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ABSTRACT 

In this study, a brief explanation is first given on 
solute Na/K geothermometers developed until now, 
and a new Na/K geothermometer model is presented 
after using world geothermal database (n=212) to the 
ANN as a training set and another database (n=112) 
as a test set. In this model Na and K values are 
treated as input values and geothermometer 
temperatures as output values. A multilayer feed-
forward neural network is trained using a genetic 
algorithm for optimizing hidden layer neuron weights 
and linear regression for optimizing output neuron 
weights. The model is successfully evaluated and 
compared with actual deep temperature 
measurements to avoid training bias. 

INTRODUCTION 

Artificial neural networks have lately been popular 
because of their applicability and ability to learn non-
linear models, and simple implementation. New 
artificial neural network software is developed for 
modeling geothermal energy related problems. The 
code is first used for modeling Na/K 
geothermometer. Several versions of Na/K 
geothermometer have previously been studied using 
ANN by Can (2002), Bayram (2001) and Diaz-
Gonzalez et al. (2008). In all these studies multilayer 
networks are trained by back-propagation algorithms. 
The new ANN software utilizes a genetic algorithm 
for optimizing neuron weights instead of back-
propagation of errors. The use of a genetic algorithm 
is expected to reduce the probability of convergence 
to local minima of the network’s error function 
occurring in back-propagation algorithms. 

ANN SOFTWARE 

An artificial neural network is an information 
processing system that shares characteristics with 
biological neural networks. Artificial neural networks 
have been developed as generalizations of 
mathematical models of human cognition and neural 
biology. Neural nets can be applied to a wide variety 

of problems, such as storing or recalling data or 
patterns, classifying patterns, noise reduction, 
function approximation, performing general 
mappings  from input patterns to output patterns, 
finding solutions to constrained optimization 
problems, noise reduction, function approximation 
and time series prediction. 
 
A neural net consists of a large number of simple 
processing elements called neurons or nodes. Each 
neuron is connected to other neurons by means of 
directed links, each with an associated weight that 
multiplies the signal transmitted. Each neuron is 
characterized by an activation function to its net input 
(sum of its weighted input signals) which determines 
its output signal, called activation or activity level. 
 
A neural network is characterized by its pattern of 
connection between the neurons (called its 
architecture) and its method of determining the 
weights on the connections (called its training or 
learning algorithm). This text will focus on genetic 
and error backpropagation algorithms for training 
multilayer feedforward network architectures. 

Multilayer Feedforward Networks 
A multilayer feedforward network consists of a set of 
neurons that are logically arranged into two or more 
layers. There is an input layer and an output layer, 
each containing at least one neuron. Neurons in the 
input layer are hypothetical in that they do not 
themselves have any input, and they do no 
processing. Their activation is defined by the network 
input. There are usually one or more hidden layers 
sandwiched between the input and output layers. The 
term “feedforward” means that information flows in 
one direction only. The inputs to the neurons in each 
layer come exclusively from the outputs of neurons in 
previous layers and outputs from these neurons pass 
exclusively to neurons in following layers (Masters, 
1993). The output units and the hidden units may 
have biases. These bias terms act like weights on 
connections from units whose output is always 1. 
 



A single layer net is severely limited in the mappings 
it can learn, a multi-layer net ( with one or more 
hidden layers ) can learn any continuous mapping to 
an arbitrary accuracy (Fausett, 1994). More than one 
hidden layer may be beneficial ( at the expense of 
more difficult training due to the dramatic increase of 
local minima of the function that is being optimized ) 
for some applications such as learning a function 
having discontinuities. A multilayer network with 
two hidden layers ( the Z and ZZ units ) is shown in 
Figure. 
 
The activation function of a neuron is usually a 
nonlinear function that, when applied to the net input 
of a neuron, determines the output of that neuron. 
The activation function is generally expected to be 
continuous, differentiable, have an unlimited domain 
and approach a finite maximum and minimum 
asymptotically. Usually the activation function’s 
range is limited between (0, 1) and in some cases (-1, 
1). For training with backpropagation of errors it is 
desirable for computational efficiency that the 
function’s derivative is easy to compute and that the 
value of the derivative can be expressed in terms of 
the value of the function (Fausett, 1994). One of the 
most commonly used activation functions ( also used 
in the Neuro-Gene application ) is the binary sigmoid 
function, or logistic function which is defined as 
 

f ( x ) = 1 /  ( 1 + e-x ) , 
with 

f ’( x ) = f ( x ) [ 1 – f ( x ) ]. 
 
