A FULLY NON-ITERATIVE TECHNIQUE FOR PHASE EQUILIBRIUM AND DENSITY CALCULATIONS OF CO$_2$+BRINE SYSTEM AND AN EQUATION OF STATE FOR CO$_2$

Akand W. ISLAM and Eric S. CARLSON
Department of Chemical and Biological Engineering
The University of Alabama
Tuscaloosa, AL, 35487, USA
e-mail: awislam@crimson.ua.edu

ABSTRACT
Any mutual solubility or phase equilibrium calculations require iterations in order to attain desired convergence in fugacity measurements from which equilibrium compositions are obtained. In this monograph a fully non-iterative technique is approached for calculating phase equilibrium compositions of CO$_2$ in brine water and that of H$_2$O in CO$_2$-rich phase. As an essential part of this computations process, an empirical volume explicit Equation of State (EoS) for CO$_2$ with having only 8 parameters is presented. The volumetric data and calculated results of phase compositions using this EoS are compared with the literature values. They exhibit good agreement with less than 2% deviation. A modified scheme of CO$_2$+brine density calculation is also shown. More so, the manner in which this EoS can improve computational efficiency following the non-iterative technique with respect to other EoS’s used in petroleum reservoir simulation is illustrated. This shows that the proposed technique can be even more than 1000 times faster than conventional phase equilibrium computations after integrating with numerical simulation of CO$_2$ flows in reservoir.

INTRODUCTION
It is very well known that CO$_2$ is the major contributor to the global warming problem. Recent surveys of CO$_2$ in the atmosphere show average levels of 377 ppm, compared to 280 ppm in the pre-industrial revolution era (late 18th century) (Houghton, 2005). The burning of fossil fuels and other anthropogenic activities drive a dramatic increase in the concentration of atmospheric CO$_2$. Capturing CO$_2$ from major sources (like power industries) and its storage in deep geologic formations has been considered as a means to lessen global warming (Omerod, 1994). Injection into saline aquifers, abandoned oil and gas reservoirs, and unmineable coal seams are among possible ways for this purpose. Injection into deep saline aquifers provides the highest storage capacity (Piri et al., 2005). This type of aquifers can provide storage capacity of up to 1113 tons of CO$_2$ which is enough to store several hundred years of CO$_2$ emissions (Ormerod, 1994; Orr, 2004; Piri et al., 2005). CO$_2$ will dissolve over time in the interstitial solution of the aquifer and in some formations it would slowly react with minerals to carbonates, which would lock up the CO$_2$ permanently. Suitable aquifers would have also a cap rock of low permeability to minimize CO$_2$ leakage (Portier and Rochelle, 2005).

Predicting the sequestration potential and long term behavior of man-made geologic reservoirs requires computations of pressure, temperature and composition properties of CO$_2$-Brine mixtures at depths where temperature is not that high (<100 °C), however, pressure may reach several hundred bar. Thermodynamically, in this range, CO$_2$-rich gas or liquid phase and H$_2$O-rich liquid phase typically exists. The amount of H$_2$O in the CO$_2$-rich phase is quite small; it can fairly be approximated as pure CO$_2$. On the other hand, H$_2$O in the CO$_2$-rich phase displays very non-ideal mixing behavior (King et al., 1992; Spycher and Reed, 1988; Spycher et al., 2003).

