TRACER TESTS IN THE ENHANCED GEOTHERMAL SYSTEM (EGS) OF SOULTZ–SOUS–FORÊTS. WHAT DOES THE STRATIFIED MEDIUM APPROACH TELL US ABOUT THE FRACTURE PERMEABILITY IN THE RESERVOIR?

Giovanni Radilla\(^1\), Judith Sausse\(^2\), Bernard Sanjuan\(^3\), and Mostafa Fourar\(^1\)

\(^1\)LEMTA, Nancy-University, CNRS, Avenue de la Forêt de Haye, BP 160, 54504 Vandoeuvre Cédex, France
e-mail: Giovanni.Radilla@ensem.inpl-nancy.fr

\(^2\)G2R, Nancy-University, CNRS, CREGU, BP 70239, 54506 Vandoeuvre Cédex, France

\(^3\)BRGM, 3 Avenue Claude Guillemin, 45065 Orléans Cédex 02, France

ABSTRACT

We present a new interpretation of tracer tests performed in 2005 in the French EGS located at Soultz-sous-Forêts. A previous analysis of fluorescein tests (Sanjuan et al., 2006) revealed substantial differences in terms of connectivity between the injection well (GPK3) and the two production wells (GPK2 and GPK4). The tracer concentration in the fluid discharged from the production wells was measured and partially modeled using a code based on a model of dispersive transfer. The results suggested the existence of at least three fluid circulation loops. Two of them (loops 1 and 2) associated to GPK2, and the third one (loop 3) associated to GPK4.

Our new analysis is based on the equivalent stratified porous medium model. In this approach, each circulation loop, which corresponds to a flow path through the rock formation, is regarded as a stratified porous medium having a log-normal permeability distribution. The heterogeneity of this equivalent porous medium is quantified by the stratification factor defined as the standard deviation to the mean permeability ratio.

The results of this work allowed a very accurate modeling of the concentration curves for both production wells. The stratification factors show that the three circulation loops have different levels of heterogeneity. In addition, the tracer mean arrival times are in a ratio of 4.3 between loop 2 and loop 1, and 13.6 between loop 3 and 1 thus giving some insight on the mean permeabilities of the equivalent stratified media.

This tracer test model is compared to a new deterministic 3D model of the fracture zones observed in the Soultz granitic reservoir. The major fracture zones encountered around 6 wells (4550, EPS1, GPK1, GPK2, GPK3 and GPK4) are located and characterized in terms of size, orientation, extensions and widths: fracture zones, microseismic structures and structures derived from vertical seismic profiles are modeled using Discrete Fracture Network tools of the gOcad modeling platform (Paradigm, Earth Decision Sciences). The objective is to match the permeability results derived from the tracer test modeling and from the geometry of the Soultz fracture network to try to better understand the geothermal fluid flow pathways in the reservoir.

INTRODUCTION

Soultz-sous-Forêts, located in the Upper Rhine Graben, hosts one of the few deep geothermal 'Enhanced Geothermal System' test sites in the world. At its current state of development, the EGS site consists of three boreholes: GPK2, GPK3 and GPK4, the European geothermal pilot plant which extends to more than 5000 m depth, GPK1 a first hydraulic test well which extends to 3600 m and a reference hole EPS1 which has been fully cored down to 2230 m.

In deep enhanced geothermal systems (EGS), natural or forced fluid circulation takes place through the fracture networks in crystalline rocks characterized by low matrix porosity. The connection between fractures and the consequent anisotropic permeability are then crucial to insure the efficiency of the geothermal exchanger and to recover sufficient fluid temperatures at surface.

The objective of this paper is therefore an attempt to match and model the 2005 tracer test interpretation...
results proposed by Sanjuan et al. 2006 with the knowledge we have of the 3D network of connected, permeable fractures within the target rock volume between the wells (Sausse et al., 2010).

The final objective of this study is to achieve a better understanding and prediction of the hydraulic response of the granite respecting the structural observations of fault and fracture organizations.

