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ABSTRACT 

Heat extraction from deep, hot rocks for energy 
production is based on water circulation through a 
man made fracture or natural fractures. As multiple 
and non-planar fractures in a stress field affect the 
geothermal reservoir behavior, so the capability to 
simulate multiple fractures and joints is needed to 
help reservoir design and operation. A 3D model is 
developed in this work to simulate and analyze a 
faulted and fractured deep rock mass subjected to 
fluid injection. The three-dimensional displacement 
discontinuity method is used for the fractures and 
joints, and Galerkin Finite Element method is used to 
represent flow equation within the fractures.  The 
model is applied to analyze the pressure history data 
during cyclic injection/extraction (huff and puff) of a 
geothermal reservoir. Good agreement is observed 
between numerical results and field measurements. 
Additionally, an example is presented to highlight the 
versatility of the method, and to study the role of 
injection and the stress field on fracture slip and 
induced  micro seismic events.  

INTRODUCTION 

When designing geothermal reservoirs, the 
impedance factor, water loss rate, and availability of 
an adequately large heat exchange surface between 
rock and circulating fluid are considered to control 
the economic viability of heat extraction operations 
(Baria et al. 1999; Rutqvist et al. 2003). As the 
fractures are the major pathway for fluid flow and 
heat exchange, analysis of their spatial-temporal 
behavior has been the focus of many investigations, 
which have shown that coupled poro-mechanical, 
thermal, and geochemical process have a large 
influence on fracture permeability evolution. 
Generally, predicting the impact of the interactions of 

these processes, and interactions between natural 
fractures and man-made fracture requires numerical 
modeling. During past decades, various numerical 
models have been developed and used in reservoir 
simulators.  
Wessling et al.(Wessling et al. 2009) simulated water 
injection into a fracture using 2.D-ROCMAS finite 
element software which has a coupled flow-
geomechanic capability. Mathias et al.(Mathias et al. 
2010) modeled the problem without any coupling 
between hydrological and mechanical processes and 
assumed a constant total stress and fracture aperture 
during injection/extraction cycles. Swenson et al. 
(Swenson 1992) developed a finite-element model to 
solved the problem using a 2D finite element method 
by assuming 1D fluid flow and constant joint 
stiffness.  The displacement discontinuity method has 
proven to be particularly effective for the class of 
problems involving a finite number of discrete 
fractures within the circulation system.  

 Ghassemi et al. (Ghassemi et al. 2003; Ghassemi et 
al. 2005; Ghassemi et al. 2007) presented 3D 
boundary integral equation methods to investigate the 
coupled thermo- stresses in the injection/extraction 
problem while accounting for the natural fracture 
response using a linear joint model. Combined poro- 
and thermoelastic process were then considered 
(Zhou et al. 2009). Here, we extend this work and 
develop a general numerical algorithm to model 
injection/extraction problems in pre-existing or 
induced sets of fractures for variable 
injection/extraction rates. The model uses a coupled 
finite element/boundary element method to solve for 
fluid flow and fracture aperture in the 
fractures/matrix system. The displacement 
discontinuity method is used to consider the 
mechanical response of the fractures and multiple 
fracture interaction while considering the non-linear 
joint response.  



GOVERNING EQUATIONS 

Behavior of fluid-saturated rocks is a transient 
phenomenon that can be described by the linear 
theory of poroelasticity (Biot 1941; Rice 1976). For 
isothermal condition, the poroelastic constitutive 
equation can be presented as: 
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Where ijε and ijσ are correspondingly strain and stress 

of rock structure, p  andζ  are correspondingly pore 

pressure and diffused pore volume, ijδ is Kronecker 

delta. G is the shear modulus, α  is Biot effective 
stress coefficient. Drainedν , and undrained 
Poisson’s ratio uν , and Skempton parameter B are 

other material constants (a set  of 5 independent 
constant is sufficient). 

