
PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, February 9-11, 2009
SGP-TR-187

AN ARTIFICIAL NEURAL NETWORK MODEL FOR NA/K GEOTHERMOMETER

+Genco Serpen, Yildiray Palabiyik* and Umran Serpen*

*ITU, Petroleum and Natural Gas Eng. Dept.
Maslak

Istanbul, 34469, Turkey
+Koza Evleri 3/35, 4. Levent/Istanbul, Turkey.

e-mail: serpen@itu.edu.tr

ABSTRACT

In this study, a brief explanation is first given on
solute Na/K geothermometers developed until now,
and a new Na/K geothermometer model is presented
after using world geothermal database (n=212) to the
ANN as a training set and another database (n=112)
as a test set. In this model Na and K values are
treated as input values and geothermometer
temperatures as output values. A multilayer feed-
forward neural network is trained using a genetic
algorithm for optimizing hidden layer neuron weights
and linear regression for optimizing output neuron
weights. The model is successfully evaluated and
compared with actual deep temperature
measurements to avoid training bias.

INTRODUCTION

Artificial neural networks have lately been popular
because of their applicability and ability to learn non-
linear models, and simple implementation. New
artificial neural network software is developed for
modeling geothermal energy related problems. The
code is first used for modeling Na/K
geothermometer. Several versions of Na/K
geothermometer have previously been studied using
ANN by Can (2002), Bayram (2001) and Diaz-
Gonzalez et al. (2008). In all these studies multilayer
networks are trained by back-propagation algorithms.
The new ANN software utilizes a genetic algorithm
for optimizing neuron weights instead of back-
propagation of errors. The use of a genetic algorithm
is expected to reduce the probability of convergence
to local minima of the network’s error function
occurring in back-propagation algorithms.

ANN SOFTWARE

An artificial neural network is an information
processing system that shares characteristics with
biological neural networks. Artificial neural networks
have been developed as generalizations of
mathematical models of human cognition and neural
biology. Neural nets can be applied to a wide variety

of problems, such as storing or recalling data or
patterns, classifying patterns, noise reduction,
function approximation, performing general
mappings from input patterns to output patterns,
finding solutions to constrained optimization
problems, noise reduction, function approximation
and time series prediction.

A neural net consists of a large number of simple
processing elements called neurons or nodes. Each
neuron is connected to other neurons by means of
directed links, each with an associated weight that
multiplies the signal transmitted. Each neuron is
characterized by an activation function to its net input
(sum of its weighted input signals) which determines
its output signal, called activation or activity level.

A neural network is characterized by its pattern of
connection between the neurons (called its
architecture) and its method of determining the
weights on the connections (called its training or
learning algorithm). This text will focus on genetic
and error backpropagation algorithms for training
multilayer feedforward network architectures.

Multilayer Feedforward Networks
A multilayer feedforward network consists of a set of
neurons that are logically arranged into two or more
layers. There is an input layer and an output layer,
each containing at least one neuron. Neurons in the
input layer are hypothetical in that they do not
themselves have any input, and they do no
processing. Their activation is defined by the network
input. There are usually one or more hidden layers
sandwiched between the input and output layers. The
term “feedforward” means that information flows in
one direction only. The inputs to the neurons in each
layer come exclusively from the outputs of neurons in
previous layers and outputs from these neurons pass
exclusively to neurons in following layers (Masters,
1993). The output units and the hidden units may
have biases. These bias terms act like weights on
connections from units whose output is always 1.

A single layer net is severely limited in the mappings
it can learn, a multi-layer net (with one or more
hidden layers) can learn any continuous mapping to
an arbitrary accuracy (Fausett, 1994). More than one
hidden layer may be beneficial (at the expense of
more difficult training due to the dramatic increase of
local minima of the function that is being optimized)
for some applications such as learning a function
having discontinuities. A multilayer network with
two hidden layers (the Z and ZZ units) is shown in
Figure.

The activation function of a neuron is usually a
nonlinear function that, when applied to the net input
of a neuron, determines the output of that neuron.
The activation function is generally expected to be
continuous, differentiable, have an unlimited domain
and approach a finite maximum and minimum
asymptotically. Usually the activation function’s
range is limited between (0, 1) and in some cases (-1,
1). For training with backpropagation of errors it is
desirable for computational efficiency that the
function’s derivative is easy to compute and that the
value of the derivative can be expressed in terms of
the value of the function (Fausett, 1994). One of the
most commonly used activation functions (also used
in the Neuro-Gene application) is the binary sigmoid
function, or logistic function which is defined as

f (x) = 1 / (1 + e-x) ,
with

f ’(x) = f (x) [1 – f (x)].

Sometimes using nonlinear activation functions for
all neurons may be detrimental. The squashing
function used in the output layer may cause
compression of extreme values. This may be avoided
by using any linear function, such as the identity
function f (x) = x, for the output layer neurons. The
biggest advantage of using a linear output layer is
that using a regression technique for the output layer
will produce optimal output weights. One potentially
serious drawback to linear activation functions
concerns noise immunity. Although the squashing
functions in the hidden layer provide a fair degree of
buffering, the extra amount provided at the output
layer can sometimes be valuable (Masters, 1993).

Choosing an appropriate number of hidden neurons is
extremely important. Using too few will starve the
network of the resources it needs to solve the
problem. Using too many will increase the training
time. Also an excessive number of hidden neurons
may cause a problem called overfitting. The network
will have so much information processing capability
that it will learn insignificant aspects of the training
set, aspects that are irrelevant to that of the general
population. The purpose of training the neural net is
to achieve a balance between the ability to respond
correctly to the input patterns that are used fot

training (memorization) and the ability to give
reasonably good responses to input that is similar, but
not identical, to that used in training (generalization).
A network with an excessive number of neurons may
lose its ability to generalize and can perform poorly
when called upon to work the general population
even though it achieved excellent results with
training sample data. Thus, it is imperative that the
absolute minimum numbers of hidden neurons which
will perform adequately are used (Masters, 1993).