TRACER TEST

A tracer test using 150 kg of 82.5% pure fluorescein and a chemical fluid monitoring program accompanied the 5-month circulation experiment carried out between injection well GPK3 and production wells GPK2 and GPK4 in July–December 2005 (Sanjuan et al., 2006). Preliminary operations, including 4 days of production from GPK2 and GPK4, were performed before initiating the circulation test. During the test, the geothermal fluid discharged from wells GPK2 and GPK4 was injected into GPK-3. At the end of the experiment, some fresh water was also injected into GPK-3.

The injection rate was estimated to be close to 15 l/s, with 11.9 l/s coming from GPK2 and 3.1 l/s from GPK4. Based on these values, about 209,000m³ of fluid were injected into GPK3, and 165,500m³ and 40,500m³, respectively, were discharged from GPK2 and GPK4. Geochemical sampling and analyses were performed on the discharged and injected fluids, including fluorescein analysis, on-site conductivity, pH, Eh, dissolved oxygen, alkalinity, and Cl, SO4, Na, K, Ca, Mg, SiO2, Br, Li concentrations. Some of the fluid samples were analyzed for naphthalene sulfonate tracers at the BRGM laboratories. Detailed tables of analytical data are reported in Sanjuan et al. (2006). These authors demonstrate that 2 types of circulation are developed between the wells. These tests gave evidence of a fast and relatively direct hydraulic connection between GPK2 and GPK4 (short loop) but also indicated the existence of another larger and slower hydraulic connection between GPK3 and GPK4 (large loop).

3D MAIN FAULT NETWORK

An important database of geological data (Genter et al., 1995), well logs (Dezayes et al., 1995; 2005; 2010; Sausse and Genter, 2005; Sausse et al; 2006), microseismicity recordings (Cuenot et al., 2007; 2008; Dorbath et al., 2009) and Vertical Seismic Profiling (VSP) results are compiled and combined to build a new original 3D model of the Soultz-Sous-Forêts fractured reservoir (Sausse et al., 2010).

The main well logging in the three deepest wells (GPK2, GPK3 and GPK4) consisted of the gamma-ray spectral log. Fracture geometrical properties and their spatial relationships are analyzed based on amplitude and transit time anomalies derived from acoustic image logs (Ultrasonic Borehole Imager; UBI). The fractures can be identified with high accuracy and measured in azimuth and dip by this borehole imagery technique. Other flow and/or temperature logs were run in the different deep wells during injection and production tests and some interpretation of the main fracture and permeable zones is proposed by Dezayes et al. (2005 and 2010). These hydraulically active fractures could correspond to either isolated fractures or series of thin parallel fractures or large-scale fracture zones. These large-scale fracture zones reach 10 m in thickness and are characterized by sealed core and a peripheral damage zone that is highly fractured and therefore highly permeable (Genter et al., 2000). Fracture orientations and relative contribution to flow are available in the open holes for the three deepest wells (Sausse et al., 2007, 2008).

This fracture network, identified at the well scale, has been completed by other geophysical data at the reservoir scale.

Numerous hydraulic stimulations performed have been performed at Soultz between 2000 and 2005 and have generated micro-seismic activity that has been interpreted in terms of major structures (Sausse et al., 2010). Events locations from Dorbath et al. (2009) were put into relation with the fault organization.

Then some VSP data (1993 survey) have been re-interpreted in GPK1 and EPS1 after a specific processing (Place et al., 2007). Thanks to a high signal/noise ratio of these records, polarization analysis has been carried out: the arrivals show much more energy on the vertical component than on the horizontal components, suggesting a vertical polarization. At the well location, these seismic events are recognized at depth levels where the GPK1 well intersects highly permeable faults (Evans et al., 2005).

