𝑘  erfc [
𝛽

√𝛼𝑡

𝐿𝑘

〈𝑓𝑗〉𝑘
]. Since it was found that the shortest path is 

the most important path in producing the thermal drawdown of the production temperature, the trend presented in figure 4 can be 

explained by analyzing the behavior of the fluid’s residence time, 𝜏𝑠 =
𝐻𝑏𝐿𝑠

𝑄〈𝑓𝑗〉𝑠
, within the shortest path and the degree of thermal 

exchange (mixing), 𝑀𝑠
−1, between the shortest path and other paths within the network as 𝐹𝑁 and the size of the network are varied. The 

multiplicative term, 𝑀𝑠, of the shortest path is a function of both the relative average flow within the shortest path to the average flow 

within the whole network and its interconnectivity with the other paths. Figure 6a shows a plot of 𝑀𝑠 as a function of the network’s 

correlation length normalized by the radius of the cluster for both cases I and II while figure 6b shows the behavior of 𝜏𝑠 in the three 

regimes. As can be seen in figure 6a, 𝑀𝑠 increases as the intermediate regime is approached. Then, it decreases with 𝐹𝑁 in the 

intermediate regime and levels off when the fractal regime is fully developed, i.e. 𝜉𝑐ℎ ≫ 𝑅. Similarly, the ratio of the average flow 

within the shortest path to its length increases as the network becomes sparser and it decreases when 𝜉0 ≪ 𝜉𝑐ℎ ≪ 𝑅. Then, it levels off 

when the cluster of activated fractures become fractal.  

 

Figure 7: The tortuosity and average flow rate within the shortest path as a function of the characteristic correlation length.  

Figure 7a shows the tortuosity of the shortest path, 𝑳𝒔/𝒅 in the three regimes. For the case where 𝝃𝒄𝒉 ∼ 𝑶(𝝃𝟎), the length 

of the shortest path is almost equal to the distance between the two wells. As 𝑭𝑵 increases, the shortest path becomes 

more tortuous. It becomes independent of 𝑭𝑵 when 
𝝃𝒄𝒉

𝑹
≫ 𝟏 after reaching the fractal regime. Figure 7b shows the 

average fraction of the injection rate flowing through the shortest path, 〈𝒇𝒋〉𝒔 for various networks stimulated at different 

values of 𝑭𝑵. As can be seen in the figure, 〈𝒇𝒋〉𝒔 increases as the network becomes sparser when fewer tortuous paths 

connect the two wells. When the network becomes fractal and that there is almost one path between the two wells, most 

of the fluid is flowing through the shortest path.  

The combined effects of 𝑀𝑠 and 𝜏𝑠 lead to changes in the thermal performance of a geothermal reservoir when it is stimulated at 

different conditions. As seen in figure 4, the production temperature of the circulated fluid after ten years of operation decreases when 

the network becomes sparser and the intermediate regime is approached. In the intermediate regime, the values of 𝑀𝑠
−1 and 𝜏𝑠 decrease 
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leading to increased performance of the network as it becomes sparser. In the fractal regime, the contribution of the shortest path levels 

off leading to a thermal performance that is independent of the value of 𝐹𝑁. 

Now, let us elucidate the effects of network structure on the properties of the shortest path in the three regimes.  The residence time of a 

path is proportional to its length and inversely proportional to its flow rate.  In general, the length and flow rate of the shortest path 

increases as the connectivity of the network decreases as shown in figure 7. The length of the shortest path is increased due to two 

factors; the distance between the two wells and the sparsity of the network. Since the radius of the cluster increases with 𝐹𝑁 when the 

volume of the injected fluid is kept constant, 𝑑 increases with 𝐹𝑁 when 
𝑑

𝑅
 is kept fixed. As mentioned in section 2, the tortuosity of the 

shortest path increases when the cluster of activated fractures becomes sparse as shown in figure 7a. The average flow within the 

shortest path, 〈𝑓𝑗〉𝑠, is proportional to 𝑍/𝐿𝑠. When the network becomes sparser, the impedance of the network increases as the number 

of paths decreases while their tortuosity increases and thus the average flow within the shortest path increases. As seen in the figure 

both, 𝐿𝑠 and 〈𝑓𝑗〉𝑠, increase monotonically with 𝐹𝑁 but at different rates in the three regimes leading to the behavior observed in figure 

6b.  