Figure 1: Multilayer Feedforward Neural Network

with Two Hidden Layers.

One rough guideline for choosing the number of
hidden neurons in many problems is the geometric
pyramid rule. It states that, for many practical
networks, the number of neurons follows a pyramid
shape, with the number decreasing from the input
towards the output. This guideline may underestimate
the number of neurons required in cases where there
are very few inputs and outputs and the problem is
very complex. A more rigorous approach is to start
training and testing with a small number of neurons
and increase the number until the error is acceptably
small or there is no significant improvement
(Masters, 1993).

Training by Backpropagation of Errors
Training a network by backpropagation involves
three stages: the feedforward of the input training
pattern, the backpropagation of the associated error
and the adjustment of the weights.

During feedforward , an input pattern is presented to
the network and the response of the network is
obtained by computing the activation of every neuron
at the first hidden layer and broadcasting that signal
to successive layers. For a network with k outputs,

 X1

Xi

Xn

1

1

Z1

Zh

Zq

ZZ1

ZZj

ZZp

Y1

Yk

Ym

1

…… ……

…… ……

…… ……

…… ……

the output neuron activation yk is compared against
the training sample data tk to determine the associated
error for that pattern. Based on this error, the factor δk
is calculated as

δk = (tk - yk) f ‘(y_inputk) ,

where y_inputk is the net weighted sum of the input
signals to output neuron Yk. This value is used to
distribute information on the error at output unit Yk
back to all units in the next lower layer. It also stored
for later update of output neuron weights (Fausett,
1994). For a hidden layer with j neurons, the factor δj
is computed similarly as

δj = f ‘(zz_inputj) Σ δkwj k ,
 k

where zz_inputj is the net weighted sum of the input
signals to hidden neuron ZZj and wjk represents the
weight values associated with links between hidden
neuron ZZj and all output neurons (Fausett, 1994).
This value is then used to distribute the information
on the error back to all units in the previous hidden
layer, if there are any. It also stored for later update of
the final hidden layer neuron weights. If there are
multiple hidden layers, the factor δh for hidden
neuron Zh of those layers can be computed in a
similar fashion by using the δ values of the next
upper hidden layer neurons and weight values
associated with links between neuron Zh and all
neurons of the next upper hidden layer.

The weights can be updated after each training
pattern is presented but in a more popular variation of
the training algorithm the weights are updated after
one cycle through the entire set of training vectors
(an epoch). For each pattern the weight updates are
accumulated in a weight correction term. The delta
weight correction terms for the output units are
calculated as

∆wj k = α δk zzj (for weights on links to output layer

neuron k),
∆w0 k = α δk (bias correction term for output

layer neuron k),

where α is a user defined constant learning rate and
zzj is the activation of the neurons in the next lower
hidden layer (Fausett, 1994). The weight correction
terms are accumulated over an entire epoch and the
new weights are calculated by adding the weight
correction terms to the old weights at the end of the
epoch. The delta weight correction terms for hidden
layer units can be similarly calculated as

∆vh j = α δj zh (for weights on links to hidden layer
neuron j),

∆v0 j = α δj (bias correction term for hidden layer
neuron j),

where zh is the activation of the neurons in the next
lower hidden layer (Fausett, 1994). If there is no
lower hidden layer, then the input pattern xi should be
used as activations from the previous layer in order to
obtain the weight correction term ∆uih = α δh xi for
weights on links to the first hidden layer neuron h.

Drawbacks of Training By Backpropagation of
Errors

The mathematical basis for the backpropagation
algorithm is the optimization technique known as
gradient descent. The gradient of a function gives the
direction in which the function increases more
rapidly, the negative of the gradient gives the
direction in which the function decreases more
rapidly. For backpropagation, the function is the
network’s error for the training set and the optimized
variables are the weights of the network. The exact
distance to step in the negative gradient, often called
the learning rate, can be critical. If the distance is too
small, convergence will be excessively slow. If it is
too large, the function will jump wildly and never
converge.

There are two very serious flaws in the above
method. First is the fact that the gradient is an
extremely local pointer to optimal function change.
Even a tiny distance away the gradient may point in a
dramatically different direction. This can
dramatically increase the search time. The second
problem is that it is difficult to know in advance how
far to step in the negative gradient direction (Masters,
1993).

Some of these problems have been addressed in
variations of the algorithm, but they fail to address
the problem of escaping false minima. It is
surpisingly easy for gradient algorithms to get stuck
in local minima when learning feedforward network
network weights. Even tiny problems can sport local
minima far inferior to global minima. Network error
functions have broad expanses of plains that are
nearly flat, but do definitely slope downward to a
distant minimum. When a gradient descent algorithm
finds itself in such an area, it will have trouble if it
assumes that it is at a minimum because the gradient
is very small (Masters, 1993).

A genetic algorithm has been chosen as the network
training method for the NeuroGene application as it
facilitates a much wider search to the global
minimum and offers a fair degree of robustness.

Genetic Algorithms
Genetic algorithms are adaptive methods which may
be used to solve search and optimization problems.
They are based on the genetic processes of biological
organisms. In nature evolution is driven by survival

of the fittest. Weak individuals die before
reproducing, while stronger ones live longer and bear
more offspring, who often inherit the qualities that
enabled their parents to survive. Artificial genetic
optimization operates in a similar manner. The basic
principles of genetic algorithms were first laid down
rigorously by Holland (1975).