Based on these seismic and structural data, a complete 3D model of the Soultz-Sous-Forêts reservoir fracture network matched in details with the granite lithology, geophysical and hydraulic characteristics is now available (Sausse et al. 2010). Finally, 53 structures are defined in the vicinity of the geothermal plant and between depths of 800 to 6000 m TVDSS. 39 fracture zones, 7 microseismic structures and 6 VSP derived structures are represented in the 3D model (Figure 1 and Table 1). The matching of these various geophysical approaches shows that fractures described at the well scale could be extrapolated at the reservoir scale to propose new guides for a global 3D model of the Soultz geothermal reservoir.
Table 1: Final structural and geometrical data of the 3D model structures defined from well logging analysis, from the interpretation of the microseismicity following the hydraulic stimulations of the three deepest wells GPK2, GPK3 and GPK4 and the VSP EPS1 and GPK1 interpretations. Geometrical parameters characterizing the main fracture zones with measured depths, extensions of major axis dv and minor axis dh, dip direction and dip. Each well is characterized by several fracture zones identified by a nomenclature name: well name-FZ-Measured Depth of the fracture centre. Correlation and matching between VSP, microseismic and structural data are mentioned (Sausse et al. 2010).
WELL SCALE FRACTURES

Centimetric fractures could be detected thanks to the accurate U.B.I. vertical resolution of 0.5 to 1 cm. This database has been therefore completed with a new study that focuses only on open fractures that host fluid flows in the reservoir (Massart et al. 2010). However, the real effective opening of a fracture remains difficult to define. Closed fractures are sealed by secondary re-crystallization or filled with fine impermeable particles (only amplitude traces on U.B.I.). The main faults present damage zone and largely open fractures (both amplitude and transit time traces on U.B.I.). Between these two extreme opening states, several other types of fracture width are proposed in this study.

A total of 1878 open fractures were located on GPK2, GPK3 and GPK4 UBI logs, amongst which 1637 were defined as natural open fractures (labels 1 to 6), 82 were defined as damage zones (label 7) and 159 were defined as horizontal induced drilling fractures (label 8). For each fracture, its measured depth, true dip, dip direction, and aperture (continuous or fragmented sinusoids) are recorded.

Previous other main fracture zones (Sausse et al., 2010; Dezayes et al., 2010) are characterized by labels 11 to 14.

Fracture widths

This new high resolution fracture database includes all fracture types, faults and damage zones observed in the wells GPK2, GPK3 and GPK4 (Figure 2) and are analyzed using the relation between fracture occurrences (probability of fracture intersection with the wells) and widths such as proposed by Bonnet et al. (2001). The damage zones do not represent strictly fractures, but their vertical extension along the wells was assimilated to the width of the associated faults previously defined by Dezayes et al. (2010) and Sausse et al. (2010). For example, the major fault that intercepts the well GPK3 at 4775 m (M.D.) is surrounded by a damage zone of 13 m. This fault is therefore characterized by a 13 m width equal to its damage zone width in the database. In Figure 2 is presented a bi-logarithm diagram that plots the number of fractures \(n \) of each label as a function of their mean width \(W \). White dots in Figure 2 correspond to the fracture labels that are correlated over a large magnitude of fracture widths. In black are plot "problematic" points, corresponding to fracture labels 5 and 6. This relation is well fit to a power law equation with an exponent equal to 1.04.

![Figure 2: Bi-logarithm diagram representing the number of fractures \(n \) as a function of their width \(W \) in cm. Labels 5 and 6 that are not correlated to the general trend are removed of the database for the calculation of the cumulative probability. Labels 11, 12 and 14 correspond to faults which damage zones were located on U.B.I. images. Label 11 corresponds to the littlest faults and Label 12 to the medium one in term of fracture sizes. Label 14 corresponds to the main fault of the Soultz reservoir.](image)

The general trend observed on Figure 2 is not adapted to describe fracture labels 5 and 6 that represent continuous or wide open fractures on U.B.I. images. These fractures are not sufficiently numerous to fit with the general trend. One possible explanation could be that in this study only open fractures were taken into account. Indeed, a lot of same types of fractures are today totally sealed by sequences of hydrothermal alteration. These sealed fractures were generated in the same time than those described by labels 5 and 6 and today still open. The paleo-fractures present similar widths than the still open ones but sealed widths. These wide open and continuous open fractures are the main fractures that could be percolated within the rock mass insuring the pervasive alteration of the granite when big faults generate more localized vein alteration (Sausse and Genter, 2005). A first explanation of this underestimation of the number of fracture labels 5 and 6 could therefore be that the missing fractures labels 5 and 6 are now sealed and therefore not take into account in the database.

