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ABSTRACT 

Geothermometry is an important tool for estimating 

deep reservoir temperature from the geochemical 

composition of shallower and cooler waters. The 

underlying assumption of geothermometry is that the 

waters collected from shallow wells and seeps 

maintain a chemical signature that reflects 

equilibrium in the deeper reservoir. Many of the 

geothermometers used in practice are based on 

correlation between water temperatures and 

composition or using thermodynamic calculations 

based a subset (typically silica, cations or cation 

ratios) of the dissolved constituents. An alternative 

approach is to use complete water compositions and 

equilibrium geochemical modeling to calculate the 

degree of disequilibrium (saturation index) for large 

number of potential reservoir minerals as a function 

of temperature. We have constructed several 

“forward” geochemical models using The 

Geochemist’s Workbench to simulate the change in 

chemical composition of reservoir fluids as they 

migrate toward the surface. These models explicitly 

account for the formation (mass and composition) of 

a steam phase and equilibrium partitioning of volatile 

components (e.g., CO2, H2S, and H2) into the steam 

as a result of pressure decreases associated with 

upward fluid migration from depth. We use the 

synthetic data generated from these simulations to 

determine the advantages and limitations of various 

geothermometry and optimization approaches for 

estimating the likely conditions (e.g., temperature, 

pCO2) to which the water was exposed in the deep 

subsurface. We demonstrate the magnitude of errors 

that can result from boiling, loss of volatiles, and 

analytical error from sampling and instrumental 

analysis. The estimated reservoir temperatures for 

these scenarios are also compared to conventional 

geothermometers. These results can help improve 

estimation of geothermal resource temperature during 

exploration and early development. 

INTRODUCTION 

A major barrier to the deployment of geothermal 

energy is the financial risk associated with 

geothermal prospecting (U.S. DOE, 2011).  

Geophysical surveys and test wells are expensive, 

and advances in prospecting are needed to reduce risk 

and increase the return on prospecting investments.  

One possibility is to improve the accuracy of 

geothermometry by taking advantage of advances in 

geochemical analyses and modeling. In geothermal 

systems, physical processes (e.g., mixing, boiling) 

and geochemical processes (e.g., mineral dissolution, 

precipitation) along flow paths commonly alter the 

composition of migrating waters.  If these changes 

are not accurately characterized and quantified, 

predictions of in-situ reservoir conditions (e.g., 

temperature, pCO2) based on the chemical 

composition of sampled thermal waters may be 

erroneous, or too imprecise to be useful.  However, if 

these processes can be correctly described and their 

impact on geothermometers quantified, the 

conditions in a deep reservoir temperature can be 

estimated with greater confidence.   

 

The technical literature provides many examples of 

how geochemical modeling that simultaneously 

considers multiple mineral equilibria can be used to 

estimate the temperature of reservoir fluids from their 

geochemical fingerprints (e.g., Bethke 2008; Reed 



and Spycher, 1984; Spycher et. al., 2011).  However, 

this technique has not yet been widely adopted by the 

exploration industry, and most geothermometry is 

conducted using traditional approaches such as silica, 

Na-K, Na-K-Ca, Na-K-Ca-Mg, Na-Li, and K-Mg, 

and various gases and stable isotopes (e.g., 

Armannsson and Fridriksson, 2009; Karingithi, 2010, 

Young et. al., 2012).  These approaches are useful, 

but suffer from some inherent limitations, including: 

 Each of these geothermometers has a different 

conceptual model, and reliable selection of a 

geothermometer requires a priori knowledge 

of in-situ conditions. 

 Because of this disparate set of conceptual 

models, each geothermometer will often 

predict a different temperature for the same 

solution chemistry.   

 They do not provide for a straightforward 

method to independently assess the accuracy 

and/or reliability of the temperature prediction. 

 They do not directly account for changes in 

fluid chemistry that occur as the fluid migrates 

from the reservoir to the sampling point that 

are the result of boiling and subsequent 

venting of volatile components even if no net 

heat (enthalpy) is lost. 