Genetic algorithms work with a population of
individuals, each representing a possible solution to a
given problem. The parameters of the function to be
optimized are encoded as genes in a chromosome.
Each individual is assigned a fitness score according
to how good a solution to the problem it is. The
highly-fit individuals are given opportunities to
reproduce, by cross breeding with other individuals
in the population. This produces new individuals as
offspring, which share some features taken from each
parent. The least fit members of the population are
less likely to get selected for reproduction, and so die
out.

A whole new population of possible solutions is thus
produced by selecting the best individuals from the
current "generation", and mating them to produce a
new set of individuals. This new generation contains
a higher proportion of the characteristics possessed
by the good members of the previous generation. In
this way, over many generations, good characteristics
are spread throughout the population. By favoring the
mating of the more fit individuals, the most
promising areas of the search space are explored. If
the genetic algorithm has been designed well, the
population will converge to an optimal solution to the
problem.

A genetic algorithm belongs to the class of methods
known as weak methods because it makes relatively
few assumptions about the problem that is being
solved. Genetic algorithms are often described as a
global search method that does not use gradient
information. Thus, non-differentiable functions as
well as functions with multiple local optima represent
classes of problems to which genetic algorithms
might be applied. Genetic algorithms, as a weak
method, are robust but very general. They are not
guaranteed to find the global optimum solution to a
problem, but they are generally good at finding
"acceptably good" solutions to problems "acceptably
quickly". Where specialized techniques exist for
solving particular problems, they are likely to
outperform genetic algorithms in both speed and
accuracy of the final result. The basic mechanism of a
genetic algorithm is so robust that, within fairly wide
margins, parameter settings are not critical.

Both genetic algorithms and neural nets are adaptive,
learn, can deal with highly nonlinear models and
noisy data and are robust, "weak" random search
methods. They do not need gradient information or

smooth functions. For practical purposes they appear
to work best in combination: neural nets can be used
as the prime modeling tool, with a genetic algorithm
used to optimize the network parameters.

Coding
Before a genetic algorithm can be run, a suitable
coding (or representation) for the problem must be
devised. It is assumed that a potential solution to a
problem may be represented as a set of parameters,
such as the weight parameters that optimize a neural
network. These parameters (known as genes) are
joined together to form a string of values often
referred to as a chromosome. For example, in order to
maximize a function of three variables, each variable
may be represented by a 10-bit binary number. The
chromosome would therefore contain three genes,
and consist of 30 binary digits. The explicit genetic
structure represented by a particular chromosome is
referred to as a genotype. The genotype contains the
information required to construct an organism which
is referred to as the phenotype. The phenotype is the
physical expression of the genotype.

For phenotypes that express numerical values, binary
encoding will produce poor results. For example, the
8 bit binary encoding for the number 127 is
01111111, while 128 is encoded as 10000000. A unit
change in the number required all eight bits to
change. Binary encoding is unsuitable for genetic
expression because small changes in numerical
values require large changes in the genotype. To
alleviate this problem, a new coding system, called
Gray code after its inventor, was devised. In this
system, a unit change in the number causes exactly
one bit to change (Masters, 1993).

Evaluation
The evaluation function, or objective function,
provides a measure of performance with respect to a
particular set of parameters. The fitness function
transforms that measure of performance into an
allocation of reproductive opportunities. The
evaluation of a string representing a set of parameters
is independent of the evaluation of any other string.
The fitness of that string, however, is always defined
with respect to other members of the current
population. In the genetic algorithm, fitness is
defined by: fi / fA where fi is the evaluation associated
with string i and fA is the average evaluation of all the
strings in the population (Whitley, 1993).

For neural network weight optimization the objective
function value can be expressed as the network error
for the entire training set. The next step is to convert
the objective function’s value to a raw fitness. Since
the goal is to minimize the objective function, smaller
function values should produce larger fitness values.
Also, later calculations will be simplified if the

fitness is never negative. The best conversion
function can be somewhat problem dependent.
However, the exponential function: f (v) = e-Kv
generally has been found to be useful where the
network error v ranges from 0-1 (Masters, 1993).

The final evaluation step is converting the raw fitness
values to a scaled fitness. If the raw fitness values
were used to determine parent-selection possibilities,
two problems could arise. One is that in the first few
generations, one or a very few extremely superior
individuals usually appear. Their fitness values are so
high that they would be selected as parents too many
times and their genetic material would quickly
dominate the gene pool. Population diversity, which
is crucial to genetic optimization, would be lost early
on. The second problem is just the opposite. After
many generations, clearly inferior individuals will
have been weeded out. The population will consist of
individuals who have relatively high raw fitness. The
maximum fitness will usually be only slightly greater
than the average. As a result, the fittest individuals
will not be selected as parents in the high proportions
necessary for continued rapid development (Masters,
1993).

A popular fitness scaling method involves applying a
linear transform to the raw fitness values such that
the average scaled fitness remains unchanged, but the
maximum scaled fitness becomes a fixed multiple of
the average. However, the presence of just one super-
fit individual (with a fitness ten times greater than
any other, for example), can lead to over-
compression. If the fitness scale is compressed so that
the ratio of maximum to average is 2:1, then the rest
of the population will have fitness values clustered
closely about 1. Although premature convergence has
been prevented, it has been at the expense of
effectively flattening out the fitness function. As
mentioned above, if the fitness function is too flat,
genetic drift will become a problem, so over-
compression may lead not just to slower
performance, but also to drift away from the
maximum.

Fitness ranking is another commonly employed
method, which overcomes the reliance on an extreme
individual (Baker, 1985). Individuals are sorted in
order of raw fitness, and then reproductive fitness
values are assigned according to rank. This may be
done linearly or exponentially. This gives a similar
result to fitness scaling, in that the ratio of the
maximum to average fitness is normalized to a
particular value. However, it also ensures that the
remapped fitness values of intermediate individuals
are regularly spread out. Because of this, the effect of
one or two extreme individuals will be negligible and
over-compression ceases to be a problem. Several
experiments have shown ranking to be superior to
fitness scaling.