The objective of this study is to develop a fully non-iterative algorithm for phase equilibrium calculations of CO$_2$+Brine system for efficient numerical simulations of CO$_2$ flows. Over the years several theoretical studies of CO$_2$+Brine system have been published (Barta and Bradley, 1985; Bowers and Helgeson, 1983; Cramer, 1982; Drummond, 1981; Duan et al., 1992, 1995; Duan and Sun, 2003; Enick and Klara, 1990; Harvey and Prausnitz, 1989; King et al., 1992; Li and Nghiern, 1986; Masoudi et al., 2004; Malinin and Kurovskaya, 1975; Malinin and Savelyeva, 1972; Patel et al., 2001; Nesbitt, 1984; Rumph et al., 1994; Shyu et al., 1997; Soreide and Whitson, 1992; Sorensen et al., 2002; Spycher et al., 2003; and Savelyeva, 1972; Patel et al., 2001; Nesbitt, 1984; Rumph et al., 1994; Shyu et al., 1997; Soreide and Whitson, 1992; Sorensen et al., 2002; Spycher et al., 2003).
2003; Spycher and Reed, 1988; Zuo and Guo, 1991). These investigations cover elevated temperatures and pressures mostly relevant to the study of hydrothermal systems and fluid inclusions. Like any other phase equilibrium calculations, all the techniques proposed in these investigations require iterations for some property measurements (like vapor/liquid phase volume, fugacity etc.) in order to obtain desired convergence which might not be a big issue for phase equilibrium computations itself, is really cumbersome for numerical flow simulations, however. Spycher et al., (2003) presented an approach to compute mutual solubilities of pure H₂O and CO₂ in a temperature and pressure most relevant to the geologic sequestration of CO₂. Later they (Spycher and Pruess, 2005; Spycher and Pruess, 2010) extended their models for moderately saline solutions up to 6M NaCl and for temperature and pressure range 12-300°C, 1-600 bar respectively. The techniques cannot be considered fully non-iterative, unless solving cubic EoS for obtaining CO₂ density (vapor, liquid or supercritical) through built-in function is ignored. In addition, computations of activity coefficients of CO₂ in mole fraction basis are not straight forward. One possible way to avoid solving cubic EoS in non-iterative manner is applying direct techniques like, classical Cardano’s method, Nickalls approach (1993), and so forth. However, experiences say that in many cases these direct techniques mislead in finding actual roots, especially of cubic EoS’s. Moreover, selection of roots as vapor or liquid volume should be concerned. Another possible way of getting rid of root finding is to obtain an appropriate explicit volumetric correlation or EoS of CO₂ as a function of pressure and temperature. In literature there are numbers of EoS’s among which some are generalized (Gottschalk, 2007; Wei and Sadus, 2000) or plainly for CO₂ (Diamond and Akinfiev, 2003; Span and Wagner, 1994; Yuanhui et al., 2007), however, none of them are volume explicit so far. Therefore we have shown such type of EoS as an essential part of the proposed algorithm for phase equilibrium and density calculations of CO₂+brine system.

CALCULATIONS PROCEDURES

The theories and methodologies involved in calculations are discussed in order.

Solubility calculations of CO₂ in aqueous phase

From thermodynamics relations chemical potential of CO₂ in aqueous phase and that in vapor phase can be shown as

\[
\mu_{CO_2}^V = \mu_{CO_2}^V (0) + RT \ln \varphi_{CO_2}
\]

\[
= \mu_{CO_2}^V (0) + RT \ln \gamma_{CO_2} P + RT \ln \varphi_{CO_2}
\]

where, fugacity \(f = Py\varphi \)

\[
\mu_{CO_2}^V = \mu_{CO_2}^V (0) + RT \ln \gamma_{CO_2}
\]

\[= \mu_{CO_2}^V (0) + RT \ln m_{CO_2} + RT \ln \gamma_{CO_2}
\]

where, activity \(a = m\gamma \) (molar basis)

As we know at equilibrium, \(\mu_{CO_2}^V = \mu_{CO_2}^V \), from Eqs. (1) and (2) it can be written

\[
\ln \frac{\gamma_{CO_2} P}{m_{CO_2}} = \frac{\mu_{CO_2}^V (0) - \mu_{CO_2}^V (0)}{RT} - \ln \varphi_{CO_2} + \ln \varphi_{CO_2}
\]

In Eq. 3, reference number \(\mu_{CO_2}^V (0) \) is set to zero. The fugacity coefficient of CO₂ in the vapor phase of CO₂+H₂O mixtures changes very negligible from that in pure CO₂ (Duan et al., 1992) and therefore \(\varphi_{CO_2} \) can be calculated from any suitable EoS for pure CO₂. Our proposed empirical EoS is of the following form

\[
V_r = y_0 + \sum_{i=1}^{3} a_i e^{-b_i P_r} + c(T_r - T_0)/P_r
\]

Here \(V_r \) is the reduced volume related with \(V_r = V/V_c \).