Fracture labels 1, 2 and 3 are merged in one single group in the plot of Figure 2 because of the huge proportion of labels 1 in the database that mask the influence of 50% and 75% continuous fracture traces. This distinction is therefore not discriminatory in this study.

A low fractal dimension such as 1.04 indicates that fractures are strongly clustered. This organization of very dense zones of fractures around the main fault corridors is well known at Soultz (Sausse and Genter, 2005).
Fracture lengths
Johnston (1996) proposes a relation between width and extension. Collecting data for five study areas with widely varying structural geometries in a variety of host rock types, they determine that the extension and the width of a fracture are proportional in some cases but that they follow a more generalized power-law of the form:

\[L = k W^d \]

(1)

where \(k \) is a coefficient characteristic of the facies ranging from 20 to 2000 for granitic facies, and \(d \) the fractal dimension of the fracture set. The coefficient \(k \) is higher in extensional context than in compression one, ranging from 57 to 1231 with a mean value of 402.

We decided then to follow the hypothesis of Johnston (1996) and we chose to calculate the mean extension of the different labels using values of \(k = 400 \) and \(d = 1.04 \). The results are reported in Table 2.

<table>
<thead>
<tr>
<th>Label & fracture type</th>
<th>Mean widths W (cm)</th>
<th>Mean extensions L (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Discontinuous open traces (25%)</td>
<td>3.15</td>
<td>11</td>
</tr>
<tr>
<td>2 Discontinuous open traces (50%)</td>
<td>10.69</td>
<td>39</td>
</tr>
<tr>
<td>3 Discontinuous open traces (75%)</td>
<td>6.32</td>
<td>23</td>
</tr>
<tr>
<td>4 Nuggy fractures</td>
<td>20.31</td>
<td>76</td>
</tr>
<tr>
<td>5 Continuous open fractures</td>
<td>150.11</td>
<td>610</td>
</tr>
<tr>
<td>6 Wide open fractures</td>
<td>269.93</td>
<td>1123</td>
</tr>
<tr>
<td>11 minor faults</td>
<td>626.53</td>
<td>2097</td>
</tr>
<tr>
<td>12 medium faults</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 major faults</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Mean fracture extensions and widths by fracture labels.

The width of the damage zone associated to the major fault at Soultz is equal to 13 m. By application of the previous formula, its extension is therefore equal to 2.7 km which could be a correct estimation because this fault crosses the three wells on a minimum distance of 2 km.

Fracture conductivity at well scale
Fracture equivalent conductivity (\(\kappa \)) was estimated using the model proposed by Snow, 1969; Oda, 1986; Ababou, 1991 and Sausse et al., 1998. This approach proposes to quantify equivalent hydraulic properties on the basis of the geometric parameters of fractures (mainly apertures and spacing). Two assumptions are done with 1) a Poiseuille law to model the flow in each individual fracture assumed to be an infinite plane at the scale of the well and 2) the assumption of a global and homogeneous pressure gradient in the reservoir.

The following equation is proposed:

\[\kappa_i = \frac{g}{12 \eta} \frac{A_i^1}{S_i} \]

(2)

Where \(g \) is acceleration due to gravity [9.81 m s\(^{-2}\)]; \(\eta \), the kinematic viscosity of the fluid [water: 10\(^{-6}\) m\(^2\) s\(^{-1}\)]. \(A_i \), the width of fracture \(i \) [m] and \(S_i \), the mean spacing between fracture \(i \) and fractures \(i-1 \) and \(i+1 \) [m].