Parent Selection
It is helpful to view the execution of the genetic
algorithm as a two stage process. It starts with the
current population. Selection is applied to the current
population to create an intermediate population. Then
recombination and mutation operators are applied to
the intermediate population to create the next
population. The process of going from the current
population to the next population constitutes one
generation in the execution of a genetic algorithm.
Goldberg (1989) refers to this basic implementation
as a Simple Genetic Algorithm.

In the first generation the current population is also
the initial population. After calculating fi / fA for all
the strings in the current population, selection is
carried out. The probability that strings in the current
population are copied (i.e. duplicated) and placed in
the intermediate generation is in proportion to their
fitness.

There are a number of ways to do selection. The
population might be viewed as mapping onto a
roulette wheel, where each individual is represented
by a space that proportionally corresponds to its
fitness. By repeatedly spinning the roulette wheel,
individuals are chosen using stochastic sampling with
replacement to fill the intermediate population.

A selection process that will more closely match the
expected fitness values is remainder stochastic
sampling. For each string i where fi / fA is greater than
1.0, the integer portion of this number indicates how
many copies of that string are directly placed in the
intermediate population. All strings (including those
with fi / fA less than 1.0) then place additional copies
in the intermediate population with a probability
corresponding to the fractional portion of fi / fA. For
example, a string with fi / fA = 1.36 places 1 copy in
the intermediate population, and then receives a 0.36
chance of placing a second copy. A string with a
fitness of fi / fA = 0.54 has a 0.54 chance of placing
one string in the intermediate population (Whitley,
1993).

Remainder stochastic sampling is most efficiently
implemented using a method known as stochastic
universal sampling. In this method it can be assumed
that the population is laid out in random order as in a
pie graph, where each individual is assigned space on
the pie graph in proportion to fitness. An outer
roulette wheel is placed around the pie with N
equally-spaced pointers. A single spin of the roulette
wheel will simultaneously pick all N members of the
intermediate population. The resulting selection is
also unbiased (Baker, 1987).
Implicit fitness remapping methods fill the mating
pool without passing through the intermediate stage

of remapping the fitness. In binary tournament
selection, pairs of individuals are picked at random
from the population. Whichever has the higher fitness
is copied into a mating pool (and then both are
replaced in the original population). This is repeated
until the mating pool is full (Goldberg, 1990). Larger
tournaments may also be used, where the best of n
randomly chosen individuals is copied into the
mating pool. Using larger tournaments has the effect
of increasing the selection pressure, since below-
average individuals are less likely to win a
tournament and vice-versa.

Reproduction
After selection has been carried out the construction
of the intermediate population is complete and
recombination can occur by applying crossover to
randomly paired strings. This operation can be
viewed as creating the next population from the
intermediate population. Recombination operators are
applied in order to generate new samples in the
search space. Crossover is not usually applied to all
pairs of individuals selected for mating. A random
choice is made, where the probability of crossover
being applied is typically between 0.6 and 1.0. If
crossover is not applied, offspring are produced
simply by duplicating the parents. This gives each
individual a chance of passing on its genes without
the disruption of crossover (Whitley, 1993).

A binary string encoding would represent a possible
solution to some parameter optimization problem.
New sample points in the space are generated by
recombining two parent strings. If the string
1101001100101101 and another binary string,
yxyyxyxxyyyxyxxy, in which the values 0 and 1 are
denoted by x and y, are recombined using a single
randomly-chosen recombination point, 1-point
crossover occurs as follows:

11010 \/ 01100101101
yxyyx /\ yxxyyyxyxxy

Swapping the fragments between the two parents
produces the following offspring:

11010yxxyyyxyxxy and yxyyx01100101101

The problem with adding additional crossover points
is that building blocks (hyper-plane partitions within
search space that contain significant genetic
information) are more likely to be disrupted.
However, an advantage of having more crossover
points is that the problem space may be searched
more thoroughly. In 2-point crossover, chromosomes
are regarded as loops formed by joining the ends
together. To exchange a segment from one loop with
that from another loop requires the selection of two
cut points. 1-point crossover can be seen as 2-point

crossover with one of the cut points fixed at the start
of the string. Hence 2-point crossover performs the
same task as 1-point crossover (i.e. exchanging a
single segment), but is more general (Whitley, 1993).

Uniform crossover is radically different to 1-point
crossover. Each gene in the offspring is created by
copying the corresponding gene from one or the other
parent, chosen according to a randomly generated
crossover mask. Where there is a 1 in the crossover
mask, the gene is copied from the first parent, and
where there is a 0 in the mask, the gene is copied
from the second parent (Syswerda, 1989). The
process is repeated with the parents exchanged to
produce the second offspring. A new crossover mask
is randomly generated for each pair of parents.
Offspring therefore contain a mixture of genes from
each parent. The number of effective crossing points
is not fixed, but will average L/2 (where L is the
chromosome length).

Despite analytical results showing uniform crossover
is in every case more disruptive than 2-point
crossover for order-3 schemata (hyper-plane
partitions represented by 3 bit substrings) for all
defining string lengths, several researchers have
suggested that uniform crossover is a better
recombination operator. Spears and DeJong (1991)
speculate that, “With small populations, more
disruptive crossover operators such as uniform or n-
point (n >> 2) may yield better results because they
help overcome the limited information capacity of
smaller populations and the tendency for more
homogeneity.” Uniform crossover appears to be more
robust. Where two chromosomes are similar, the
segments exchanged by 2-point crossover are likely
to be identical, leading to offspring which are
identical to their parents. This is less likely to happen
with uniform crossover.

Mutation
The mutation operator is applied to each offspring
after crossover. For each bit in the new population, a
mutation can occur with some low probability pm. It
is typical for the mutation rate to be within 0.1%-1%
probability. Mutation is applied by flipping the bit
value (Whitley, 1993).