In the homogenous regime, as 𝐹𝑁 increases, the length of the shortest path changes slowly when compared to the changes in the average 

flow within it leading to a decrease in the residence time with 𝐹𝑁. Since the viscous pressure drop is dominant over the variability in the 

critical pressures in this regime, the interior of the network is more connected than the regions near the edge of the cluster since the fluid 

pressure is lower in that region. Changes in the viscous pressure drop hardly alter the interior connectivity of the cluster where the fluid 

pressure is much larger than the fracture’s critical pressures. Even though the production well is placed near the edge of the cluster, i.e. 
𝑑

𝑅
= 0.8, the length of the shortest path slowly changes with 𝐹𝑁. The average flow within the shortest path, however, changes 

dramatically as 𝐹𝑁 increases. This is due to changes in the impedance of the network as the number of the paths connecting the two 

wells decreases as the network becomes sparser.  

When the viscous pressure drop becomes comparable with the variability in the critical pressures, as the intermediate regime is reached, 

changes in the viscous pressure drop are felt everywhere in the network. Hence, the connectivity of the interior region of the cluster 

changes with 𝐹𝑁 and the length of the shortest path increases as the viscous pressure drop during the stimulation process decreases. 

Since 〈𝑓𝑗〉𝑠 ∼ 1/𝐿𝑠, the increase in the length of the shortest path slows down the rate at which the average flow within the network 

increases with 𝐹𝑁 as shown in figure 7b. Therefore, 𝜏𝑠 increases as the network becomes sparser reducing the contribution of the 

shortest path to the thermal drawdown of the geothermal reservoir. In the fractal regime, the impedance of an infinite network becomes 

proportional  to 𝐿𝑠 and 〈𝑓𝑗〉𝑠 = 1 since there exists only one path connecting the two wells. Since the length of the shortest path does not 

change with 𝐹𝑁 in this regime, the residence time within the shortest path levels off.  

 

Figure 8: Comparison between changes in the values 𝑴𝒔 and 𝑰 ≡
〈𝒇𝒋〉𝒔

〈〈𝒇𝒋〉𝒌〉

𝟏

𝑵𝒄𝒐𝒏𝒗
 with the cluster of activated fracture’s correlation 

length in the three growth regimes for the case of injecting 900 m3 during the stimulation process. The circular symbols 

represents the values of 𝑴𝒔 while the diamond symbols represents the values of 𝑰. The figure supports the hypothesis that 

𝑴𝒔 ∝ 𝑰 since changes in 𝑴𝒔 with 𝑭𝑵 follows changes in 𝑰. 

Now, let us analyze how the multiplicative term of the shortest path, 𝑀𝑠, changes with the network’s sparsity. In section 3, it was shown 

that the value of 𝑀𝑠= 1 when the shortest path is the sole path connecting the two wells. As the path becomes interconnected with the 

network, 𝑀𝑠 is expected to decrease. The value of 𝑀𝑠 for an interconnected network, depends on both the relative average flow within 

the shortest path to the average flow of the other paths intersecting with it and the frequency of intersections. As the average flow within 

the shortest path is increased relative to the average flow within the network, 𝑀𝑠 is increased since the fraction of the flow supplying a 

junction node from the segment belonging to the shortest path is increased. The frequency of intersection can be measured by the 

number of intersection points per the length of the shortest path, 𝑛𝑐𝑜𝑛𝑣. 𝑛𝑐𝑜𝑛𝑣 ≡
𝑁𝑐𝑜𝑛𝑣

𝐿𝑠
 where 𝑁𝑐𝑜𝑛𝑣 where the number of segments that 

belong to the shortest path whose 𝜒𝑗 value is less than one, i.e. it supplies the fluid along with other segments from other paths to the 

same junction point. The frequency of intersection between the paths, 𝑛𝑐𝑜𝑛𝑣, decreases as the network becomes sparser. In fact, it 

decreases monotonically as 𝐹𝑁 increases and can be written as a function of the network’s impedance, 𝑍, figure not shown. Since 𝑀𝑠 =
∏ 𝜒𝑗𝑗∈𝑆𝑠

, it is directly proportional to 𝑁𝑐𝑜𝑛𝑣 which is a function of the intersection frequency and the length of the shortest path. Hence, 



Alhashim et al. 