 They do not explicitly account for the multiple 

influences of mineral alteration reactions on 

solution chemistry in a manner that allows for 

improvements in thermodynamic datasets and 

analytical technologies to be easily adopted. 

Many of these weaknesses can be addressed if 

geochemical reaction path modeling is used as a basis 

for geothermometry.  Modern geochemical models 

couple up-to-date thermodynamic datasets with user-

provided aqueous solution and gas-phase 

composition to rapidly calculate the temperature-

dependent saturation states of a fluid with hundreds 

of different minerals.  These calculations, coupled 

with inverse parameter optimization, can be used to 

estimate reservoir temperature by determining the 

point at which multiple equilibria “converge” to a 

common temperature. 

 

In this paper, we outline some of the concepts for a 

multicomponent equilibrium approach to 

geothermometry and discuss how these concepts can 

be implemented. The potential validity of this 

approach is tested using simulated datasets of 

synthetic geothermal waters that have a known 

reservoir temperature and hydrogeochemical history.  

We use that dataset to test an inverse numerical 

optimization approach for estimating geothermal 

reservoir temperatures using multicomponent 

equilibrium geothermometry.  

MULTICOMPONENT GEOTHERMOMETRY 

A simple conceptual model of a geothermal system is 

illustrated in Figure 1. While different sites have 

unique, site-specific aspects, the base conceptual 

model captures key chemical and physical features 

common to most geothermal systems.  

 

Figure 1: Conceptual model for geothermal system.  

Water and steam rising up to a thermal 

spring or shallow aquifer, experiencing 

cooling and venting of volatile 

components. 

 

In this conceptual model, fluids in a deep reservoir 

are heated to reservoir temperature and react with the 

reservoir mineral assemblage. Equilibrium is 

assumed because the rates of reaction are expected to 

be relatively fast at these elevated temperatures. 

These geothermal waters then rise along a fracture, 

pressure drops and a portion of the water separates 

into a vapor phase (Figure 2).   

 

Figure 2: Pressure versus temperature (red line, 

bottom axis) and pressure versus mass 

fraction of vapor (green line, top axis) for 

water in constant enthalpy system. 
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This process also reduces fluid temperature, even 

though the total combined enthalpy of the fluids 

remains constant due to the latent heat of 

vaporization. The resulting two-phase system 

concentrates the non-volatile constituents in the 

liquid phase and partitions volatile components such 

as CO2, CH4, H2, and H2S to a steam phase; altering 

solution pH and redox (Eh) and shifting the 

saturation state for mineral equilibria. Near the 

surface, the geothermal system subsequently vents 

volatile components to the atmosphere (spring or 

well), or mixes with shallow groundwater (e.g., 

aquifer mixing). These cooler waters, or a steam 

condensate, are typically sampled during geothermal 

exploration and then analyzed for their mass and/or 

isotopic composition. The geochemical data collected 

from these samples are then used to estimate the 

temperature of the fluid in the deep reservoir, based 

on the assumption that the relatively slow rates of 

mineral dissolution and precipitation reactions at the 

lower temperatures along the migration path allow 

the solution to retain the geochemical fingerprint of 

the deep reservoir. 

 

Some of the basic concepts of multicomponent 

geothermometry of been described by others (e.g., 

Bethke 2008; Reed and Spycher, 1984; Spycher et. 

al., 2011). The methodology involves calculating 

saturation indices of the near-surface water sample as 

a function of temperature. The reservoir temperature 

can then be defined as the temperature at which the 

multiple mineral species deemed likely to be present 

in the system are in equilibrium with the solution 

composition, when mineral saturation states are 

plotted as a function of temperature. This definition 

is depicted in the following example (Bethke, 2008).  