\(V_c \) is not exactly critical volume but defined as \(V_c = \frac{RT_c}{P_c} \). This EoS has only 8 parameters (\(y_0, a_1, b_1, a_2, b_2, a_3, b_3, c \)) which have to be estimated by the regression of volumetric data of CO₂ within certain temperature and pressure range. For our calculations, parameters that we have predicted are given in Table 1. These parameters have been predicted by the regression of CO₂ volumes within the range 20 – 40 °C and 1 – 400 bar extracted from MIT Carbon Capture and Sequestration Technologies (MIT-CCST) (http://sequestration.mit.edu/tools/index.html). We have used open source SciPy optimization package (http://www.scipy.org/doc/api_docs/SciPy.optimize.minpack.html) for data regression process.

Finally \(\ln \varphi_{CO_2} \) is computed from the equation (Duan et al., 1992)

\[
\ln \varphi = Z - 1 - \ln Z + \frac{a_1 + a_2/T_0 + a_3/T_0^2 + a_4/T_0^3}{V} + \frac{a_5 + a_6/T_0 + a_7/T_0^2 + a_8/T_0^3}{2V} + \frac{a_9}{2T_0} + \frac{a_{10}}{2T_0^2} \times \left(a_{11} + 1 - (a_{11} + 1) \times \exp \left(\frac{a_{10}}{V} \right) \right)
\]
\[
\ln \frac{y_{CO_2}P}{m_{CO_2}} = -\left(\lambda_{CO_2-cl}m_{Na} + \lambda_{CO_2-cl}m_{Cl}\right) + \zeta_{CO_2-Na-Cl}m_{Na}m_{Cl}.
\]

Here the term
\[
\lambda_{CO_2}(0) = c_1 + c_2 T + c_3 /T + c_4 /T^2 + c_5 /T^3 + c_6 /P + c_7 P \ln T
\]

The same parametric values for \(\lambda\)'s in Eq. 10 reported in Duan and Sun (2003) are used for our calculations. Now every term in right hand sides of Eq. 9 are known, therefore, solubility of CO2 \((m_{CO_2})\) in molal basis can be computed. This molal CO2 is converted to mole/mass fraction basis in following manner (Pruess, 2005)

\[
x_{CO_2} = m_{CO_2} / (1000/18.06 + m + m_{CO_2})
\]

\[
x_{CO_2} = m_{CO_2} \times 44.01/(1000+m\times58.44+m_{CO_2}\times44.01)
\]

Solubility calculations of H2O in CO2 phase

Spycher and Pruess (2005) developed following equation for \(y_{H2O}\)

\[
y_{H2O} = \frac{(1-B)55.508}{(1/A-B)vm_{NaCl}+55.508+vm_{NaCl}B}
\]

\[y_{CO_2} = 1-y_{H2O}\]

where

\[
A = \frac{K_{H2O}^0P}{\phi_{H2O}P} \exp\left(\frac{(P-P_0)V_{H2O}}{RT}\right)
\]

and

\[
B = \frac{\phi_{H2O}P}{55.508y_{CO_2}K_{CO_2(v)}^0} \exp\left(\frac{(P-P_0)V_{CO_2}}{RT}\right)
\]

In Eq. 14, to calculate \(\phi_{H2O}\) we have used fugacity expression of H2O in CO2 given by King et al., (1992) where they applied modified form of Redlich–Kwong EoS (1949). For the mixing rules we have assumed \(y_{H2O} = 0\), which is very reasonable as discussed earlier. This nullifies all the complexities of the application of cubic or any volume implicit EoS to calculate \(\phi_{H2O}\) in iterative manner.