Vertical spacing are calculated between the fracture plane points along the wells. Each fracture plane is characterized by a constant aperture related to its label such as mentioned in Table 2.

These values are directly related to the value of the fracture widths quantified as damage zone around fractures on the UBI images. The computed conductivities stay therefore relative values in the objective of a comparison of the well hydraulic behaviors. They are therefore not physically significant in terms of quantitative and realistic flows.

Results show that some clear differences appear between the wells. For example the mean fracture conductivities ± standard deviations are equal to 5.38 \(10^3 \) ± 2.44 \(10^3 \) and 1.55 \(10^3 \) ± 7.07 \(10^3 \) m/s respectively for GPK2 and GPK4, the production wells and 6.22 \(10^5 \) ± 1.79 \(10^7 \) m/s for GPK3, the injection well during the tracer test.

However, the standard deviations are quite large indicating that fractures are clustered in the wells and display quite various damage zone widths especially for the main fault zones.

Figure 3 presents the distribution of fracture conductivities using a logarithm X scale and show this great dispersion of the values and a highest proportion of thin fractures (\(\kappa_i \) between 1 and 10 m/s) for GPK2.
This clustering is also illustrated by the variation coefficient C_v i.e. the ratio between the standard deviation and the mean values of the conductivities of fractures along the three well paths. C_v values are equal respectively to 29, 5 and 464 for GPK3, GPK2 and GPK4. The highest dispersion of conductivity value is observed for GPK4 indicating very different values of conductivities and mainly spacing with therefore the possibility of shortcuts by big faults in this zone of the reservoir. On the contrary, values are more homogeneously distributed around GPK2 indicating a better distributed fracture network along the well path and possibly a more homogeneous equivalent porous media constituted by thinner but better connected fractures.

MODELING OF THE TRACER TEST RESTITUTION CURVES

Figures 4 and 5 show respectively the dimensionless fluorescein concentration measured on GPK2 and GPK4 during the tracer circulation test.

As suggested by Sanjuan et al., 2006 the long tracer concentration trail observed in GPK2 is attributed to a high heterogeneity in the rock formation between GPK3 and GPK2.

One simple yet elegant way to model such dispersion behavior is the equivalent stratified medium approach in which a given heterogeneous porous medium is replaced by a stratified medium following a probability distribution in terms of permeability. In this approach, dispersion is the result of permeability heterogeneity alone which is characterized by the stratification factor, H:

$$H = \frac{\sigma_k}{\bar{K}}$$

σ_k and \bar{K} are the standard deviation and the mean value of the permeability distribution. The most commonly used permeability distribution for real heterogeneous media is the lognormal distribution. In that particular case and for a concentration step, the dimensionless concentration C at distance x from the injection section and at time t is given by (Fourar, 2006; Fourar and Radilla, 2009):

$$C = \frac{1}{2} \text{erfc} \left(\frac{x}{U_t \sqrt{1+H^2}} \right) \left(\sqrt{2 \ln(1+H^2)} \right)$$

where $U = \frac{Q}{(A \phi)}$ is the mean velocity of the tracer front in the equivalent porous medium, Q is the volumetric flow rate, A is the cross section area, and ϕ is the porosity.

As the tracer was injected during one day, we used Eq. (4) to produce both the response to a positive concentration step injected at $t = 0$ days, and to a negative concentration step injected at $t = 1$ day. The sum of the two responses gives us the concentration corresponding to the real tracer injection. This approach has also the advantage to allow injecting easily the right amount of tracer mass.

This procedure was applied separately for each one of the circulation loops and leaded to the corresponding concentration curves ($C_1(t)$, $C_2(t)$ et $C_3(t)$).