 

A brine containing 3 molal Cl and 0.05 molal Ca at 

pH 5 is equilibrated with quartz, calcite, albite, K-

spar, and muscovite at 250°C. This geothermal water 

is transported to the surface where the gas phase is 

condensed and reconstituted with the liquid phase at 

25°C and the pH and dissolved constituents are 

measured. The system represents a closed 

hydrothermal system where both the liquid phase and 

the gas phase could be sampled. Speciation 

calculations are made at 25°C, at the pH measured at 

that temperature. The water is then speciated as a 

function of temperature over the range of 25°C to 

300°C, allowing the pH to be calculated using The 

Geochemist’s Workbench® (Version 9). Plotting the 

calculated mineral saturation indices as a function of 

temperature (Figure 3) shows that the indices for 

quartz, calcite, albite, K-feldspar, and muscovite 

converge common point where Q/K = 1 (log (Q/K) = 

0) at 250 °C.  This point where the saturation indices 

converge to zero is the reservoir temperature 

estimated by the multicomponent geothermometry 

approach. This estimate is identical to that used to 

generate the subsurface fluid chemistry in this simple 

example.  However, real-world systems are more 

complex than this idealized example, and additional 

processes will need to be considered.  

 

 

Figure 3: Plot of mineral saturation state versus 

temperature for a hypothetical closed 

geothermal system (Bethke, 2008). 

 

For example, consider Figure 4, which shows how 

the system depicted in Figure 3 would behave if CO2 

was lost to the atmosphere at the sampling location 

(e.g., a spring).  Here, the mineral saturation plots for 

albite, K-feldspar, and quartz appear to converge, but 

calcite and muscovite do not. Further, the 

convergence of albite, K-feldspar and quartz suggests 

a reservoir temperature of about 256°C rather than 

250°C.  Even for these three minerals, the saturation 

occurs at 257.4, 256.0, and 249.8°C, respectively. 

 

Figure 4: Plot of mineral saturation state versus 

temperature for the system depicted in 

Figure 3, but open to the atmosphere 

(Bethke, 2008). 
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This result clearly indicates that loss of volatile 

constituents from a geothermal system can have a 

significant impact on the relationship between fluid 

chemistry and estimated reservoir temperature.  

However, field sampling programs for geothermal 

exploration typically do not gather sufficient data to 

directly account for loss of volatile constituents. 

Thus, the optimization process should explicitly 

include volatile components lost (CO2 in this case) as 

an optimization parameter.   

 

In Figures 3 and 4, we have shown only the 

saturation indices of the minerals with which the 

initial reservoir fluid was equilibrated. It is important 

to note, however, that geochemical models can 

provide saturation indices for hundreds of mineral 

phases making graphical as well as numerical 

estimation of the reservoir extremely difficult, if not 

impossible. Fortunately, it is unnecessary and 

actually incorrect to include all potential solid phases 

in such calculations. For equilibrium, the Gibbs phase 

rule defines the maximum number of independent 

variables within a system (equation 1). 

 

1. F = C – P +2; where 

F = degrees of freedom (independent variables) 

C = number of components in system 

P = number of phases in system 

 

For cases where there is a fluid phase present and 

system temperature and pressure are correlated (e.g., 

steam saturated water), the phase rule can be used to 

determine the maximum number of equilibrium 

phases that are appropriate for the calculation 

(equation 2).  

 

2. M = C – F; where 

M = number of equilibrium minerals, and 

M < C 

 

Although the Gibbs phase rule limits the number of 

minerals that can be considered, it does not tell us 

which minerals need to be included. Mineral 

selection represents an area of continuing uncertainty.  