Equilibrium constants \(K_{H2O}^0, K_{CO_2(v)}^0\) and \(K_{CO_2(l)}^0\) are found from the references Spydher and Pruess (2003), and Spycher and Pruess (2010). It is very necessary to note that, at subcritical temperatures and pressures \(K_{CO_2(v)}^0\) has to be replaced by \(K_{CO_2(l)}^0\) if the conditions (1) \(T<31.2\ °C\), and (2) \(V_{CO_2} < 94\ cm^3/mol\) are simultaneously met. With necessary

<table>
<thead>
<tr>
<th>parameters</th>
<th>subcritical condition</th>
<th>supercritical condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_0)</td>
<td>-766.2884</td>
<td>0.1272</td>
</tr>
<tr>
<td>(a_1)</td>
<td>29.3030</td>
<td>0.0734</td>
</tr>
<tr>
<td>(b_1)</td>
<td>21.9128</td>
<td>0.5304215</td>
</tr>
<tr>
<td>(a_2)</td>
<td>8.5773</td>
<td>4.3925x10^{-3}</td>
</tr>
<tr>
<td>(b_2)</td>
<td>5.3415</td>
<td>44.8821</td>
</tr>
<tr>
<td>(a_3)</td>
<td>767.7692</td>
<td>5.9221</td>
</tr>
<tr>
<td>(b_3)</td>
<td>0.0130</td>
<td>4.6914</td>
</tr>
<tr>
<td>(c)</td>
<td>11.7854x10^{-10}</td>
<td>0.7745</td>
</tr>
</tbody>
</table>
input of NaCl molality (m_{NaCl}), and from previous steps taking \(\phi_{CO_2} \) and \(\gamma_{CO_2} \), all the terms of right hand side in Eq. (14) are known and therefore mole fraction of \(H_2O \) in \(CO_2 \) rich phase \(\gamma_{H_2O} \) can be calculated in a straight forward way.

Density calculations

Density of \(H_2O+CO_2 \)

Densities of \(H_2O+CO_2 \) (\(CO_2 \) saturated water density) have been measured from very simple correlations developed by Hebach et al., (2004). For above critical density of \(CO_2 \) they have presented

\[
\rho_{H_2O+CO_2} = l_0 + l_1 P + l_2 T + l_3 P^2 + l_4 T^2
\]

and for lower than the critical density with respect to the \(CO_2 \) phase the expression is,

\[
\rho_{H_2O+CO_2} = g_0 + g_1 P + g_2 T + g_3 P^2 + g_4 T^2 + g_5 PT + g_6 P^2 + g_7 T^2 P + g_8 T P^2
\]

Density of \(H_2O+NaCl \)

To determine brine (\(H_2O+NaCl \)) density the correlation published by Anderson et al., (1992) has been implemented. Their correlation can be expressed as (in terms of molar volume)

\[
\ln(V_{sat}) = V_0 + V_1 T^{0.325} + 2V_2 T^{0.8915} + 3V_3 T^{0.825} + 4V_4 T + 5V_5 T^2 + 6V_6 T^3 + 7V_7 T^4 + 8V_8 T^5
\]

here

\[
\tau = 1 - T / T_c(b)
\]

\[
V_0 = 4.0208 + 3.30 x_{NaCl}
\]

\[
V_1 = -1.9286
\]

\[
V_2 = -34.214
\]

\[
V_3 = 20.1
\]

\[
V_4 = 15.45 - 4.7 x_{NaCl}
\]

\[
V_5 = -1.2059
\]

\[
V_6 = .63339
\]

\[
V_7 = 0.0
\]

\[
V_8 = .47437
\]

Finally the volume of compressed fluid is determined by

\[
V_{H_2O+NaCl} = V_{sat} [1 + C(P - P_{sat}(b))]
\]

where

\[
C = \frac{-1.14e^{-5}}{\tau^{1.25}} - 5.6x_{NaCl} + 0.005
\]

The unknowns of Eqs. 19 and 20 are \(x_{NaCl} \), \(T_c(b) \), and \(P_{sat}(b) \). These represent mole fraction of NaCl, critical temperature, and saturated vapor pressure of brine solution, respectively. For any molality (\(m \)) of NaCl it can be written,

\[
x_{NaCl} = m / [1000 / 18.016 + m]
\]

and

\[
x_{NaCl} = m \times 58.448 / [1000 + m \times 58.448]
\]