 12 

the competition between the increase in the length of the shortest path and the decrease in 𝑛𝑐𝑜𝑛𝑣 as the network becomes sparser 

determines the behavior of 𝑀𝑠. By considering both effects of the relative flow within the shortest path to the flow within the network 

and the frequency of the shortest path intersecting other paths, one can deduce that 𝑀𝑠 ∝
〈𝑓𝑗〉𝑠

〈〈𝑓𝑗〉𝑘〉

1

𝑁𝑐𝑜𝑛𝑣
  where 〈〈𝑓𝑗〉𝑘〉 is the mean of the 

average flow within the contributing paths, i.e. 〈〈𝑓𝑗〉𝑘〉 =
1

𝑛𝑝

∑
𝑙

𝐿𝑘𝑄
∑ 𝑞𝑗𝑗∈𝑆𝑘

𝑛𝑝

𝑘 . Figure 8 shows how changes in 𝑀𝑠 with 𝐹𝑁 follows the 

changes in 𝐼 ≡
〈𝑓𝑗〉𝑠

〈〈𝑓𝑗〉𝑘〉

1

𝑁𝑐𝑜𝑛𝑣
 for the case where 900 m3 of the fracturing fluid is used to stimulate the rock.  

In the homogenous regime, the length of the shortest path barely changes while the number of paths decreases. Hence, 𝑁𝑐𝑜𝑛𝑣 decreases 

and the average flow within the shortest path increases leading to an increase in 𝑀𝑠. In the intermediate regime, the length of the 

shortest path increases and it was shown that the average residence time within the shortest path increases. Therefore, 𝑁𝑐𝑜𝑛𝑣 is expected 

to decrease faster than the increase in the average flow rate within the shortest path, since 𝑁𝑐𝑜𝑛𝑣 ∼ 𝐿𝑠 leading to a decrease in the 

multiplicative term.  

5. CONCLUSION 

When comparing the contribution of the flow paths to the thermal breakthrough of engineered geothermal systems that are stimulated at 

different process conditions, the shortest path between the injection and production wells was found to be the critical one in controlling 

the thermal performance of the stimulated reservoir. Specifically, the residence time within the shortest path, 𝜏𝑠, and the degree of 

mixing between the fluid flowing through the shortest path and fluid from other paths of the network, 𝑀𝑠
−1, control the thermal 

performance of the stimulated reservoir. Both parameters are functions of the connectivity of the network of activated fractures 

measured by its characteristic correlation length, 𝜉𝑐ℎ. 𝜉𝑐ℎis controlled by the ratio of the viscous pressure drop required to drive the 

injected fracturing fluid to the variability in the critical pressures required to activate the natural fractures. Three regimes were identified 

where the dependence of 𝜏𝑠 and 𝑀𝑠 on 𝜉𝑐ℎ is different: 1) a homogenous regime where the fracturing process is dominated by the 

viscous pressure drop forming a well-connected network, 2) a fractal regime where the viscous pressure drop is negligible and the range 

of the fractures’ critical pressures control the fracturing process forming a fractal network with a fractal dimension of 1.9, and 3) an 

intermediate regime where the viscous pressure drop is important over the length scale of the cluster’s radius but is negligible over 𝜉0 in 

which a nearly fractal network is formed.  

In the homogenous regime, the network connectivity and thus the thermal performance is not affected by 𝜉𝑐ℎ since the viscous pressure 

drop dominates the activation process. As one transients from the homogenous regime to the intermediate regime, the residence time 

within the shortest path decreases as 𝜉𝑐ℎincreases. In this regime, increasing 𝜉𝑐ℎdoes not affect the connectivity of the interior region 

within the network where the fluid pressure is much larger than the average critical pressure to activate the fractures. Hence, 𝜏𝑠 

decreases as the length of the shortest path does not change while the average flow within it increases as the number of the paths 

connecting the two wells decreases. Moreover, the degree of mixing in this regime also decreases as the connectivity of the network is 

decreased. This is due to both the decrease in the frequency of intersection of the shortest path with other paths within the network and 

the increase in the average flow within the shortest path relative to the flow with other paths. Both effects combined decreases the 

thermal performance of the reservoirs as 𝜉𝑐ℎ increases.  