The choice of minerals is dependent upon the 

reservoir lithology. The geoscience literature contains 

numerous studies that identify alteration mineral 

assemblages that form when hot water interacts with 

reservoir minerals (e.g., Schwartz, 1959). Many 

hydrothermal systems are equilibrated with the 

alteration mineral assemblages rather than the 

primary reservoir lithology (e.g., Bethke, 2008; 

Giggenbach, 1988).  It is possible to conduct inverse 

numerical optimization calculations that test different 

feasible alteration mineral assemblages. However, 

this approach may not yield satisfactory results in 

cases where the number of minerals approaches or 

becomes equal to the number of independent 

constraints (i.e. compositional measurements). In this 

case, convergence to a common set and values for 

optimization parameter would become increasingly 

sensitive to inherent measurement errors.  An 

alternative is to develop a dataset of commonly 

observed alteration mineral assemblages for a 

specific lithology at low, medium, or high reservoir 

temperature; and then select the appropriate mineral 

set – using the Gibbs Phase Rule for guidance in the 

number of minerals to consider.  This would allow 

the analyst to conduct multiple calculations, using the 

same computational and conceptual basis, but with 

different input parameters; and then contrast results 

with available field data.  The relative merits of these 

approaches should be assessed in future work. 

 

Another challenge associated with geothermometry is 

accounting for uncertainty in geochemical analyses. 

The calculations associated with Figures 3 and 4 are 

based on idealized systems in which all the 

parameters were “measured” with perfect certainty. 

In reality, chemical analyses contain analytical errors 

that can contribute to the overall uncertainty in the 

estimation of the reservoir temperature. We need to 

better understand the magnitude of this uncertainty 

and develop methods that allow us in incorporate 

analytical uncertainty into the uncertainty in the 

estimates of reservoir temperature. 

APPROACH 

Geochemical Calculations 

As we have discussed in the previous section, several 

factors need to be considered for improved 

geothermometry:  

 Estimating the steam-water partitioning that 

occurs as geothermal fluids migrate from 

depth to the sampling location. 

 Partitioning of volatiles between the gas and 

liquid phases 

 Identifying the mineral phases that control 

water-rock equilibrium in the deep reservoir. 

 Assessing the impact of analytical error on the 

estimates of reservoir temperature 

 

With respect to steam-water partitioning, pressure 

reductions and cooling that occurs when fluids rise 

from deep geothermal systems alter the percentage of 

total water that is present as a liquid. For example, 

consider the trends in Figure 2, which depicts water 

partitioning in a closed, constant enthalpy system. At 



8 MPa pressure, the system consists of ~2% steam 

and ~98% water at 300 °C.  At constant total 

enthalpy, the same fluid at atmospheric pressure is 

~40% steam and ~60% water and 100 °C.  This 

partitioning will concentrate dissolved ions in water 

and facilitate the partitioning of volatile species in to 

the steam phase.  Liquid water loss can be treated by 

two different approaches:  

 For a general case; specifying a % mass loss of 

water due to vaporization. 

 For a closed, constant enthalpy system; 

calculating the mass of water lost to the vapor 

phase along each temperature step 

 

The mass loss of volatile species from solution (e.g., 

CO2, H2S) can be treated similarly.  For the general 

case, the mass loss can be specified directly.  For a 

closed, constant enthalpy system; mass loss of 

volatile components can be iteratively calculated.  

Both approaches use mass loss as an optimization 

parameter, but the closed system approach allows for 

calculations to be made for cases where the aqueous 

and gas phases may follow different paths.  If volatile 

loss is calculated iteratively, a mass balance is 

performed over both phases as shown in equation 3. 

3.  

 

where:   

Pk,k,g = partial pressure of the kth gas component,  

KH,k = Henry’s coefficient,  

H2O,l = density of liquid water,  

Mk,total = total mass of component k,  

Xk,g = mass fraction of water in the gas phase,  

M
0
H2O = initial mass of water,  

H2O,g = density of the vapor phase,  

k = fugacity coefficient for gas component k 

Ck,i,l = molal concentrations of species i 

containing component k with stoichiometric 

coefficient aik.  

 

We are currently testing both of these approaches for 

accounting for loss of water and volatile components. 

However, for this paper, we are demonstrating these 

concepts using the more general approach that does 

not require the assumption of a closed, constant 

enthalpy system. 