Sometimes using nonlinear activation functions for 
all neurons may be detrimental. The squashing 
function used in the output layer may cause 
compression of extreme values. This may be avoided 
by using any linear function, such as the identity 
function f (x) = x, for the output layer neurons. The 
biggest advantage of using a linear output layer is 
that using a regression technique for the output layer 
will produce optimal output weights. One potentially 
serious drawback to linear activation functions 
concerns noise immunity. Although the squashing 
functions in the hidden layer provide a fair degree of 
buffering, the extra amount provided at the output 
layer can sometimes be valuable (Masters, 1993). 
 
Choosing an appropriate number of hidden neurons is 
extremely important. Using too few will starve the 
network of the resources it needs to solve the 
problem. Using too many will increase the training 
time. Also an excessive number of hidden neurons 
may cause a problem called overfitting. The network 
will have so much information processing capability 
that it will learn insignificant aspects of the training 
set, aspects that are irrelevant to that of the general 
population. The purpose of training the neural net is 
to achieve a balance between the ability to respond 
correctly to the input patterns that are used fot 

training (memorization) and the ability to give 
reasonably good responses to input that is similar, but 
not identical, to that used in training (generalization). 
A network with an excessive number of neurons may 
lose its ability to generalize and can perform poorly 
when called upon to work the general population 
even though it achieved excellent results with 
training sample data. Thus, it is imperative that the 
absolute minimum numbers of hidden neurons which 
will perform adequately are used (Masters, 1993). 
 
 

 
 
Figure 1: Multilayer Feedforward Neural Network 

with Two Hidden Layers. 
 
One rough guideline for choosing the number of 
hidden neurons in many problems is the geometric 
pyramid rule. It states that, for many practical 
networks, the number of neurons follows a pyramid 
shape, with the number decreasing from the input 
towards the output. This guideline may underestimate 
the number of neurons required in cases where there 
are very few inputs and outputs and the problem is 
very complex. A more rigorous approach is to start 
training and testing with a small number of neurons 
and increase the number until the error is acceptably 
small or there is no significant improvement 
(Masters, 1993). 

Training by Backpropagation of Errors 
Training a network by backpropagation involves 
three stages: the feedforward of the input training 
pattern, the backpropagation of the associated error 
and the adjustment of the weights. 
 
During feedforward , an input pattern is presented to 
the network and the response of the network is 
obtained by computing the activation of every neuron 
at the first hidden layer and broadcasting that signal 
to successive layers. For a network with k outputs, 
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the output neuron activation yk is compared against 
the training sample data tk to determine the associated 
error for that pattern. Based on this error, the factor δk 
is calculated as 
 

δk = ( tk - yk ) f ‘( y_inputk ) , 
 
where y_inputk is the net weighted sum of the input 
signals to output neuron Yk. This value is used to 
distribute information on the error at output unit Yk 
back to all units in the next lower layer. It also stored 
for later update of output neuron weights (Fausett, 
1994). For a hidden layer with j neurons, the factor δj 
is computed similarly as 
 

δj = f ‘( zz_inputj ) Σ δkwj k , 
                               k 

where zz_inputj is the net weighted sum of the input 
signals to hidden neuron ZZj and wjk represents the 
weight values associated with links between hidden 
neuron ZZj and all output neurons (Fausett, 1994). 
This value is then used to distribute the information 
on the error back to all units in the previous hidden 
layer, if there are any. It also stored for later update of 
the final hidden layer neuron weights. If there are 
multiple hidden layers, the factor δh for hidden 
neuron Zh of those layers can be computed in a 
similar fashion by using the δ values of the next 
upper hidden layer neurons and weight values 
associated with links between neuron Zh and all 
neurons of the next upper hidden layer. 
 