Battistelli et al., (1997) showed a cubic equation of \(X_{NaCl} \) in terms of \(T_c(b) \) which requires iterations in order to obtain correct \(T_c(b) \). However experimental data (Sourirajan and Kennedy, 1962; Tanger and Pitzer, 1989; Bischoff and Pitzer, 1989) shows, approximately up to 995 °K, \(T_c(b) \) varies linearly with \(X_{NaCl} \). Therefore we have used our own linear correlation of the form

\[
T_c(b) = 975X_{NaCl} + 373.15
\]

\(P_{sat}(b) \) remains same as \(P_{H_2O} \) around up to 405 °K according to the figure (\(P_{sat}(b) \) vs. T) reported by Battistelli et al., (1997). Hence we have used Eq. 8 for \(P_{sat}(b) \).

Density of \(H_2O+NaCl+CO_2 \)

Pruess (2005) showed the following correlation for predicting the density of aqueous phase with dissolved \(CO_2 \)

\[
\frac{1}{\rho_{aq}} = \frac{1 - X_{CO_2}}{\rho_{H_2O+NaCl}} + \frac{X_{CO_2}}{\rho_{CO_2}}
\]

In this equation all quantities on the right hand side are known from previous calculations, and therefore we can easily calculate \(\rho_{aq} \).

RESULTS

First we will show feasibility tests of our presented EoS (Eq. 4) for \(CO_2 \). Figures 1 and 2 show the comparisons of calculated \(CO_2 \) volumes with respect to the data obtained from MIT-CCST (MIT carbon Capture and Sequestration technology). As seen in Figures 1 and 2, it is clear that our EoS can calculate \(CO_2 \) volumes with acceptable accuracy. For any particular data point we have observed deviation is less than 2%. This EoS performs more accurately if the parameters are estimated from isothermal volumetric data (\(T \) and \(T_s \) are constant). In this case, the number of parameters will be reduced to 7.

Comparisons of literature isothermal volumetric data and our reproduced values are shown in Appendix A.
These results show average absolute error 0.38\% for subcritical region) and 0.0935\% for supercritical region.

Numerous sources of solubility data of CO\(_2\) in brine are available. However data at low temperatures and high pressures are scant. The data sources are addressed comprehensively in several review works and others (Diamond and Akinfiev, 2003; Duan and Sun 2003; Kim, 2007; Li and Duan, 2007; Kiepe et al., 2002; Spycher et al., 2003; Spycher and Pruess, 2005; Spycher and Pruess, 2010; Yuanhui et al., 2007). Measured solubility data following our calculations schemes are shown in figures 3 and 4 against experimental values. Our discussed procedures reproduce experimental data close to or within experimental uncertainty. In many cases the experimental data themselves vary among the references at the same temperature and pressure (can be seen in figures 4 and 5). No literature data were found for comparing H\(_2\)O solubility in CO\(_2\) rich phase for saline CO\(_2\)+H\(_2\)O solutions. Therefore figures 5 and 6 show comparisons between calculated and experimental values (for pure CO\(_2\)+H\(_2\)O solutions) along with only predicted values at different salinity levels.

Since we have also presented a slightly different approach of computing brine density, comparisons of literature (Potter and Brown, 1977) and calculated data are also shown in figure 7. In this regard overall deviation is less than 1%.

Now we will show how our proposed scheme will save huge computational expenses (cost per CPU time or memory). First we will show comparisons
of computational time of CO₂+Brine phase equilibrium calculations following the algorithm that we have proposed using our EoS of CO₂ versus others EoS’s which are frequently used. In this vein we have chosen Span and Wagner (S-P) (1994), Duan et al. (D et al.) (1992), and Redlich-Kwong (R-K) (1949) EoS’s for comparisons. In order to provide concrete example of how our scheme will save a significant amount of computational costs, we have integrated these phase equilibrium and density calculations with the numerical simulation of CO₂ flows in geologic reservoir. This simulation shows how CO₂ plume convects down in saline aquifers over the time period (Lu and Lichtner, 2007). We are developing this in-house simulator and will be released under open access in near future (Carlson and Islam, 2011).