Inverse Optimizations 

For estimating the reservoir temperature, we use an 

optimization approach rather than the graphical 

approach illustrated in Figures 3 and 4. Ultimately, 

these calculations will be conducted by coupling The 

Geochemist’s Workbench® (GWB) with the general 

parameter estimation and optimization code PEST 

(Doherty, 2005). However, for this paper we have 

done the calculations by iteratively applying GWB to 

generate a dataset of mineral saturation as a function 

of temperature and volatile constituents lost, and then 

finding the optimum solution for an objective 

function that indicates the system’s overall mineral 

saturation state. We have defined our objective 

function as the minimization of the Total Saturation 

Index (TSI), shown in equation 4.  

4. TSI =  (SIi / wti)
2
;     

SIi  = log (Qi/Ki) for the ith equilibrium mineral 

wti = weighting factor based on the number of 

thermodynamic components (i.e., 

independent chemical variables) and the 

number of time each component appears 

in the ith mineral dissolution reaction.  

Because of the squared term in Equation 4, TSI 

values are always greater than or equal to zero and 

can pass through both positive minima and maxima. 

The advantages of expressing the objective function 

in ways other than the Euclidean norm, will be 

explored in future work. 

 

For a system in equilibrium and with no 

measurement errors, the overall equilibrium state 

occurs at the point at which TSI = 0.  For real water 

samples subject to sampling and analytical errors, the 

TSI value should always be greater than zero. The 

weighting factor ensures that each mineral that 

contributes to the equilibrium state is considered 

equally and the results are not skewed by reaction 

stoichiometry.  The weighting factors used in our 

calculations are based on writing the reactions so that 

a total of 1 mole of ions are added to solution. 

Weighting factors for some example minerals are 

provided in Table 1. Other weighting methods can 

also be used. 

Table 1: Weighting factors for selected minerals.  

Mineral 
Thermodynamic 

Components 

Weight 

factor 

Albite 1*Al
3+

, 1*Na
+
, 3*SiO2 5 

Calcite 1*Ca
2
, 1*CO3

2- 
2 

K-feldspar 1*Al
3+

, 1*K
+
, 3*SiO2 5 

Muscovite 3*Al
3+

, 1*K
+
, 3*SiO2 7 

Quartz 1*SiO2 1 
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Example Test Cases 

To illustrate the potential power and limitations of 

the multicomponent equilibrium geothermometry 

approach, we have tested the inverse reaction path 

modeling approach against simulated data from four 

different geothermal scenarios.  The scenarios were 

generated using The Geochemist’s Workbench®, 

Version 9 (Bethke and Yeakel, 2011), using the 

thermo.dat thermodynamic database. These simulated 

numerical datasets assumed a reservoir mineral 

assemblage, equilibrated water with that assemblage 

at a given temperature, and then subjected the 

simulated deep waters to a sequence of thermal and 

chemical events (e.g., boiling, cooling venting).  The 

computed water chemistry represents the chemistry 

of water collected from a thermal spring or sampling 

well.  We also investigate the potential impacts of 

sampling errors.  

 

For each case, the given solution chemistry was input 

into The Geochemist’s Workbench®, and the log 

(Q/K) calculated as a function of temperature for a 

assumed equilibrium mineral assemblage of albite, 

calcite, K-feldspar, muscovite, and quartz were.  The 

calculations were conducted for the range of 25°C to 

300°C. The effect of mass loss of CO2 due to 

volatilization was assessed by numerically adding 

CO2(aq) back in to the solution at increments of 0.1 

molal over the range of 1e-4 to 1.0 molal.  In some 

cases, increments of 0.02 and 0.05 molal were also 

considered over the range of 1e-4 to 0.1 molal.  For 

each case, these calculations yielded a dataset of TSI 

and temperature in increments of CO2-added.  This 

dataset was then used to estimate the both reservoir 

CO2 and temperature by the condition at which TSI 

had its minimum value using the following process: 

1. The optimum mass of CO2 added (mol/kg) 

was determined by finding the minimum on a 

plot of TSI at dTSI/dT = 0 versus CO2 added  

2. The optimum temperature was determined by 

plotting temperature at dTSI/dT = 0 versus 

CO2 added, and then determining the 

temperature at the point that corresponds to the 

optimum mass of CO2 added. 