The weights can be updated after each training 
pattern is presented but in a more popular variation of 
the training algorithm the weights are updated after 
one cycle through the entire set of training vectors 
(an epoch). For each pattern the weight updates are 
accumulated in a weight correction term. The delta 
weight correction terms for the output units are 
calculated as 
 
∆wj k = α δk zzj     ( for weights on links to output layer 

neuron k ), 
∆w0 k = α δk        ( bias correction term for output 

layer neuron k ), 
 
where α is a user defined constant learning rate and 
zzj is the activation of the neurons in the next lower 
hidden layer (Fausett, 1994). The weight correction 
terms are accumulated over an entire epoch and the 
new weights are calculated by adding the weight 
correction terms to the old weights at the end of the 
epoch. The delta weight correction terms for hidden 
layer units can be similarly calculated as 
 

∆vh j = α δj zh     (for weights on links to hidden layer 
neuron j), 

∆v0 j = α δj        (bias correction term for hidden layer 
neuron j), 

 

where zh is the activation of the neurons in the next 
lower hidden layer (Fausett, 1994). If there is no 
lower hidden layer, then the input pattern xi should be 
used as activations from the previous layer in order to 
obtain the weight correction term ∆uih = α δh xi for 
weights on links to the first hidden layer neuron h. 

Drawbacks of Training By Backpropagation of 
Errors 
 
The mathematical basis for the backpropagation 
algorithm is the optimization technique known as 
gradient descent. The gradient of a function gives the 
direction in which the function increases more 
rapidly, the negative of the gradient gives the 
direction in which the function decreases more 
rapidly. For backpropagation, the function is the 
network’s error for the training set and the optimized 
variables are the weights of the network. The exact 
distance to step in the negative gradient, often called 
the learning rate, can be critical. If the distance is too 
small, convergence will be excessively slow. If it is 
too large, the function will jump wildly and never 
converge. 
 
There are two very serious flaws in the above 
method. First is the fact that the gradient is an 
extremely local pointer to optimal function change. 
Even a tiny distance away the gradient may point in a 
dramatically different direction. This can 
dramatically increase the search time. The second 
problem is that it is difficult to know in advance how 
far to step in the negative gradient direction (Masters, 
1993). 
 
Some of these problems have been addressed in 
variations of the algorithm, but they fail to address 
the problem of escaping false minima. It is 
surpisingly easy for gradient algorithms to get stuck 
in local minima when learning feedforward network 
network weights. Even tiny problems can sport local 
minima far inferior to global minima. Network error 
functions have broad expanses of plains that are 
nearly flat, but do definitely slope downward to a 
distant minimum. When a gradient descent algorithm 
finds itself in such an area, it will have trouble if it 
assumes that it is at a minimum because the gradient 
is very small (Masters, 1993). 
 
A genetic algorithm has been chosen as the network 
training method for the NeuroGene application as it 
facilitates a much wider search to the global 
minimum and offers a fair degree of robustness. 

Genetic Algorithms 
Genetic algorithms are adaptive methods which may 
be used to solve search and optimization problems. 
They are based on the genetic processes of biological 
organisms. In nature evolution is driven by survival 



of the fittest. Weak individuals die before 
reproducing, while stronger ones live longer and bear 
more offspring, who often inherit the qualities that 
enabled their parents to survive. Artificial genetic 
optimization operates in a similar manner. The basic 
principles of genetic algorithms were first laid down 
rigorously by Holland (1975). 
 
Genetic algorithms work with a population of 
individuals, each representing a possible solution to a 
given problem. The parameters of the function to be 
optimized are encoded as genes in a chromosome. 
Each individual is assigned a fitness score according 
to how good a solution to the problem it is. The 
highly-fit individuals are given opportunities to 
reproduce, by cross breeding with other individuals 
in the population. This produces new individuals as 
offspring, which share some features taken from each 
parent. The least fit members of the population are 
less likely to get selected for reproduction, and so die 
out. 
 
A whole new population of possible solutions is thus 
produced by selecting the best individuals from the 
current "generation", and mating them to produce a 
new set of individuals. This new generation contains 
a higher proportion of the characteristics possessed 
by the good members of the previous generation. In 
this way, over many generations, good characteristics 
are spread throughout the population. By favoring the 
mating of the more fit individuals, the most 
promising areas of the search space are explored. If 
the genetic algorithm has been designed well, the 
population will converge to an optimal solution to the 
problem. 
 