A genetic algorithm will always be subject to
stochastic errors. One such problem is that of genetic
drift. Even in the absence of any selection pressure,
members of the population will still converge to some
point in the solution space. If, by chance, a gene
becomes predominant in the population, then it is just
as likely to become more predominant in the next
generation as it is to become less predominant. If an
increase in predominance is sustained over several
successive generations, and the population is finite,
then a gene can spread to all members of the

population. Once a gene has converged in this way,
crossover cannot introduce new gene values. The rate
of genetic drift can be reduced by increasing the
mutation rate. However, if the mutation rate is too
high, the search becomes effectively random.

Mutation is traditionally seen as a "background"
operator, responsible for introducing alleles or
inadvertently lost gene values, preventing genetic
drift and providing a small element of random search
in the vicinity of the population when it has largely
converged (Whitley, 1993). However, mutation
becomes more productive, and crossover less
productive, as the population converges. Despite its
generally low probability of use, mutation is a very
important operator.

Neurogene Application
The NeuroGene application is a program that runs a
neural network and a genetic algorithm in
conjunction. The neural network is used as the prime
modeling tool and the genetic algorithm is used to
optimize network parameters. The application
permits the user to create any single or double hidden
layer feedforward network architecture and load
sample data for training the network. The network
weights and architecture can be saved at any time
along with input/output data scaling parameters. A
new network may be created by loading this file at
any time. If the network is created from previously
saved weights, the application will only allow
execution of input patterns. Training will not be
allowed in execution mode but a set of input vectors
may be loaded from a file and presented to the
network’s inputs. The application will display the
network’s response to each input vector.

Create New Network Dialog
This dialog permits the user to set sample data
scaling parameters and choose among multilayer
network architectures. The number of neurons at each
hidden layer and the type activation function (linear
or logistic) for the output layer neurons can be set.
The training and test sample data is loaded when a
new network is created. The user can type in the path
for the data file. Test data can be randomly extracted
from the sample data or loaded explicitly. Testing
data is never presented to the network during training
but it is very important for the validation of the
network. Without test samples, the user will have no
measure of the network’s performance when
presented with general real-world data. Test data
validation is the only way to detect over-fitting issues
that can occur during training.

If a variable is used to train output neurons and the
output neurons have an activation function with
bounded range, target activations must certainly be
limited to values that can comfortably be learned.

That is why scaling is very important. Another reason
for uniform scaling is to initially equalize the
importance of variables. If one variable has an order
of magnitude of 1,000,000 while another is about
0.000001, it asking a lot of the learning algorithm to
traverse such a range. The network’s life can be made
a lot easier by giving it data scaled in such a way that
all weights remain in small, predictable ranges.

NeuroGene employs normalization based on the
population’s mean and distribution values. The input
data is standardized to a Z-score by subtracting its
mean and dividing by standard deviation:

Z = (x - µ) / σ

This removes all effects of offset and measurement
scale. Simply scaling to a Z-score is not generally
sufficient for output variables, as the scaled values
would still exceed the activations limits implicit in
the network’s model. NeuroGene will map from Z-
score to neuron activation:

A = r [(x - µ) / σ - Zmin] + Amin,
r = (Amax - Amin) / (Zmax - Zmin)

The practical limits for this mapping can be set in the
network creation dialog. When the network’s
practical output range is set to 20% (of activation
range 0-1) normalized variable practical limits Zmax
and Zmin will be mapped to 0.6 (Amax) and 0.4 (Amin)
respectively. Occasional outlier data falling outside
those boundaries may be clipped at the network’s
truncation limits which can also be set within the
dialog.

Figure 2: Create New Neural Network Dialog

Main Application Screen
The main application screen allows the user to set
various training and genetic algorithm parameters,
and provides several mating selection scheme
choices. After a network has been created, training
can be initiated and terminated by pressing the
“Start/Stop Net Training” button. Training may also

automatically end when the mean square error of the
output dips below “Target Error” or the genetic
algorithm has been running for more than “Max
Generations”. During training, the current generation
number, minimum network error and current
population mean error values are presented in real-
time at the display screen. At the end of a training
session, all input patterns in the sample test set are
presented to the network and the outputs are
compared to sample target outputs for calculating the
root mean square error in the output variable’s
original un-scaled range. The root mean square error
is a good measure of the network’s real-world
performance.

The “crossover rate” parameter defines the
percentage of individuals chosen among the
intermediate population as parents. The “uniform
crossover %p” parameter defines the percentage of
genes the first offspring will receive from one of its
parents and the second offspring will receive from the
other parent. This parameter is 50% for standard
uniform crossover which can cause too much
disruption of valuable genetic information. It must be
noted that a low %p parameter should be
accompanied with a low crossover rate to preserve
the gene pool.

The “Bits per Gene” parameter specifies the number
of bits used to represent each network weight. A large
value will dramatically increase the search space,
which in turn will lead to longer training times or
increased difficulty in convergence to a global
minimum. A low value might not provide enough
resolution for sampling the search space and cause
the algorithm to miss narrow valleys in the objective
function. It is a good idea to use a larger population
size for a larger search space. The “Phenotype
Range” parameter defines the maximum and
minimum network weight values. The gray encoded
genes are decoded and scaled to that range during
execution.

When remainder or universal stochastic sampling is
chosen as the parent selection method, NeuroGene
uses sigma truncation for scaling fitness values:

F’ = F - (Favg – c σ)

Favg is the mean fitness value and σ is the standard
deviation. c is the sigma scaling factor and is set
internally based on the fitness distribution. The user
can also set a mapping constant K, which is used in
error to fitness Gaussian mapping f (v) = e-Kv.