3. The TSI at the optimum mass of CO2 added 

was calculated similarly.  

For cases where water was lost due to boiling, the 

impact of water loss was qualitatively assessed by 

conducting replicate calculations at different extents 

of water loss.  The test cases are described below, 

and the associated solution chemistry is provided in 

Table 2.  

 

Case 1: Open system (Bethke, 2008). A brine 

containing 3 molal Cl and 0.05 molal Ca at pH 5 is 

equilibrated with quartz, calcite, albite, K-spar, and 

muscovite at 250°C. This geothermal water is 

transported to the surface where the fluid cools to 

25°C and CO2 vents to the atmosphere. The system 

represents a geothermal water that has reached the 

surface, cooled under closed conditions and then was 

exposed to the atmosphere.  

 

Case 2: Effect of Analytical Errors. This simulation 

is the same as Test Case 1 except that random errors 

are introduced into the data: 15% relative standard 

deviation for Al, 10 % for HCO3
-
, 5% for Ca, Cl, K, 

Na, SiO2, 0.15 units for pH, and 1°C for temperature. 

 

Case 3: Deep Boiling. A brine containing 3 molal Cl 

and 0.05 molal Ca at pH 5 is equilibrated with quartz, 

calcite, albite, K-spar, and muscovite at 250°C. This 

geothermal water is then isothermally boiled until 

15% of the water is lost while maintaining 

equilibrium with the reservoir mineral assemblage. 

The resulting water is then transported to the surface 

where the fluid cools to 25°C and CO2 vents to the 

atmosphere.  

 

Case 4: Flashing. A brine containing 3 molal Cl and 

0.05 molal Ca at pH 5 is equilibrated with quartz, 

calcite, albite, K-spar, and muscovite at 250°C. This 

geothermal water is then isothermally boiled until 

15% of the water is lost but mineral reaction does not 

occur during boiling.  The resulting water is then 

transported to the surface where the fluid cools to 

25°C and CO2 vents to the atmosphere. This scenario 

represents fluid flashing within a well. 

 

 

Table 2: Solution Chemistry for Numerical Test Cases.   

Case 
Al

3+
 

(mg/kg) 

Ca
2+

 

(mg/kg) 

Na
+
 

(mg/kg) 

K
+
 

(mg/kg) 

Cl
-
 

(mg/kg) 

HCO3
-
 

(mg/kg) 

SiO2 

(mg/kg) 
pH 

Sample 

Temp.  

1 8.66 e-3 2.00 e3 6.39 e4 1.01 e4 1.13 e4 2.39 e3 2.10 e2 5.10 25 °C 

2 9.53 e-3 1.96 e3 6.64 e4 0.98 e4 1.10 e4 2.20 e3 2.12 e2 5.09 24.4 °C 

3 7.65 e-3 2.35 e3 7.66 e4 1.21 e4 1.33 e4 2.41 e3 2.07 e2 5.13 25 °C 

4 10.2 e-3 2.36 e3 7.52 e4 1.19 e4 1.31 e4 0.85 e3 2.45 e2 5.20 25 °C 

 



RESULTS  

Results from the inverse geochemical calculations are 

summarized in Table 3.  For the relatively simple 

scenario in Case 1, the inverse method independently 

predicted reservoir temperature to within ± 1 °C.  

This result is a significant improvement over the 

results gained when only temperature is considered 

(e.g., Figure 4), and demonstrates how including 

volatile loss as part of the optimization scheme can 

greatly improve geothermometry.  

 

Table 3: Results from Inverse Calculations. For all 

cases, the actual temperature is 250 °C.  