A genetic algorithm belongs to the class of methods 
known as weak methods because it makes relatively 
few assumptions about the problem that is being 
solved. Genetic algorithms are often described as a 
global search method that does not use gradient 
information. Thus, non-differentiable functions as 
well as functions with multiple local optima represent 
classes of problems to which genetic algorithms 
might be applied. Genetic algorithms, as a weak 
method, are robust but very general. They are not 
guaranteed to find the global optimum solution to a 
problem, but they are generally good at finding 
"acceptably good" solutions to problems "acceptably 
quickly". Where specialized techniques exist for 
solving particular problems, they are likely to 
outperform genetic algorithms in both speed and 
accuracy of the final result. The basic mechanism of a 
genetic algorithm is so robust that, within fairly wide 
margins, parameter settings are not critical. 
 
Both genetic algorithms and neural nets are adaptive, 
learn, can deal with highly nonlinear models and 
noisy data and are robust, "weak" random search 
methods. They do not need gradient information or 

smooth functions. For practical purposes they appear 
to work best in combination: neural nets can be used 
as the prime modeling tool, with a genetic algorithm 
used to optimize the network parameters. 

Coding 
Before a genetic algorithm can be run, a suitable 
coding (or representation) for the problem must be 
devised. It is assumed that a potential solution to a 
problem may be represented as a set of parameters, 
such as the weight parameters that optimize a neural 
network. These parameters (known as genes) are 
joined together to form a string of values often 
referred to as a chromosome. For example, in order to 
maximize a function of three variables, each variable 
may be represented by a 10-bit binary number. The 
chromosome would therefore contain three genes, 
and consist of 30 binary digits. The explicit genetic 
structure represented by a particular chromosome is 
referred to as a genotype. The genotype contains the 
information required to construct an organism which 
is referred to as the phenotype. The phenotype is the 
physical expression of the genotype. 
 
For phenotypes that express numerical values, binary 
encoding will produce poor results. For example, the 
8 bit binary encoding for the number 127 is 
01111111, while 128 is encoded as 10000000. A unit 
change in the number required all eight bits to 
change. Binary encoding is unsuitable for genetic 
expression because small changes in numerical 
values require large changes in the genotype. To 
alleviate this problem, a new coding system, called 
Gray code after its inventor, was devised. In this 
system, a unit change in the number causes exactly 
one bit to change (Masters, 1993). 

Evaluation 
The evaluation function, or objective function, 
provides a measure of performance with respect to a 
particular set of parameters. The fitness function 
transforms that measure of performance into an 
allocation of reproductive opportunities. The 
evaluation of a string representing a set of parameters 
is independent of the evaluation of any other string. 
The fitness of that string, however, is always defined 
with respect to other members of the current 
population. In the genetic algorithm, fitness is 
defined by: fi / fA where fi is the evaluation associated 
with string i and fA is the average evaluation of all the 
strings in the population (Whitley, 1993). 
 
For neural network weight optimization the objective 
function value can be expressed as the network error 
for the entire training set. The next step is to convert 
the objective function’s value to a raw fitness. Since 
the goal is to minimize the objective function, smaller 
function values should produce larger fitness values. 
Also, later calculations will be simplified if the 



fitness is never negative. The best conversion 
function can be somewhat problem dependent. 
However, the exponential function: f (v) = e-Kv 
generally has been found to be useful where the 
network error v ranges from 0-1 (Masters, 1993). 
 
The final evaluation step is converting the raw fitness 
values to a scaled fitness. If the raw fitness values 
were used to determine parent-selection possibilities, 
two problems could arise. One is that in the first few 
generations, one or a very few extremely superior 
individuals usually appear. Their fitness values are so 
high that they would be selected as parents too many 
times and their genetic material would quickly 
dominate the gene pool. Population diversity, which 
is crucial to genetic optimization, would be lost early 
on. The second problem is just the opposite. After 
many generations, clearly inferior individuals will 
have been weeded out. The population will consist of 
individuals who have relatively high raw fitness. The 
maximum fitness will usually be only slightly greater 
than the average. As a result, the fittest individuals 
will not be selected as parents in the high proportions 
necessary for continued rapid development (Masters, 
1993). 
 
A popular fitness scaling method involves applying a 
linear transform to the raw fitness values such that 
the average scaled fitness remains unchanged, but the 
maximum scaled fitness becomes a fixed multiple of 
the average. However, the presence of just one super-
fit individual (with a fitness ten times greater than 
any other, for example), can lead to over-
compression. If the fitness scale is compressed so that 
the ratio of maximum to average is 2:1, then the rest 
of the population will have fitness values clustered 
closely about 1. Although premature convergence has 
been prevented, it has been at the expense of 
effectively flattening out the fitness function. As 
mentioned above, if the fitness function is too flat, 
genetic drift will become a problem, so over-
compression may lead not just to slower 
performance, but also to drift away from the 
maximum. 
 