Because the production wells discharge not only fluid coming from the injection well through the circulation loops but also fluid coming from the rock formation itself at zero tracer concentration, the relationships between the measured concentrations C_{GPK2} and C_{GPK4}, the calculated ones ($C_1(t)$, $C_2(t)$ and $C_3(t)$), and the corresponding volumetric flow rates Q_i are:

$$C_{GPK2}(Q_1 + Q_2 + Q_{e2}) = C_1(t)Q_1 + C_2(t)Q_2 + 0Q_{e2}$$

(5)

$$C_{GPK4}(Q_3 + Q_{e4}) = C_3(t)Q_3 + 0Q_{e4}$$

(6)

and rearranging, we obtain

$$C_{GPK2} = \frac{Q_1}{Q_{r2}}C_1(t) + \frac{Q_2}{Q_{r2}}C_2(t)$$

(7)

$$C_{GPK4} = \frac{Q_3}{Q_{r4}}C_3(t)$$

(8)

In order to model the concentration curves of Figures 4 and 5, we used equations (4), (7) and (8) for each circulation loop. The fitted parameters for loop i are:
- the mean arrival time, x/U_i
- the stratification factor, H_i
- the dilution ratio (Q/Q_2)

The sensitivity of the calculated concentrations to the parameters of the model was analyzed. Results showed that sensitivities of the different parameters are not correlated to each other and therefore allowing us to fit all the parameters independently from one another.

The results of the modeling are presented in Table 3 and Figures 6 and 7 show that the estimated parameters allow a very accurate modeling of the measured tracer concentration in both production wells.

<table>
<thead>
<tr>
<th>Production well</th>
<th>GPK2</th>
<th>GPK4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation loop</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mean arrival time, x/U (days)</td>
<td>13.9</td>
<td>60.2</td>
</tr>
<tr>
<td>Stratification factor, $H = \sigma_i/K$</td>
<td>0.556</td>
<td>0.943</td>
</tr>
<tr>
<td>Dilution ratio</td>
<td>0.0797</td>
<td>0.1774</td>
</tr>
</tbody>
</table>

Table 3: Results of the modeling of the concentration curves using the equivalent stratified model approach on the three circulation loops.

During the tracer circulation tests, the flow rates injected into GPK3 and discharged from GPK2 and GPK4 were measured and the corresponding values are 15 l/s, 11.9 l/s, and 3.1 l/s. Therefore, the dilution ratios in Table 3 allow us to calculate the flow rates Q_i circulating in each loop and also the external flow rates (i.e., which don’t come from the injection well) Q_{e2} and Q_{e4}.

The distance between the injection well and the two production wells is about the same (around 600 m). If we assume that the equivalent porous media linked to the three circulation loops are also 600 m long, we can calculate the mean velocities U_i. As we already mentioned the mean velocities are given by $U = Q/(A\phi)$ and therefore, we are able to calculate the effective cross section area, $A\phi$ for each loop. As the length of the loops is known (600 m), the total volume of fluid within the loop can be calculated.

<table>
<thead>
<tr>
<th>Production well</th>
<th>GPK2</th>
<th>GPK4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulation loop</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total discharged flow rate (l/s)</td>
<td>11.9</td>
<td>3.1</td>
</tr>
<tr>
<td>External flow rate, Q_e (%)</td>
<td>74.3%</td>
<td>94%</td>
</tr>
<tr>
<td>External flow rate, Q_e (l/s)</td>
<td>8.84</td>
<td>2.91</td>
</tr>
<tr>
<td>Volumetric flow rate (l/s)</td>
<td>0.95</td>
<td>2.11</td>
</tr>
<tr>
<td>Mean velocity, U (m/day)</td>
<td>43.26</td>
<td>9.96</td>
</tr>
<tr>
<td>Effective cross section area, $A\phi$ (m2)</td>
<td>1.9</td>
<td>18.3</td>
</tr>
<tr>
<td>Fluid volume within the loop (m3)</td>
<td>1137</td>
<td>10983</td>
</tr>
</tbody>
</table>

Table 4: Further analysis of the circulation loops.