Equations (1) and (2) state, respectively, the  relation 
between the volumetric response of the rock and the 
pore pressure variation, and the change in pore 
pressure in response to an applied mean stress.  

Pore-fluid diffusion equation can be considered by 
Darcy’s law; 
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This equation relates fluid mass flow in each 
direction and unit area to the gradient of pressure in 
the same path, where iq′  is fluid flux in i-direction, is 

base permeability, and µ  is viscosity of pore fluid. 

 
By utilizing equation (1), (2), and (3) with 
equilibrium and compatibility condition, three-
dimensional field equations can be obtained. The 
Navier’s equations with a pore pressure coupling and 
the diffusion equation are: 
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where iu  is the solid displacement in the i-direction, 

ε is the volumetric strain, and the other terms are the 
same as previous formulation. These equations 
should be solved with appropriate boundary 
conditions. At infinity, the in-situ stress and pore 
pressure conditions are prescribed for each time step. 
For an open fracture or closed joint, the boundary 
condition can be presented as:  
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For fluid flow modeling between fracture surfaces, it 
is supposed that laminar flow occurs as described by 
the following lubrication equation(Zhou et al. 2009): 
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where ( ), ,w x y z  and ( ), , ,q x y z t  are the fracture 

aperture and fluid discharge into the matrix from 
fractures wall, respectively. Assuming that the water 
injected into the fractures is incompressible and the 
joint aperture is variable with time, the fluid mass 
continuity equation can be presented as: 
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where ( ), , ,l x y z tυ  is amount of leak off from one 

surface of fractures into rock matrix, ( )injQ t  and 

( )extQ t  are cold water injection and hot water 

extraction rate, respectively,  and ( ), ,x y zδ   is Dirac 

delta function. Equation (6) and (7) can be written in 
the form: 
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In this equation the pressure on fracture surfaces and 
leak off into the rock matrix are not known. They can 
be solved for a given history of injecting and 
extracting rates at the wells. Another boundary 
condition is: 
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where n  is the outer normal to the edge of  fracture 
surfaces. This boundary condition implies 
perpendicular direction of pressure on fractures 
surfaces. 



INTEGRAL SOLUTION METHOD  

To analyze geothermal reservoirs with multiple 
fractures during arbitrary injection/extraction period, 
equations (4) and (8) should be solved 
simultaneously with respect to all boundary 
conditions (Equations (5) and (9)). It is obvious that 
these two equations are coupled through fracture 
surfaces pressure and fracture aperture. The DD  
methods and Galerkin finite element method  are 
used to discretized equation (4) and (8), respectively.   

Fractures in poroelastic rock can be seen as a surface 
across which, the solid displacements and the normal 
fluid flux are discontinuous, and the tractions depend 
on the normal and shear displacements and amount of 
fluid source (leak-off) from fractures surfaces. The 
DDs and fluid sources are distributed along the joint 
wall such that the summation of their effects satisfies 
the boundary conditions at joint surfaces.  The 
stresses and pressures at any point in the rock matrix 
can be evaluated by using discontinuity of 
displacement and fluid flux: 
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where ijD  and fD  are respectively the displacement 

discontinuity components and the fluid source 
intensity or fluid discharge to the rock matrix. 

, ,id is id
ijkn ij ijpσ σ  and isp  are the instantaneous 

fundamental solution of the stresses and pore 
pressure due to a unit impulse of the displacement 
discontinuity (superscript “id”) and a unit impulse of 
fluid discharge from surface of fracture (“is”); and 

( ),0ij Xσ , ( ),0p X  are the initial value of stresses (in-

situ stresses) and background pore pressure. 
Equations (10) and (11) are applied on all fracture 
surfaces to get the DDs and fluid discharge. As the 
DDs and fluid source intensities at fracture surfaces 
are defined, equations (10) and (11) can then be used 
to calculate the stresses and pore pressure at any 
location in the rock matrix. The convolution 
algorithm is used for the temporal domain integrals 
involving continuous DDs and fluid source 
fundamental solutions. 
 