Fitness ranking is another commonly employed 
method, which overcomes the reliance on an extreme 
individual (Baker, 1985). Individuals are sorted in 
order of raw fitness, and then reproductive fitness 
values are assigned according to rank. This may be 
done linearly or exponentially. This gives a similar 
result to fitness scaling, in that the ratio of the 
maximum to average fitness is normalized to a 
particular value. However, it also ensures that the 
remapped fitness values of intermediate individuals 
are regularly spread out. Because of this, the effect of 
one or two extreme individuals will be negligible and 
over-compression ceases to be a problem. Several 
experiments have shown ranking to be superior to 
fitness scaling. 

Parent Selection 
It is helpful to view the execution of the genetic 
algorithm as a two stage process. It starts with the 
current population. Selection is applied to the current 
population to create an intermediate population. Then 
recombination and mutation operators are applied to 
the intermediate population to create the next 
population. The process of going from the current 
population to the next population constitutes one 
generation in the execution of a genetic algorithm. 
Goldberg (1989) refers to this basic implementation 
as a Simple Genetic Algorithm. 
 
In the first generation the current population is also 
the initial population. After calculating fi / fA for all 
the strings in the current population, selection is 
carried out. The probability that strings in the current 
population are copied (i.e. duplicated) and placed in 
the intermediate generation is in proportion to their 
fitness. 
 
There are a number of ways to do selection. The 
population might be viewed as mapping onto a 
roulette wheel, where each individual is represented 
by a space that proportionally corresponds to its 
fitness. By repeatedly spinning the roulette wheel, 
individuals are chosen using stochastic sampling with 
replacement to fill the intermediate population. 
 
A selection process that will more closely match the 
expected fitness values is remainder stochastic 
sampling. For each string i where fi / fA is greater than 
1.0, the integer portion of this number indicates how 
many copies of that string are directly placed in the 
intermediate population. All strings (including those 
with fi / fA less than 1.0) then place additional copies 
in the intermediate population with a probability 
corresponding to the fractional portion of fi / fA. For 
example, a string with fi / fA = 1.36 places 1 copy in 
the intermediate population, and then receives a 0.36 
chance of placing a second copy. A string with a 
fitness of fi / fA = 0.54 has a 0.54 chance of placing 
one string in the intermediate population (Whitley, 
1993). 
 
Remainder stochastic sampling is most efficiently 
implemented using a method known as stochastic 
universal sampling. In this method it can be assumed 
that the population is laid out in random order as in a 
pie graph, where each individual is assigned space on 
the pie graph in proportion to fitness. An outer 
roulette wheel is placed around the pie with N 
equally-spaced pointers. A single spin of the roulette 
wheel will simultaneously pick all N members of the 
intermediate population. The resulting selection is 
also unbiased (Baker, 1987). 
Implicit fitness remapping methods fill the mating 
pool without passing through the intermediate stage 



of remapping the fitness. In binary tournament 
selection, pairs of individuals are picked at random 
from the population. Whichever has the higher fitness 
is copied into a mating pool (and then both are 
replaced in the original population). This is repeated 
until the mating pool is full (Goldberg, 1990). Larger 
tournaments may also be used, where the best of n 
randomly chosen individuals is copied into the 
mating pool. Using larger tournaments has the effect 
of increasing the selection pressure, since below-
average individuals are less likely to win a 
tournament and vice-versa. 

Reproduction 
After selection has been carried out the construction 
of the intermediate population is complete and 
recombination can occur by applying crossover to 
randomly paired strings. This operation can be 
viewed as creating the next population from the 
intermediate population. Recombination operators are 
applied in order to generate new samples in the 
search space. Crossover is not usually applied to all 
pairs of individuals selected for mating. A random 
choice is made, where the probability of crossover 
being applied is typically between 0.6 and 1.0. If 
crossover is not applied, offspring are produced 
simply by duplicating the parents. This gives each 
individual a chance of passing on its genes without 
the disruption of crossover (Whitley, 1993). 
 