Table 2 shows the comparisons of execution times. Our proposed EoS performs 2.0 to 3.9 times faster phase equilibrium calculation on a notebook of average configuration (like, 3 GB Ram, Dual-core CPU T4500 @ 2.3 GHz). In a fairly high configuration lab machine (like, 11.57 GB Ram and i7-920 @ 2.67 GHz processor), this calculation is 1.1 to 3.4 times faster than others. However, the same calculation makes substantial execution time difference after combining with a reservoir simulator which may involve millions of cell grid calculations and a number of time steps. For a single time step calculation, other volume implicit EoS’s make calculation 4.5 to 700.0 times slower with respect to our volume explicit EoS in a Notebook, and in lab machine these timing differences are 7.0 to 900.0 times. As the time stepping is increased in the simulator, these differences become more significant meaning our EoS may perform faster computations by 1000 times.

CONCLUSION

The algorithm mentioned does not involve any iteration or loop in the complete calculations process, while at the same time accuracy is not compromised. This will provide very helpful tools for designing complex reservoir simulators for which computational timing is extremely important. Our proposed volume explicit EoS for CO₂ is very simple and is comprised of less numbers of parameters compared to others found in literature. Upon estimating parameters, this EoS can reproduce CO₂ volume for given temperature and pressure within very reasonable deviation compared to the datum obtained from other sources. Integrating this scheme with numerical simulator of CO₂ flows can make calculations more than 1000 times faster and therefore will contribute to save huge computations costs.
Table 2. Comparisons of execution time

<table>
<thead>
<tr>
<th>Calculation of phase equilibrium only</th>
<th>After integrating with the Simulator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Notebook</td>
<td>Lab workstation</td>
</tr>
<tr>
<td>our EoS</td>
<td>S.W.</td>
</tr>
<tr>
<td>D et al.</td>
<td>R-K</td>
</tr>
<tr>
<td></td>
<td>our EoS</td>
</tr>
<tr>
<td></td>
<td>S.W.</td>
</tr>
<tr>
<td></td>
<td>D et al.</td>
</tr>
<tr>
<td></td>
<td>R-K</td>
</tr>
<tr>
<td>Time steps</td>
<td></td>
</tr>
<tr>
<td>our EoS</td>
<td>S.W.</td>
</tr>
<tr>
<td>D et al.</td>
<td>R-K</td>
</tr>
<tr>
<td>our EoS</td>
<td>S.W.</td>
</tr>
<tr>
<td>D et al.</td>
<td>R-K</td>
</tr>
</tbody>
</table>

| | | | | | | | |
| 0.015 | 0.059 | 0.047 | 0.031 | 0.0009 | 0.0034 | 0.0012 | 0.0011 |

1	2.1	1402.9	94.3	9.6	1.1	941.9	15.5	7.1
120	200.5	162981.1	12201.9	1317.7	102.0	102452.2	1844.4	797.2

*3 GB RAM, Dual-core CPU T1500 @ 2.3 GHz
**11.57 GB, i7-920 CPU @ 2.67 GHz

Notations:

\(l \) = liquid phase

\(m \) = molality (mole NaCl per 1000 kg H\(_2\)O)

\(P \) = pressure (bar)

\(P_0 \) = reference pressure (1 bar)

\(P_c \) = critical pressure (73.88 bar)

\(P_r \) = reduced pressure \((P/P_c) \)

\(R \) = universal gas constant \((83.14472 \text{ bar} \cdot \text{cm}^3/\text{mol} \cdot \text{K}) \)

\(T \) = temperature (K)

\(T_c \) = critical temperature (304.2 K)

\(T_r \) = reduced temperature \((T/T_c) \)

\(T_{r0} \) = reference reduced temperature (303.15 K)

\(V \) = vapor phase

\(V \) = volume \((\text{cm}^3/\text{mol}) \)