The integrals of instantaneous fundamental solutions 
in time domain can be expressed in terms of  

corresponding continuous fundamental solutions to 
develop the convolution time integrals by going back 
to zero at every time step. In this way, domain 
integration is circumvented. After applying 
continuous approach to the equations, three traction 
component on every fracture surface is extracted 
from equation (10).   Equation (11) and discretized 
form of equation (8) are the other two equations, in 
addition to these three traction equations. Totally 
there are eight unknowns in these five equation set, 
and three more relation is needed for complete 
solution. These three equations are fractures behavior 
model for normal and shear displacements. 

If two surfaces of fracture separate from each other, 
or if just a part of surface separates, the shear stress is 
set to zero and the normal stress equals the pressure 
on fracture surface. When the two surfaces are 
compressed together, the fracture behaves as a closed 
joint with a nonlinear behavior (Goodman 1974). 
When closed, the fracture surfaces can tolerate shear 
forces. The shear displacement-shear force behavior 
is considered to be elastic-perfectly plastic, and the 
threshold for constant shear force on fracture is 
defined by using Mohr-Coulomb criteria.  

The normal opening behavior of joint can be written 
as(Goodman 1974); 

( ) ( )n n nK DDσ ′∆ = ∆   (12) 

where nσ ′  is effective stress and can be present as; 

n n pσ σ′ = −   (13) 
From Goodman(Goodman 1974) it can be seen that 
the discontinuity behavior is presented as: 
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where A and t are fitted parameter. Similarly to 
(Wessling et al. 2009; Mathias et al. 2010) it is 
assumed that A and t equal  1.0, therefore, the 
behavior simplified to: 

0
0n na aσ σ′ ′=   (15) 

where 0a is initial joint aperture at initial effective 

stress at joint surface ( 0
nσ ′ ). 

 
Now with the above three fracture force-
displacement model equations, the problem can  be 
solved to find the discontinuities and other unknowns 
on the joint surfaces. 

NUMERICAL SOLUTION 

As it was mentioned before, Galerkin finite element 
method is used to model fluid flow in joint(Zhou et 



al. 2009). Joint plane is discretized into M elements, 
and it is considered that: 
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where ( )N m  are the interpolative functions, the 
superscript “m” indicate the number of element, and 
p% and q f% are the vectors of nodal fluid pressure and 

fluid source intensity, in that order. By using 
Galerkin FEM, equation (8) can be written as(Zhou et 
al. 2009): 
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in which ( )
( ),

N
inj inj

inj

x y
 indicates the shape functions at 

the fluid injection well, which is located at ( ),inj injx y  

within element “inj”, and ( )
( ),

N
ext ext

ext

x y
  denotes the 

shape function at the fluid extraction point, which is 
located at ( ),ext extx y  within element “ext”. 

The same mesh for finite element and boundary 
element for all of fractures is used for space 
discretization. The joint is discretized into a number 
of four-nodded quadrilateral elements in the spatial 
domain, which makes the integrals over the whole 
fractures be replaced by a sum of integrals over these 
elements. The DDs are assumed to be constant over 
each element which facilitates the treatment of the 
hyper singular integrations involved; while the fluid 
source intensities are assumed to vary linearly over 
each element(equation (16)). In the time domain, the 
DDs and source intensities are assumed to be 
constant over each time step.  
 
As all integrals are expressed in the intrinsic 
coordinates of the influenced plane element through 
coordinate transformation, the actual computation 
requires only a straightforward application of 
standard quadrature rules. We use Gaussian 
quadrature with 4×4 points for regular integral and 
8×8 points for singular integral which ensures the 
accuracy for regular and hyper singular integrals.  
Finally, three traction equations from equation (10) 
and equation (11) is decritized and they can be 
represented as:  
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where Aij s are the effect of all elements on local 

traction of each element on i-direction, or the effect 
of each element on fractures surfaces pressure. Also 

iB s are the effect of discontinuity history.  