A binary string encoding would represent a possible 
solution to some parameter optimization problem. 
New sample points in the space are generated by 
recombining two parent strings. If the string 
1101001100101101 and another binary string, 
yxyyxyxxyyyxyxxy, in which the values 0 and 1 are 
denoted by x and y, are recombined using a single 
randomly-chosen recombination point, 1-point 
crossover occurs as follows: 
 

11010 \/ 01100101101 
yxyyx /\ yxxyyyxyxxy 

 
Swapping the fragments between the two parents 
produces the following offspring: 
 

11010yxxyyyxyxxy and yxyyx01100101101 
 
The problem with adding additional crossover points 
is that building blocks (hyper-plane partitions within 
search space that contain significant genetic 
information) are more likely to be disrupted. 
However, an advantage of having more crossover 
points is that the problem space may be searched 
more thoroughly. In 2-point crossover, chromosomes 
are regarded as loops formed by joining the ends 
together. To exchange a segment from one loop with 
that from another loop requires the selection of two 
cut points. 1-point crossover can be seen as 2-point 

crossover with one of the cut points fixed at the start 
of the string. Hence 2-point crossover performs the 
same task as 1-point crossover (i.e. exchanging a 
single segment), but is more general (Whitley, 1993). 
 
Uniform crossover is radically different to 1-point 
crossover. Each gene in the offspring is created by 
copying the corresponding gene from one or the other 
parent, chosen according to a randomly generated 
crossover mask. Where there is a 1 in the crossover 
mask, the gene is copied from the first parent, and 
where there is a 0 in the mask, the gene is copied 
from the second parent (Syswerda, 1989). The 
process is repeated with the parents exchanged to 
produce the second offspring. A new crossover mask 
is randomly generated for each pair of parents. 
Offspring therefore contain a mixture of genes from 
each parent. The number of effective crossing points 
is not fixed, but will average L/2 (where L is the 
chromosome length). 
 
Despite analytical results showing uniform crossover 
is in every case more disruptive than 2-point 
crossover for order-3 schemata (hyper-plane 
partitions represented by 3 bit substrings) for all 
defining string lengths, several researchers have 
suggested that uniform crossover is a better 
recombination operator. Spears and DeJong (1991) 
speculate that, “With small populations, more 
disruptive crossover operators such as uniform or n-
point (n >> 2) may yield better results because they 
help overcome the limited information capacity of 
smaller populations and the tendency for more 
homogeneity.” Uniform crossover appears to be more 
robust. Where two chromosomes are similar, the 
segments exchanged by 2-point crossover are likely 
to be identical, leading to offspring which are 
identical to their parents. This is less likely to happen 
with uniform crossover. 

Mutation 
The mutation operator is applied to each offspring 
after crossover. For each bit in the new population, a 
mutation can occur with some low probability pm. It 
is typical for the mutation rate to be within 0.1%-1% 
probability. Mutation is applied by flipping the bit 
value (Whitley, 1993). 
 
A genetic algorithm will always be subject to 
stochastic errors. One such problem is that of genetic 
drift. Even in the absence of any selection pressure, 
members of the population will still converge to some 
point in the solution space. If, by chance, a gene 
becomes predominant in the population, then it is just 
as likely to become more predominant in the next 
generation as it is to become less predominant. If an 
increase in predominance is sustained over several 
successive generations, and the population is finite, 
then a gene can spread to all members of the 



population. Once a gene has converged in this way, 
crossover cannot introduce new gene values. The rate 
of genetic drift can be reduced by increasing the 
mutation rate. However, if the mutation rate is too 
high, the search becomes effectively random. 
 
Mutation is traditionally seen as a "background" 
operator, responsible for introducing alleles or 
inadvertently lost gene values, preventing genetic 
drift and providing a small element of random search 
in the vicinity of the population when it has largely 
converged (Whitley, 1993). However, mutation 
becomes more productive, and crossover less 
productive, as the population converges. Despite its 
generally low probability of use, mutation is a very 
important operator. 

Neurogene Application 
The NeuroGene application is a program that runs a 
neural network and a genetic algorithm in 
conjunction. The neural network is used as the prime 
modeling tool and the genetic algorithm is used to 
optimize network parameters. The application 
permits the user to create any single or double hidden 
layer feedforward network architecture and load 
sample data for training the network. The network 
weights and architecture can be saved at any time 
along with input/output data scaling parameters. A 
new network may be created by loading this file at 
any time. If the network is created from previously 
saved weights, the application will only allow 
execution of input patterns. Training will not be 
allowed in execution mode but a set of input vectors 
may be loaded from a file and presented to the 
network’s inputs. The application will display the 
network’s response to each input vector. 