Each circulation loop is regarded as an equivalent porous media of mean permeability K. Therefore, Darcy’s law can be written for the i-th loop:

$$\left(\frac{\Delta P}{L}\right) = \frac{\mu}{K_i} U_i \phi_i$$

(9)

Loops 1 and 2 are connected to the same wells (GPK3 and GPK2). Thus, their equivalent stratified media are likely to share the same pressure gradient. Under this assumption the following relationship arises:

$$\frac{\mu}{K_1} U_1 \phi_1 = \frac{\mu}{K_2} U_2 \phi_2$$

(10)

Rearranging, we get:
\[\frac{K_1 \phi_1}{K_2 \phi_2} = \frac{U_1}{U_2} = 4.34 \] (11)

It is important to emphasize that in the absence of data on the porosity of the fracture network between GPK3 and GPK2, it is not possible to calculate the ratio of mean permeabilities in loops 1 and 2.

However, under the assumption that \(\phi_1 = \phi_2 \), the average permeability of loop 1 would be 4.3 times that of loop 2:

\[\bar{K}_1 = 4.3 \bar{K}_2 \] (12)

Combining this last result to the stratification factors \(H_1 \) and \(H_2 \) of Table 3, we get:

\[\sigma_{\kappa_1} = 2.56 \sigma_{\kappa_2} \] (13)

In addition, linking the mean permeability of loop 3 to that of loops 1 or 2 requires the knowledge of the two pressure gradients: (GPK3-GPK2) and (GPK3-GPK4).

CONCLUSIONS

The Soultz reservoir is a fractured reservoir characterized by various classes of fracture type (Tables 1 and 2). These fractures are clustered along the well paths defining damaged zones around them and therefore high or low equivalent porous media. A first comparison of the well fracture conductivities was therefore tested to try to identify same types of media heterogeneity than those describe by the tracer test interpretation. Transit times between GPK2 and GPK3 are described by two main loops of 13.9 or 60.2 days for fluorescein recovery. This transit time is much longer to connect GPK3 and GPK4 with 188.2 days for fluorescein recovery, third loop.

The ratios of these transit times for the three main loops correspond in a first approximation to the heterogeneity of the equivalent media permeability hosting the fluids circulations. This heterogeneity could be directly linked to the fracture distributions as shown in the last section of the paper by means of equations (9) to (13).

For example the ratio between the mean conductivities of GPK3 \((6.22 \times 10^5 \text{ m/s}) \) and GPK2 \((5.38 \times 10^3 \text{ m/s}) \) is equal to 116. The same ratio between GPK3 \((6.22 \times 10^5 \text{ m/s}) \) and GPK4 \((1.55 \times 10^5 \text{ m/s}) \) is strongly highest and equal to 40185.

These differences of fracture conductivities, main drains in the granite impermeable matrix, could explain the quick transfer of fluid between GPK2 and GPK3. Fluids are flowing between wells with same ranges of permeability and in an equivalent porous media constituted by thinner but highly connected fractures homogeneously distributed in this zone of the reservoir. On the contrary, the differences of conductivity ranges between GPK3 (high conductivities) and GPK4 (low conductivities) could imply that this transfer of fluids is more complicated in a more heterogeneously distributed porous media where fault zones, isolated, could control the fluid flows. Such a fault is for instance represented by the huge structure GPK3-FZ4770 (Table 1) that links directly GPK3 and GPK2 but outer of the reservoir open hole section avoiding any shortcuts of fluids between this two wells (Figure 1). This same fault is identified below the bottom hole section of GPK4 and we could think that GPK3-FZ4770 could make a shortcut of fluids and bring them towards deeper zones of the batholith implying longer pathways and therefore transit times for fluorescein recovery in GPK4.

REFERENCES

sous-Forêts (Rhine Graben, France)”, *Journal of Scientific Drilling, 5* (1), 31-41.

Sausse, J., Dezayes Ch., Dorbath L., Genter A. and Place J. (2010), "3D model of fracture zones at Soultz based on geological data, image logs, induced microseismicity and vertical seismic profiles", *Geosciences* (in press)

Sausse, J., Fourar, M. and Genter, A. (2006), "Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis", *Geothermics, 35* (5-6), 544-560