 
Those four relations in equation (18) and equation 
(17) construct a set of coupled equation which are 
needed to solve with respect to fracture Force-
Displacement behavior. This solution will represent 
all component of displacement discontinuity and 
fluid source (leak off) amount on all fractures 
surface. 

EXAMPLES 

To verify the model and to show its capability, two 
examples are presented. The first example is just 
presented to verify model, and the second one to 
show how the method is used to simulate multiple 
fractures in porous media which happen in natural 
reservoir.  

Problme 1 
 
In this example, an actual Huff and Puff test is 
simulated. The field experiment was carried out in  
borehole Horstberg Z1, Lower Saxony in Germany 
geothermal field.   The data for this field are from  
Wessling et al. (Wessling et al. 2009) and Mathias 
et.al.(Mathias et al. 2009) who used semi-analytical 
and FEM models to simulate the huff–puff test into a 
penny-shaped joint. The joints hydro-mechanical 
behavior is reflected in the downhole pressure history 
recorded during a huff–puff process. The huff–puff 
test involved a cyclic extraction/recovery test 
whereby 2500 m3 of cold water was injected into a 
joint over 36h followed by 30h rest and five 
successive 15h extractions of between 443 and 523 
m3 of fluid, each separated by a 9h resting period 
(Wessling et al. 2009). Temperature of reservoir near 
the fracture  changed about 16o C  during the test. 
The joint model (Fig. 1) parameter and other 
properties are listed in Table 1.  
 



 
Figure 1: Normal joint behavior.  

 
Table 1: Joint and matrix characterization. 

joint Radius (m) 260 
Initial joint aperture (m) 5.0E-4.0 
Initial pore pressure(MPa) 60.0 
In-situ normal stress(MPa) 68.5 
Biot's constant 1.0 
Biot's modulus (GPa) 44.0 
Rock permeability(m2) 3.0×10-17 
Young's modulus (GPa) 6.0 
Drained Poisson's ratio 0.25 
 
Fig. 2 shows the joint mesh used in the  simulation to 
analyze the variation of the pore pressure and stresses 
in the joint when water is injected/extracted into the 
circular joint; it contains 392 four-nodded 
quadrilateral elements and 372 nodes.  
 

 
Figure 2: Mesh used for circular joint. 

 
The pressure distribution in the joint at shut-in is 
shown in Fig. 3; as can be seen the distribution is 
uniform.  

 
Figure 3: Pressure(Pa)  distribution at the beginning 

of shut-in phase (36 hours). 
 
The pressure history for the middle point of the joint 
is shown in Fig.4. The profile of the down hole 
pressure is in good agreement with the recorded data 
without any curve fitting and parameter optimization.  
 
The differences between the field test and our 
numerical results can be attributed to the fact that a 
sandstone layer, which forms part of the joint wall 
near the center of joint with thickness of 4 m is not 
considered. It also assumed that the rock is 
homogeneous and isotropic. On the other hand, the 
difference between numerical results and the field 
test can be caused by uncertainty in rock parameters 
we used. It is important to note that the present 
method is highly sensitive to the joint model and its 
parameter as shown in the Fig. 4. The difference 
between the results for a linear normal stiffness case 
and the nonlinear Goodman joint is substantial. 
Overall, good agreement has been obtained between 
the simulated pressure profile and the measured field 
data indicating that the method can be successfully 
employed to investigate the injection/extraction in 
geothermal reservoirs. 
 
Figs. 5-6 show the distribution of normal 
displacement discontinuity (DD) and effective stress 
plotted at end of the injection interval, at the first 
shut-in, and for production/shut-in phases in. As 
expected, the joint aperture decreases from its center 
toward the tip for every time step.   
 