Create New Network Dialog 
This dialog permits the user to set sample data 
scaling parameters and choose among multilayer 
network architectures. The number of neurons at each 
hidden layer and the type activation function (linear 
or logistic) for the output layer neurons can be set. 
The training and test sample data is loaded when a 
new network is created. The user can type in the path 
for the data file. Test data can be randomly extracted 
from the sample data or loaded explicitly. Testing 
data is never presented to the network during training 
but it is very important for the validation of the 
network. Without test samples, the user will have no 
measure of the network’s performance when 
presented with general real-world data. Test data 
validation is the only way to detect over-fitting issues 
that can occur during training. 
 
If a variable is used to train output neurons and the 
output neurons have an activation function with 
bounded range, target activations must certainly be 
limited to values that can comfortably be learned. 

That is why scaling is very important. Another reason 
for uniform scaling is to initially equalize the 
importance of variables. If one variable has an order 
of magnitude of 1,000,000 while another is about 
0.000001, it asking a lot of the learning algorithm to 
traverse such a range. The network’s life can be made 
a lot easier by giving it data scaled in such a way that 
all weights remain in small, predictable ranges. 
 
NeuroGene employs normalization based on the 
population’s mean and distribution values. The input 
data is standardized to a Z-score by subtracting its 
mean and dividing by standard deviation: 
 

Z = (x - µ) / σ 
 
This removes all effects of offset and measurement 
scale. Simply scaling to a Z-score is not generally 
sufficient for output variables, as the scaled values 
would still exceed the activations limits implicit in 
the network’s model. NeuroGene will map from Z-
score to neuron activation: 
 

A = r [(x - µ) / σ - Zmin] + Amin, 
r = (Amax - Amin) / (Zmax - Zmin) 

 
The practical limits for this mapping can be set in the 
network creation dialog. When the network’s 
practical output range is set to 20% (of activation 
range 0-1) normalized variable practical limits Zmax 
and Zmin will be mapped to 0.6 (Amax) and 0.4 (Amin) 
respectively. Occasional outlier data falling outside 
those boundaries may be clipped at the network’s 
truncation limits which can also be set within the 
dialog. 
 

 
 

Figure 2: Create New Neural Network Dialog 
 

Main Application Screen 
The main application screen allows the user to set 
various training and genetic algorithm parameters, 
and provides several mating selection scheme 
choices. After a network has been created, training 
can be initiated and terminated by pressing the 
“Start/Stop Net Training” button. Training may also 



automatically end when the mean square error of the 
output dips below “Target Error” or the genetic 
algorithm has been running for more than “Max 
Generations”. During training, the current generation 
number, minimum network error and current 
population mean error values are presented in real-
time at the display screen. At the end of a training 
session, all input patterns in the sample test set are 
presented to the network and the outputs are 
compared to sample target outputs for calculating the 
root mean square error in the output variable’s 
original un-scaled range. The root mean square error 
is a good measure of the network’s real-world 
performance. 
 
The “crossover rate” parameter defines the 
percentage of individuals chosen among the 
intermediate population as parents. The “uniform 
crossover %p” parameter defines the percentage of 
genes the first offspring will receive from one of its 
parents and the second offspring will receive from the 
other parent. This parameter is 50% for standard 
uniform crossover which can cause too much 
disruption of valuable genetic information. It must be 
noted that a low %p parameter should be 
accompanied with a low crossover rate to preserve 
the gene pool. 
 
The “Bits per Gene” parameter specifies the number 
of bits used to represent each network weight. A large 
value will dramatically increase the search space, 
which in turn will lead to longer training times or 
increased difficulty in convergence to a global 
minimum. A low value might not provide enough 
resolution for sampling the search space and cause 
the algorithm to miss narrow valleys in the objective 
function. It is a good idea to use a larger population 
size for a larger search space. The “Phenotype 
Range” parameter defines the maximum and 
minimum network weight values. The gray encoded 
genes are decoded and scaled to that range during 
execution. 
 