Case 
H2O 

loss 

T  

(°C) 

CO2-aq 

added 

(mol/kg) 

TSI at 

optimum  

1 n.a. 250.6 0.52 5.12 e-4 

2 n.a. 253.0 0.45 7.72 e-4 

3 

none 249.7 0.63 4.50 e-4 

10% 242.0 0.44 1.33 e-3 

20% 233.5 0.29 2.69 e-3 

30% 221.2 0.14 7.03 e-3 

4 

none 259.6 0.08 6.50 e-2 

10% 254.1 0.07 1.13 e-2 

20% 248.7 0.06 9.27 e-3 

30% 233.3 0.03 2.03 e-2 

 

The influence of volatile loss is also seen in the plot 

of Total Saturation Index (TSI) versus potential 

reservoir temperature for each amount of CO2 added 

(Figure 5).  In this plot, the different colored curves 

correspond to different masses of CO2-added back 

into the system. Each of these curves shows a 

minimum that corresponds with the “convergence 

point” of saturation indices that can be qualitatively 

identified from a plot of temperature versus the log 

(Q/K) for sets of minerals that are likely to be present 

in a reservoir.  The minimum becomes more clearly 

resolved as CO2 is added back into the system to 

account for venting.  

 

The blue line in Figure 5 represents a fully vented 

system (e.g., as in Figure 4).  The lines where greater 

than 0.3 mol/kg H2O of CO2-(aq) have been added 

back into the system represent the closed system – 

prior to loss of volatiles (e.g., as in Figure 3).  The 

line with the lowest minimum represents the best 

solution.  This point can be more easily identified 

from the derivative of the TSI function.  The point at 

which dTSI/dT = 0 defines the minimum point in the 

TSI plot.  An example of this is shown in Figure 6. 

The zero-point for this sequence of dTSI/dT plots is 

used to determine the amount of CO2 needed to reach 

the minimum possible saturation index over a 2-D 

range of CO2 and temperature.  This is shown 

graphically in Figure 7, where the y-axis represents 

the set of points where a plot of TSI versus 

temperature is at a minimum.  

 

Figure 5: Plot of the total saturation index (TSI) as a 

function of temperature and added CO2 

for a shallow water sample derived from a 

deep geothermal reservoir that has lost 

volatiles as per Case 1 (e.g. Figures 3, 4).    

 

Figure 6: Plot of dTSI/dT as a function of 

temperature and added CO2 for the same 

case as in Figure 5.  

 

Figure 7: Plot of TSI at the point where dTSI/dT = 0 

for all amounts of CO2 added for the same 

case as in Figures 5 – 6. 
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The minimum of this value, when plotted against 

CO2 added, yields a minimum point for CO2 added, 

over the entire set.  This minimum point for CO2 

added is then used to calculate the corresponding 

temperature value, as shown in Figure 8. 

 

Figure 8: Plot of temperature at the point where 

dTSI/dT = 0 for all amounts of CO2 added 

for Case 1 (e.g. Figures 3 – 7).   

 

For Case 2, which incorporated the impact of typical 

analytic error, application of this inverse optimization 

method for geochemical modeling independently 

predicted reservoir temperature to within ± 3 °C.  

This result suggests that typical analytical errors can 

be tolerated in geothermometry.   

 

The results for Test Case 3 (deep boiling) and Test 

Case 4 (flashing) are also encouraging for cases 

where there was water loss due to boiling.  When the 

optimum value of TSI was at an approximate 

minimum with respect to mass of water loss, as 

estimated by selecting the temperature prediction for 

the water loss case with the lowest TSI at the 

optimum point, the method predicted the correct 

result to within ± 1 °C.  Interestingly, the method 

selected an optimum point at no water loss for the 

deep boiling case (Case 3), and at 20% water loss for 

the steam flashing case (Case 4). In both instances, 

the actual amount of water loss was 15%. In Case 3, 

there is mass transfer due to the mineral equilibria, 

but no mass transfer in Case 4. This suggests that, if 

the extent of water partitioning can be independently 

measured (e.g., via isotopic techniques), then 

comparison of predicted and actual mass loss may 

provide a way to estimate the extent to which 

mineralization occurs within the geothermal system.  