Figure 4: Pressure profile at the well location during Huff and Puff  test.. 
 
 

 
Figure 5:Normal DD (aperture) along the fracture 

radius during huff and 
puff.

 
Figure 6: Effective stress at different time steps.  

Example 2 
 
In this example, we simulate a modified version of 
the injection experiment of Soultz-sous-Forets 
European Hot Fractured Rock Geothermal project, 
Rhine Garben, France, as reported by Bruel (Bruel 
2002). This problem involves a number of fractures 
that were detected in the field and is a good example 
of the importance of the interactions between natural 
joints geometry and the in-situ stress field, and their 
impact on the evolution of permeability with 
injection. As in the previous case, we do not consider 
thermoelastic effects for the sake of simplifying the 
analysis. Also, the simulations are carried out for a 
relatively short time period, so that thermal effects 
have not fully developed.     
 
Fig.7 shows the problem geometry and the location 
of the injection and extraction wells. General 
parameters and in-situ stress values are shown in 
Table 2. The stress state is one of normal  faulting 
regime. Note that some of the fractures shown in 
(Bruel (2002) are not considered to save 
computational time.  The variation of stress with 
space is not considered in this example. 
 
It is assumed that the injection rate and extraction 
rates are equal to 1.0 lit/sec and 0.5 lit/sec, 
respectively. Also, it is assumed that before injection 
and extraction, all fractures are stable and because of 
in situ stress field, they are all mechanically closed, 
although they can be hydraulically open.  
 
 



  

 
Figure 7: Fracture network shown from different view direction (modified from (Bruel (2002). 

 
 
Figure 8 shows the status of the fractures prior to 
water injection. These fractures are discretized using 
1814 four nodded elements with 1952 nodes. In this 
method, the well is simulated by applying the 
injection and extraction rates at the nodes where the 
well is located.  Direction 1 refers in Fig.8 is along 
the dip on the fracture surface.  

 
Table 2: Multiple Fracture Modelling Parameters 

X in situ stress (MPa) 55.0 
Y in situ stress (MPa) 50.0 
Z in situ stress (MPa) 80.0 
Initial pore pressure(MPa) 45.0 
Biot's constant 1.0 
Biot's modulus (GPa) 44.0 
Rock permeability(m2) 3.0×10-17 
Young's modulus (GPa) 6.0 
Drained Poisson's ration 0.25 
Initial joint aperture(m) 5.0E-4.0 
Mohr-Coulomb, C (MPa) 4.0 
Mohr-Coulomb, Friction angle 27.0 
Dilation Angle 3.0 
Initial Normal Stiffness (GPa/m) 10.0 
Initial Shear Stiffness (GPa/m) 10.0 
 
It can be seen in Fig. 8 that fracture 4 has 
experienced minimum shear force along its dip, with 
a value of approximately 4 MPa. This is insufficient 
to cause slippage on this joint which is assumed to 
have a cohesive strength of  4MPa. Only joints 
number.1, 2, 3 and 5 experience sufficiently high 
shear stresses and can experience slip. 
It should be mentioned that the negative shear stress 
along dip (1 direction) indicates that the shear acts in 
the up-dip direction.  The shear stress component in 
the strike-direction of all fractures is zero. 
 

 
 

 
 

Figure 8: Effective normal (top) and shear (bottom) 
stress on fractures, before starting injection or 

extraction. 
 



 

 

 

 
Figure 9: Fracture aperture after 10 hours of 
injection and extraction. Note that each figure 

highlights the aperture on one fracture since the 
values have a broad range. 

 

 
Figure 10: Shear displacements on all fractures. 

 

 

 
Figure 11: Pressure distribution in the fractures after 

10 hours of injection/extraction. 



 

 
Figure 12: Distribution of effective stress on 

fractures after 10 hours. 
 