\(V_c \) = critical volume of CO\(_2\)

\(V_{H_2O} \) = molar volume of liquid H\(_2\)O \((18.1 \text{ cm}^3/\text{mol}) \)

\(V_{CO_2} \) = molar volume of liquid CO\(_2\) \((32.6 \text{ cm}^3/\text{mol}) \)

\(x \) = mole fraction in aqueous (H\(_2\)O rich) phase

\(X \) = mass fraction in aqueous (H\(_2\)O rich) phase

\(y \) = mole fraction in vapor (CO\(_2\) rich) phase

\(Y \) = mass fraction in (CO\(_2\) rich) vapor phase

\(\varphi \) = fugacity coefficient

\(\rho_{H_2O+CO_2} \) = CO\(_2\) saturated water density \((\text{mol/cm}^3) \)

\(\rho_{H_2O+NaCl} \) = brine density \((\text{mol/cm}^3) \)

\(V \) = stoichiometric number \((2 \text{ for NaCl}) \)

\(\mu \) = chemical potential

\(\mu^{V}_{CO_2}(0) \) = standard chemical potential of CO\(_2\) in vapor phase in ideal gas when \(P = 1 \text{ bar} \)

\(A_1, A_2, A_3, A_4, A_5 \) = constants for DIPPR correlation

\(l_0, l_1, l_2, l_3, l_4 \) = coefficients of the Eqn 17 taken from Hebach et al. (2004)

\(g_0, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \) = coefficients of the equation of 18 taken from Hebach et al. (2004).

\(\text{aq} \) = aqueous

\(\text{Eqn} \) = Equation

Subscripts

sat = saturated

exp = experimental

cal = calculated

REFERENCES

Li, D., and Duan, Z., (2007), "The Speciation Equilibrium Coupling With Phase Equilibrium in the H2O-CO2-NaCl System From 0 to 250 C, From 0 to 1000 bar, and from 0 to 5 Molality of NaCl," *Chem. Geol.*, **244**, 730-751.

Potter, R.W., and Brown, D.L., (1977), "The Volumetric Properties of Aqueous Sodium Chloride solutions from 0 to 500 C at Pressures up to 2000 bars Based on a Regression of Available Data in the Literature" USGS Bulletin 1421 C: Washington DC.

Zuo, Y., and Guo, T.M., (1991), "Extension of the Patel-Teja equation of state to the prediction

APPENDIX

Table A1 shows comparative study between literature and calculated CO₂ volumes.

Table A1: Comparison of CO₂ volumes extracted from MIT-CSST and the data calculated by our EoS (T = 303.15 K)