 

A comparison of results of the multicomponent 

geothermometry approach with some traditional 

geothermometers is provided in Table 4.  The quartz 

geothermometer underestimates the reservoir 

temperature by as much as 80°C, while the Na-K 

geothermometers overestimate the reservoir 

temperature by 13 to 22 °C. In contrast, the 

multicomponent geothermometry method 

consistently estimates reservoir temperature to within 

± 1 – 3 °C when water loss is taken into account. 

 

Table 4: Comparison with temperature estimates 

using traditional geothermometers. Same 

cases as for Table 3.  

Method 
Case 1 

T (°C) 

Case 2 

T (°C) 

Case 3 

T (°C) 

Case 4 

T (°C) 

Inverse 

Modeling  
251 253 250 249 

1 
Fournier 

Quartz      

(no steam) 

183 184 182 194 

1 
Fournier

 

Quartz
 
    

(max steam)
 

170 172 170 180 

1 
Fournier 

Chalcedony 
156 157 156 168 

1 
Fournier 

Am-SiO2  
59 60 59 70 

2 
Fournier 

Na-K 
271 263 270 271 

3
Giggenbach 

Na-K  
272 265 272 272 

1
 Truesdell and Fournier (1977)  

2
 Fournier et. al. (1979) 

3
 Giggenbach (1988) 

SUMMARY AND CONCLUSIONS 

The basic concepts of geothermometry have been 

available for about five decades and many of the 

early geothermometers are still being applied today. 

The application of these techniques can result in a 

wide range of estimated reservoir temperatures and 

limited ability to judge the uncertainty of the 

calculations. In this paper, we have proposed a 

multicomponent geothermometry technique that is an 

extension of the concepts provided by Reed and 

Spycher (1984).  We take advantage of the advances 

that have been made in geochemical modeling, 

thermodynamic databases, and optimization tools to 

improve the estimates of reservoir temperatures.   

 

To test these concepts, we have used The 

Geochemist’s Workbench® to simulate the chemical 

composition of geothermal waters following cooling, 

loss of water vapor, loss of volatile constituents and 

mineral reactions. These simulations were then used 

to demonstrate our ability to replicate the initial 

reservoir temperatures. The results indicate that the 
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multicomponent geothermometry presented here has 

excellent potential for improving the practice of 

geothermometry for geothermal exploration and 

resource characterization.  These preliminary results 

indicate that most geothermometry problems can be 

usefully resolved if the following factors are properly 

accounted for: 

 Selection of the appropriate number of mineral 

phases to control solution equilibrium. 

 Accurately selecting which minerals to use for 

geochemical calculations, on the basis of 

regional geology. 

 Properly accounting for the impact of steam-

water partitioning on solution chemistry. 

 Properly accounting for the impact of the loss 

of volatile components on solution chemistry.  

 

Typical analytical errors have only minimal effect on 

estimates of reservoir temperature.  Overall, the 

results suggest that the multicomponent 

geothermometry method is relatively robust and 

could greatly improve the industry’s ability to 

estimate deep reservoir temperatures. Additional 

improvements to the multicomponent 

geothermometry approach that are being explored 

include the use of other objective functions and 

alternative weighting functions, improved techniques 

for tracking gas phase partitioning, inclusion of 

additional volatile components (e.g., H2S, H2, CH4), 

assessment of mineral reactions along the path from 

the deep reservoir and the sampling point, and 

methods for determining mineral assemblages. 

Extending this method beyond the relatively simple 

system explored via these simulations would require 

optimization of additional parameters and use of 

automated numerical optimization software that can 

conduct multi-component optimizations.  This work 

is currently underway. 
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