The fracture aperture, shear displacement, and 
pressure distributions  after 10 hours of operation are 
shown in Figures 9, 10 and 11. Because of the broad 
range of fractures aperture and pressure values in all 
fractures, multiple figures are used to illustrate the 
distribution of the parameters of interest for each 
fracture.  As can be seen in Fig. 9, the aperture 
distribution on fracture 1 and 2 are in the same range 
of 1-1.3 mm. In addition, the aperture distribution for 
this set of fractures is nearly symmetric about the 
injection point. This is because they overlap, and the 
opening of one fracture induces some closure on the 
other one.  The upper part of fracture 1 is less 
confined that the lower part, the reverse is true for the 
lower crack. The aperture of fractures 3 and 4 is in 
the range of 0.4 mm up to 0.6 mm. Because of 
contact between fracture 3 and 4, the aperture near is 
smaller near the intersection than in other parts. 
Fracture 4 has lower values of aperture because of 
fluid extraction from it.  
 
The first part of  Fig. 10 shows the shear 
displacement along the fracture dip. It can be seen 
that the maximum shear displacement is on fracture 
3, because the maximum shear stress is exerted on it, 
due to stress field. On the second plot of Fig. 10, the 
shear displacement in the fracture strike direction is 
shown. Although, no in-situ shear stress is initially 

resolved in the strike direction of the fractures, the 
shear displacement on other fractures induces a shear 
movement in the strike-direction.  This shear 
displacement along the strike is about 0.035 mm. 
These shear displacements are elastic and do not 
represent slippage that takes place when the joint 
stress exceeds its strength. 
 
The pressure distributions on Fig.11 are consistent 
with the aperture distribution, Fig. 9. The pressure 
ranges from 43-68 MPa. Pressure in fractures 1 and 2 
is about 67.6 MPa. The pressures do change in 
fracture 3, 4 and 5. Although, the amount of change 
is not much (0.1 MPa), but it has its effect on leak off 
from.  

 

 
Figure 13: Shear stress on all fractures in direction 

1- Noted that direction 1 is not the same for all 
elements. 

 
Figure 12 shows the distribution of effective stress on 
fractures 3 and 4. It is interesting that effective stress 
on fracture 3 changes by about 1 MPa from top to the 
bottom. This shows that the part of fracture 3 which 
is below fracture 4 would slip before the upper part. 
The effective normal stress on fracture 4 varies from 
33.5 MPa up to 34.5 MPa with the maximum stress 
occurring near where the two fractures intersect. This 
happens because of interaction with fracture 3 and its 
confining effect. 



It is shown in Fig. 8 that the shear traction along dip 
of fracture 1 and 2 is about 8 MPa and while it is 10.8 
MPa on fracture 3 (before the start of leak-off). Then, 
after 10 hours of operation,  a certain amount of these 
shear stresses is released along the dip. It can be seen 
in Fig. 13, for example on fracture 1 and 2, the 
amount of shear stress decreases to 7.5 MPa after 10 
hours.  

CONCLUSION 

A three-dimensional poroelastic displacement 
discontinuity model has been developed for modeling 
coupled flow and fracture deformation for both 
natural and induced fractures in rock. The model 
combined the FE method to the DD method; it is 
poroelastic, and accounts for the geometric 
nonlinearity of the joint deformation, temporal 
variation of the injection/extraction rates, and 
pressure-dependent leak-off. The model has been 
applied to simulate field data from a Huff-Puff test. 
Good agreement has been obtained indicating that the 
method can be employed to investigate the variation 
of field parameters during injection/Extraction period 
in geothermal reservoirs. The example of multiple 
fractures in a reservoir rock illustrates the importance 
of fracture interactions on shear deformation and 
fracture slip.  It also demonstrates the variation of 
permeability with injection and potential for induces 
seismicity resulting from slip on neighboring 
fractures. Such analysis also can shed light on 
direction of shear growth during reservoir 
development.  Future analysis will consider the 
temperature of the extracted water as well as the 
influence of thermal stresses.. 
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