<table>
<thead>
<tr>
<th>P [bar]</th>
<th>V_{exp} (MIT-CSST) [m³/mol]</th>
<th>V_{cal} [m³/mol]</th>
<th>average absolute error (AAE*) (%)</th>
<th>Parameters of Eq. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0000</td>
<td>4.9178e-3</td>
<td>4.9177e-3</td>
<td>0.385</td>
<td>$y_0 = -1.2278e+3$</td>
</tr>
<tr>
<td>10.0000</td>
<td>2.3961e-3</td>
<td>2.3965e-3</td>
<td></td>
<td>$a_1 = 3.4274e+1$</td>
</tr>
<tr>
<td>15.0000</td>
<td>1.5541e-3</td>
<td>1.5526e-3</td>
<td></td>
<td>$b_1 = 26.3569$</td>
</tr>
<tr>
<td>20.0000</td>
<td>1.1319e-3</td>
<td>1.1342e-3</td>
<td></td>
<td>$a_2 = 1.0498e+1$</td>
</tr>
<tr>
<td>25.0000</td>
<td>8.7742e-4</td>
<td>8.7764e-4</td>
<td></td>
<td>$b_2 = 6.8620$</td>
</tr>
<tr>
<td>30.0000</td>
<td>7.0661e-4</td>
<td>7.0497e-4</td>
<td></td>
<td>$a_3 = 1.2299e+3$</td>
</tr>
<tr>
<td>35.0000</td>
<td>5.8345e-4</td>
<td>5.8206e-4</td>
<td></td>
<td>$b_3 = 1.4153e-3$</td>
</tr>
<tr>
<td>40.0000</td>
<td>4.8982e-4</td>
<td>4.8993e-4</td>
<td></td>
<td>$c = 0.0$</td>
</tr>
<tr>
<td>45.0000</td>
<td>4.1558e-4</td>
<td>4.1706e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0000</td>
<td>3.5454e-4</td>
<td>3.5629e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.0000</td>
<td>3.0250e-4</td>
<td>3.0312e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.0000</td>
<td>2.5625e-4</td>
<td>2.5473e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.0000</td>
<td>2.1243e-4</td>
<td>2.0934e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.0000</td>
<td>1.6348e-4</td>
<td>1.6584e-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.0000</td>
<td>6.2664e-5</td>
<td>6.2585e-5</td>
<td>0.0935</td>
<td>$y_0 = 0.12354036$</td>
</tr>
<tr>
<td>90.0000</td>
<td>5.9069e-5</td>
<td>5.9230e-5</td>
<td></td>
<td>$a_1 = 4.7964$</td>
</tr>
<tr>
<td>100.0000</td>
<td>5.6983e-5</td>
<td>5.6990e-5</td>
<td></td>
<td>$b_1 = 0.00571466$</td>
</tr>
<tr>
<td>110.0000</td>
<td>5.5500e-5</td>
<td>5.5415e-5</td>
<td></td>
<td>$a_2 = 0.3245$</td>
</tr>
<tr>
<td>120.0000</td>
<td>5.4346e-5</td>
<td>5.4244e-5</td>
<td></td>
<td>$b_2 = 0.6075$</td>
</tr>
<tr>
<td>130.0000</td>
<td>5.3402e-5</td>
<td>5.3323e-5</td>
<td></td>
<td>$a_3 = 1.33485463$</td>
</tr>
<tr>
<td>140.0000</td>
<td>5.2601e-5</td>
<td>5.2560e-5</td>
<td></td>
<td>$b_3 = 3.9744$</td>
</tr>
<tr>
<td>150.0000</td>
<td>5.1907e-5</td>
<td>5.1903e-5</td>
<td></td>
<td>$c = 0.0$</td>
</tr>
<tr>
<td>160.0000</td>
<td>5.1293e-5</td>
<td>5.1320e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170.0000</td>
<td>5.0744e-5</td>
<td>5.0790e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.0000</td>
<td>5.0246e-5</td>
<td>5.0302e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190.0000</td>
<td>4.9791e-5</td>
<td>4.9848e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.0000</td>
<td>4.9373e-5</td>
<td>4.9424e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210.0000</td>
<td>4.8985e-5</td>
<td>4.9026e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0000</td>
<td>4.8624e-5</td>
<td>4.8652e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230.0000</td>
<td>4.8286e-5</td>
<td>4.8299e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240.0000</td>
<td>4.7969e-5</td>
<td>4.7967e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250.0000</td>
<td>4.7669e-5</td>
<td>4.7653e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260.0000</td>
<td>4.7386e-5</td>
<td>4.7356e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270.0000</td>
<td>4.7117e-5</td>
<td>4.7077e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.0000</td>
<td>4.6862e-5</td>
<td>4.6812e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290.0000</td>
<td>4.6618e-5</td>
<td>4.6563e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300.0000</td>
<td>4.6385e-5</td>
<td>4.6327e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310.0000</td>
<td>4.6162e-5</td>
<td>4.6105e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320.0000</td>
<td>4.5949e-5</td>
<td>4.5895e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330.0000</td>
<td>4.5744e-5</td>
<td>4.5696e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340.0000</td>
<td>4.5546e-5</td>
<td>4.5509e-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350.0000</td>
<td>4.5356e-5</td>
<td>4.5332e-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[
\text{AAE} = \sum_i \frac{V_{\text{exp}} - V_{\text{cal}}}{N} \times 100 ; \quad N = \sum n_i
\]