When tournament selection is selected as the parent
selection method, NeuroGene uses an adaptive
tournament size based on the difference between the
population’s mean fitness value and best fitness
value. The difference is expressed in terms of

multiples of the population’s current fitness standard
deviation. Two fitness distribution values,
corresponding to the minimum and maximum
tournament sizes, can be set by the user. NeuroGene
decreases selection pressure by reducing tournament
size when the population contains super-fit
individuals and increases selection pressure when the
population displays a flatter fitness distribution.

If the “Use Elitist Gene Propagation” checkbox is
selected, the fittest individual in the current
population will be guaranteed to pass on its genes to
the next generation. Applying this strategy may lead
to premature convergence of the genetic algorithm.

Figure 3: Neuro-Gene Application Main Screen

When the “Use Linear Regression on Output
Weights” checkbox is selected, output layer neuron
weights will not be represented in the chromosome
bit string. The genetic algorithm will only optimize
hidden layer neuron weights. Neural networks are
explicitly nonlinear. However, the operation of
passing the output activations of one layer to the
input of the next layer is linear. The input applied to
an output layer neuron is a linear combination of the
activations of the neurons in the previous layer. If
that hidden layer’s activations are treated as
independent variables, and if the known desired input
to an output neuron is treated as a dependent variable,
the problem becomes a linear regression problem.
The output neuron weight vector will be optimal in
that it minimizes the mean square error of the input to
the output neuron. To solve with linear regression,
the inverse transfer function of the neuron’s desired
output must be computed for each training sample.
Using linear regression in conjunction with a genetic
algorithm is computationally very intensive but the
algorithm is likely to converge in less generations.
Linear regression interferes with the natural evolution
of the population by producing dominant super-fit
individuals early on, therefore in some cases it may
lead to premature convergence.

BASICS OF NA/K GEOTHERMOMETERS

Chemical geothermometers are important tools that
are used for prediction of equilibrium temperatures of
geothermal systems. These geothermometers are
analytical equations founded in empirical form, on
the basis of data created by measured temperatures
and chemical composition of fluids sampled in hot
springs and wells.

Na/K ratio of geothermal fluids (spring and well
waters) is likely to provide a significant indication of
subsurface temperatures. The Na/K ration in natural
hot water is controlled by a reversible temperature
dependent rock-water equilibrium involving potash-
mica, potash-feldspar and albite. The reversible
relationship appears only at temperatures above
200oC. The Na/K equilibrium adjusts after a
temperature change relatively slowly, which enables
useful information on conditions in the deep aquifer
to be obtained from the values of Na/K in spring
waters.

Na/K geothermometers based on this phenomenon
has evolved in the past 40 years and several
experimentally derived equations have been proposed
by Ellis and Mahon (1967), Ellis (1970), Truesdell
(1976), Fournier, (1979), Tonani, (1980), Arnorsson,
(1983) and Gigenbach, (1988). Those equations work
well for reservoirs with temperatures in the 180-
350oC range, but break down at lower temperatures,
notably at less than 120oC. At these temperatures Na
and K concentrations are influenced by other
minerals, such as clays, and are not controlled only
by feldspar ion-exchange reaction (Nicholson, 1993).

Citing critics of Santoyo and Verma, (1993) and
Verma and Santoyo, (1997) on validity and reliability
of conventional Na/K geothermometers, Diaz et al,
(2008) concluded that the effects of primary error
sources for conventional geothermometers might be
as follows: (1) analytical errors in chemical analysis,
(2) errors in regression coefficients of developed
equations, (3) errors derived from incorrect use of
solute concentration units for geothermometers, (4)
correct geochemical conditions, temperature range
and concentration of same equations, (5) lack of well
temperatures and rock-fluid interaction experimental
temperatures for low and intermediate temperature
ranges, (6) limited number of data collected and
outliers among them. Therefore, Santoyo and Verma,
(1993) and Verma and Santoyo, (1997) examined
Na/K geothermometer through statistical theory of
error propagation, and on this basis proposed new
Na/K geothermometers.

APPLICATIONS OF NEW ANN MODEL FOR
NA/K GEOTHERMOMETERS

The ANN computational technique has been
perceived as an effective tool; (1) for relatively
simple solutions for complex numerical problems, (2)
for substituting experimental works that are difficult
to realize.

Bayram (2001) and Can (2002) proposed new
geothermometer equations of Na/K through
implementation of ANN. Bayram (2001) proposed a
simple ANN model using an non linear logistic
activation function, which was trained with 6 known
geothermometer equations. The architecture of ANN
was trained with synthetic data of Na-K as input layer
neurons and reservoir temperatures as output layer
neurons that were inferred from the results of 6
known geothermometers. On the other hand, Can
(2002) empirically developed a new Na/K
geothermometer on the basis of 39 data set collected
from various geothermal fields around the world. The
architecture of ANN also took into account of a
simple input layer of one neuron, a hidden layer and
an output layer of one neuron. Training was
conducted with back-propagation algorithm using
again a non-linear logistic activation function.

Recently, Diaz et al., (2008) proposed 3 new Na/K
geothermometers developed using ANN and ordinary
linear regression. The obtained results appear to show
that new geothermometers systematically provide
better and reliable estimations of the deep
equilibrium temperatures than the equations
previously reported in the geothermal literature. They
applied ANN method in obtaining two
geothermometers and linear regression approach in
the third one. In the first geothermometer the
architecture of ANN was trained with real data of
reservoir temperatures collected from different fields
around the world as input layer neuron, a hidden
layer and as output layer neuron of Na-K. Training
was performed with back-propagation algorithm
using a linear activation function taking advantage of
linear nature of Na/K geothermometer [(1/T) = A
log(Na/K) + B]. In the second geothermometer
proposed by Diaz-Gonzalez et al., (2008), training
was also conducted by back-propagation method
using this time tangent hyperbolic activation
function.