When the intermediate regime is fully developed, small perturbations in the value of 𝜉𝑐ℎaffect the connectivity of the whole network 

including the interior region. In this regime, the length of the shortest path, 𝐿𝑠, becomes more tortuous as the network becomes sparer. 

The increase in the length of the shortest path with 𝜉𝑐ℎ due to tortuosity is augmented by the well separation, 𝑑, which increases with the 

radial extent of the cluster, 𝑅. The residence time of the circulated fluid within the shortest path, though the average flow within it 

increases, is increased. Similarly, the degree of mixing increases although the frequency of intersection between the shortest path with 

the other paths decreases. This is due to the increase in the absolute number of intersections as 𝐿𝑠 increases. As a result, the thermal 

performance of the network of activated fractures increases when the viscous pressure drop during the fracturing process is decreased. 

Similar to the homogenous regime, the thermal performance becomes independent of 𝜉𝑐ℎ when the network becomes fractal. In this 

regime, the viscous pressure drop becomes negligible over the length scale of the cluster’s radius and thus the network’s topology does 

not change with the viscosity of the fracturing fluid or the rate at which it is injected. 

Finally, more analysis is needed to provide a fuller understanding of the optimal fracturing strategies to maximize the thermal 

performance of an engineered geothermal system. The present model ignores the effects of the thermal interference between the 

activated fractures. Such effects are important when 𝜉𝑐ℎ is of the same order of magnitude as the penetration depth. Therefore, the 

current model overpredicts the thermal performance, especially when 𝜉𝑐ℎ becomes of the same order of magnitude as the average 

separation distance between the pre-existing fractures in the homogenous regime which we found to perform the best among other 

regimes. To account for the thermal interference; other numerical approaches such as continuum modeling are more suitable. Moreover, 

the variability in the hydraulic conductance of the fractures was ignored. Therefore, there might exists other flow paths that are longer 

than the shortest path which contribute more to the thermal performance. This effect can be addressed by relaxing the assumption of 

unified fracture apertures when they are activated. Lastly, the flow structure over the lifetime of the reservoir can change due to thermal 

stresses, scaling of the fracture’s surfaces, etc which were ignored. Sparse networks such as the ones formed in the fractal regime are 

expected to be very sensitive to such physiochemical processes. 
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APPENDIX A. VALUE OF THE PARAMETERS USED DURING THE CIRCULATION 

Parameter Value 

𝑘𝑟 2.9 W/m/˚C 

𝜌𝑓 1000 kg/m3 

𝜇 1 cP 

𝜌𝑟 1050 kg/m3 

𝑐𝑝𝑟
 2700 J/kg/˚C 

𝑐𝑝𝑓
 4184 J/kg/˚C 

𝑇𝑤 20 ˚C 

𝑇𝑟 200 ˚C 

𝑃𝑖𝑛𝑗 20 MPa 

𝑄 5 L/s 

𝑏 1 mm 

𝑙 20 m 

𝐻 100 m 

Table 1A: Value of the parameters used during the circulation  

 

Figure 1A: This sketch shows a simple case where two paths are intersecting and how 𝑴𝒌 depends on the interconnectivity of 

the network. In this sketch, a portion of path 𝒌, denoted as 𝑨𝒌, is intersected by another portion 𝑩 from path 𝒌 + 𝟏. In 

this case, the ratio of the flow within 𝑨𝒌 to the flow within 𝑩𝒌+𝟏 will depend on their lengths. Hence, the multiplicative 

term, 𝑴𝒌, for path 𝒌 will be proportional to the ratio of their lengths when the aperture and width of all the fractures are 

the same, i.e. 𝑴𝒌 ∝
𝑳𝑩𝒌+𝟏

𝑳𝑨𝒌

. Whenever such a situation occurs along the path of interest, 𝑴𝒌 is multiplied by the ratio of the 

lengths of the portion of the intersecting paths. Therefore, the value of 𝑴𝒌 for interconnected paths depends on the 

topology of the network and is difficult to approximate without further assumptions. The situation becomes even more 

complex when 𝑨𝒌 and 𝑩𝒌+𝟏 do not intersect in two points. That is when 𝑩𝒌+𝟏starts from another path other than path 𝒌. 
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