Considering limitations and uncertainties of
conventional Na/K geothermometers, in this study
several models for this geothermometer have been
developed through training ANN models with data
created from 324 data of measured temperatures and
chemical compositions collected from geothermal
wells all around the world. Data collected and
examined in Diaz et al., (2008) study was composed

of a training data set of 212 and a test data set of 112.
In our study we have also used these two data sets as
training and test data sets, and on the other hand, we
have also utilized another data set of 39 collected by
Can, (2002) as test data for our models.

Using our ANN software the following models are
created in two groups, and in this first group of
models the input is log(Na/K) and the output is 1/T:

• Model#1: Hidden layer & Output Layers =>
Logistic (with 7-8 neurons and percentage of
No. of output range: 20).

• Model#2: Hidden Layer => Logistic; Output
Layer => Linear (with 3 neurons and
percentage of No. of output range: 20-40).

• Model 2a: Hidden Layer => Logistic;
Output Layer => Linear, applied linear
regression for output weights (with 3
neurons and percentage of No. of output
range: 20).

• Model#3: Hidden & Output Layers =>
Linear (with 3 neurons and percentage of
No. of output range: 20).

In the second group of following models inverse
solution is used, and here input is temperature (1/T)
and the output is log(Na/K).

• Model#4: Hidden & Output Layers =>
Logistic (with 3 neurons and percentage of
No. of output range: 40).

• Model#5: Hidden Layer => Logistic; Output
Layer => Linear (with 3 neurons and
percentage of No. of output range: 60).

• Model#6: Hidden & Output Layers =>
Linear (with 3 neurons and percentage of
No. of output range: 80).

As seen in the above models, logistic and linear
activation functions, different percentage of number
of output ranges and inverse models are used.

RMSE values were calculated by comparing training
results with test data set. Minimum RMSE values
obtained for these models are given in Table 1.

Table 1. RMSE Values for Different ANN Models.

Models RMSE Values
Model#1 0.000106
Model#2 0.000098
Model#3 0.000096
Model#4 0.100533
Model#5 0.096819
Model#6 0.086503

The results of first model are shown in Fig. 1. As
seen from Fig. 4, Diaz-Gonzalez et al, (2008) and
Verma and Santoyo (1997) geothermometers
represent well lower and upper limits of scattered

data (n=112), respectively. Our 3 models remain in
between and seem to represent the whole data. Diaz
et al., (2008)’s third geothermometer which was
obtained by regression analysis is very close to our
models.

0.4 0.6 0.8 1 1.2 1.4

log(Na/K)

110

150

190

230

270

310

350

T
, 0

C

Measured Data

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Linear & Output Linear)

Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008a

Diaz-Gonzalez et al., 2008b

Diaz-Gonzalez et al., 2008c

Figure 4: Comparative results of our first three

ANN models with Diaz-Gonzalez et al,
(2008) data set.

Similar results have been obtained with inverse
models as seen in Fig. 5. These models also seem to
represent the whole scattered data better.

0.4 0.6 0.8 1 1.2 1.4

log(Na/K)

110

150

190

230

270

310

350

T
, 0

C

Measured Data

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Linear & Output Linear)

Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008a

Diaz-Gonzalez et al., 2008b

Diaz-Gonzalez et al., 2008c

Figure 5: Comparative results of 3 inverse ANN

models with Diaz-Gonzalez et al, (2008)
data set.

As seen in Fig. 6 all results of our ANN models and
some others for test data set (n=39) using from Can
(2002) are pretty close each other. The best

geothermometer which is close to measured
temperatures is the one of Verma and Santoyo
(1997). It appears that all geothermometers based on
ANN models match better the measured temperatures
in 180o-3500C range. In the lower range <160oC,
Verma and Santoyo (1997) geothermometer performs
better.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

log(Na/K)

110

150

190

230

270

310

350

T
, 0

C

Measured Data

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Linear & Output Linear)

This Work (Inverse: Hidden Logistic & Output Logistic)

This Work (Inverse: Hidden Logistic & Output Linear)

This Work (Inverse: Hidden Linear & Output Linear)

Verma and Santoyo, 1997

Diaz-Gonzalez et al., 2008a

Diaz-Gonzalez et al., 2008b

Diaz-Gonzalez et al., 2008c

Figure 6: Comparative results of our 6 models with

the others models with Can, (2002) data
set.

In order to evaluate the results, a comparative study is
conducted on resulting model solutions. This study is
based on the calculation of percentage of deviation
equation proposed by Verma and Santoyo (1997) as
follows:

% DEV = [(tc-tm)/tm]*100

Where, tc and tm are calculated by geothermometers
and measured temperatures in wells, respectively, and
%DEV is percentage of deviation.

%DEV is used as statistical parameter to evaluate the
exactness of calculated geothermometer
temperatures, assuming that the measured
temperatures are real downhole temperatures of
wells. Results obtained in calculation of %DEV for
the first 3 models are shown in Fig. 4. As it can be
seen in Fig. 4 %DEV is around within 10% like other
geothermometers. On the other hand, %DEV is
unusually high below 160oC. In their work, Diaz et
al., (2008) have pointed out the same problem. They
have attributed this behavior to insufficient data in
that range. We have also observed the same behavior
for our models, as seen in Fig 7.

110 150 190 230 270 310 350

T, 0C

-75

-50

-25

0

25

50

75

D
E

V
, %

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Logistic & Output Linear: LR)

This Work (Hidden Logistic & Output Linear)

Fournier, 1979

Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008

Figure 7: Comparative results of %DEV for the first

4 ANN models with Diaz-Gonzalez et al,
(2008) data set.

110 150 190 230 270 310 350

T, 0C

-75

-50

-25

0

25

50

75
This Work (Hidden Logistic & Output Logistic)
This Work (Hidden Logistic & Output Linear)

This Work (Hidden Logistic & Output Linear)

Fournier, 1979
Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008

Figure 8: Comparative results of %DEV for the first

3 ANN models with Can, (2002) data set.

On the other hand, as seen in Fig. 8 all ANN based
geothermometers seem to underestimate bottomhole
temperatures in that range (<160oC) when Can (2002)
data set is used. There is a remarkable difference
between two data sets below 160oC. For this range,
while log(Na/K) values range from 0.8 to 1.4 in Diaz
et al., (2008) data set, they are found between 1.4 and
2.2 in Can (2002) data set. This may have been born
from the fact that very few data really exist in Can
(2002) data set below 160oC. On the other hand, there
might be a difference between chemical
compositional characteristics of samples collected.

Moreover, there may be outliers within the data set of
Can (2002) data set.

CONCLUDING REMARKS

• A new ANN software using genetic
algorithm is made

• Several ANN models that represent well the
Na/K geothermometer are created.

• It seems more reliable data are needed to
have a Na/K geothermometer representing
better resources below 160oC.

ACKNOWLEDGEMENT

We would like to extend our gratitude to Dr.
Surendra Pal Verma and Lorena Diaz-Gonzalez and
her coauthors for providing us data sets that have
enabled us to realize this study.

REFERENCES

Arnorsson, S., 1983. “Chemical Equilibria in
Icelandic Geothermal Systems; Implications for
Chemical Geothermometry Investigations,”
Geothermics, 12, 119-128.

Baker, J., 1985. “Adaptive selection methods for
genetic algorithms.”, Proc. International Conf. on
Genetic Algorithms and Their Applications. J.
Grefenstette, ed. Lawrence Erlbaum.

Baker, J., 1987. “Reducing Bias and Inefficiency in
the Selection Algorithm”, Genetic Algorithms
and Their Applications: Proc. Second
International Conf. J. Grefenstette, ed. Lawrence
Erlbaum.

Bayram, A.F., 2001. “Application of An Artificial
Neural Network Model to A Na-K
Geothermometer,” Journal of Volcanology and
Geothermal Research 112 (2001) 75-81.

Can, I., 2002. “A New Improved NA/K
Geothermometer by Artificial Neural Networks,”
Geothermics 31(2002) 751-760.

Diaz, G.L., Santoyo, E., y Reyes, J.R., 2008.
“Desarollo de Nuevos Geotermometros
Mejorados de Na/K Usando Redes Neoronales
Artificiales Estadisticas: Aplicacion a la
Prediccion de Temperaturas de Sistemas
Geotermicos,” Revista Mexicana de Ciencias
Geologicas, 2008, 25(3), 465-482.

Ellis A. J. and Mahon W.A.J., 1967. “Natural
Hydrothermal Systems and Experimental Hot-
Water/Rock Interactions (Part II),” Geochim.
Cosmochim. Acta, 31, 519-538.

Ellis, A.J., 1970. “Quantitative Interpretation of
Chemical Characteristics of Hydrothermal
Systems,” Geothermics, 25, 219-226.

Fausett, L., 1994. “Fundamentals of Neural
Networks”, Prentice-Hall, Inc.

Fournier, R.O., 1979. “A Revised Equation for Na/K
Geothermometer,” Geoth. Res. Council Trans.,
3, 221-224.

Gigenbach, W.F., 1988. “Geothermal Solute
Equilibria. Derivation of Na-K-Mg-Ca
Geoindicatores,” Geochim. Cosmochim.Acta, 52,
2749-2765.

Goldberg, D., 1989. “Genetic Algorithms in Search,
Optimization and Machine Learning”, Reading,
MA: Addison-Wesley.

Goldberg, D., 1990. “A Note on Boltzmann
Tournament Selection for Genetic Algorithms
and Population-oriented Simulated Annealing”,
TCGA 90003, Engineering Mechanics, Univ.
Alabama.

Holland, J.H., 1975. "Adaptation in Natural and
Artificial Systems", MIT Press.

Masters T., 1993. “Practical Neural Network Recipes
in C++”, Morgan-Kaufmann.

Nicholson, K., 1993. “Geothermal Fluids. Chemistry
and Exploration Techniques”, Springer-Verlag,
Berlin Heidelberg, 72-73.

Santoyo E. and Verma, S.P., 1993. “Evalucion de
Errores en el Uso de los Geotermometros de
SiO2 y Na/K para la Determinacion de
Temperaturas en Sistemas Geotermicos,”
Geofisica Internacional, 32, 287-298.

Spears, W. and DeJong, K., 1991. “An Analysis of
Multi-Point Crossover”, Foundations of Genetic
Algorithms, G. Rawlins, ed. Morgan-Kaufmann.

Syswerda, G., 1989. “Uniform Crossover in Genetic
Algorithms”, Proc 3rd International Conf on
Genetic Algorithms, Morgan-Kaufmann, pp 2-9.

Tonani, F., 1980. “Some Remarks on the Application
of Geochemical Techniques in Geothermal
Exploration,” In: Proc. Adv. Eur. Geoth. Res.,
Second Symposium, Strasburg, 428-443.

Truesdell, A.H., 1976. “Summary of Section III.
Geochemical Techniques in Exploration,”
Proceedings 2nd UN Symposium on the
development and use of geothermal resources.
San Fransisco, 1, Iiii-Ixxix.

Verma S.P. and Santoyo, E., 1997. “New Improved
Equations for Na/K, Na/Li and SiO2
Geothermometers by Outlier Detection and
Rejection,” Journal of Volcanology and
Geothermal Research, 79(1-2), 9-24.

Whitley, D., 1993. "A Genetic Algorithm Tutorial",
Technical Report CS-93-103, Colorado State
University.