When remainder or universal stochastic sampling is 
chosen as the parent selection method, NeuroGene 
uses sigma truncation for scaling fitness values: 
 

F’ = F - (Favg – c σ) 
 
Favg is the mean fitness value and σ is the standard 
deviation. c is the sigma scaling factor and is set 
internally based on the fitness distribution. The user 
can also set a mapping constant K, which is used in 
error to fitness Gaussian mapping f (v) = e-Kv. 
 
When tournament selection is selected as the parent 
selection method, NeuroGene uses an adaptive 
tournament size based on the difference between the 
population’s mean fitness value and best fitness 
value. The difference is expressed in terms of 

multiples of the population’s current fitness standard 
deviation. Two fitness distribution values, 
corresponding to the minimum and maximum 
tournament sizes, can be set by the user. NeuroGene 
decreases selection pressure by reducing tournament 
size when the population contains super-fit 
individuals and increases selection pressure when the 
population displays a flatter fitness distribution. 
 
If the “Use Elitist Gene Propagation” checkbox is 
selected, the fittest individual in the current 
population will be guaranteed to pass on its genes to 
the next generation. Applying this strategy may lead 
to premature convergence of the genetic algorithm. 
 

 
 

Figure 3: Neuro-Gene Application Main Screen 
 
When the “Use Linear Regression on Output 
Weights” checkbox is selected, output layer neuron 
weights will not be represented in the chromosome 
bit string. The genetic algorithm will only optimize 
hidden layer neuron weights. Neural networks are 
explicitly nonlinear. However, the operation of 
passing the output activations of one layer to the 
input of the next layer is linear. The input applied to 
an output layer neuron is a linear combination of the 
activations of the neurons in the previous layer. If 
that hidden layer’s activations are treated as 
independent variables, and if the known desired input 
to an output neuron is treated as a dependent variable, 
the problem becomes a linear regression problem. 
The output neuron weight vector will be optimal in 
that it minimizes the mean square error of the input to 
the output neuron. To solve with linear regression, 
the inverse transfer function of the neuron’s desired 
output must be computed for each training sample. 
Using linear regression in conjunction with a genetic 
algorithm is computationally very intensive but the 
algorithm is likely to converge in less generations. 
Linear regression interferes with the natural evolution 
of the population by producing dominant super-fit 
individuals early on, therefore in some cases it may 
lead to premature convergence. 



 

BASICS OF NA/K GEOTHERMOMETERS 

Chemical geothermometers are important tools that 
are used for prediction of equilibrium temperatures of 
geothermal systems. These geothermometers are 
analytical equations founded in empirical form, on 
the basis of data created by measured temperatures 
and chemical composition of fluids sampled in hot 
springs and wells. 
 
Na/K ratio of geothermal fluids (spring and well 
waters) is likely to provide a significant indication of 
subsurface temperatures. The Na/K ration in natural 
hot water is controlled by a reversible temperature 
dependent rock-water equilibrium involving potash-
mica, potash-feldspar and albite. The reversible 
relationship appears only at temperatures above 
200oC. The Na/K equilibrium adjusts after a 
temperature change relatively slowly, which enables 
useful information on conditions in the deep aquifer 
to be obtained from the values of Na/K in spring 
waters. 
 
Na/K geothermometers based on this phenomenon 
has evolved in the past 40 years and several 
experimentally derived equations have been proposed 
by Ellis and Mahon (1967), Ellis (1970), Truesdell 
(1976), Fournier, (1979), Tonani, (1980), Arnorsson, 
(1983) and Gigenbach, (1988). Those equations work 
well for reservoirs with temperatures in the 180-
350oC range, but break down at lower temperatures, 
notably at less than 120oC. At these temperatures Na 
and K concentrations are influenced by other 
minerals, such as clays, and are not controlled only 
by feldspar ion-exchange reaction (Nicholson, 1993). 
 
Citing critics of Santoyo and Verma, (1993) and 
Verma and Santoyo, (1997) on validity and reliability 
of conventional Na/K geothermometers, Diaz et al, 
(2008) concluded that the effects of primary error 
sources for conventional geothermometers might be 
as follows: (1) analytical errors in chemical analysis, 
(2) errors in regression coefficients of developed 
equations, (3) errors derived from incorrect use of 
solute concentration units for geothermometers, (4) 
correct geochemical conditions, temperature range 
and concentration of same equations, (5) lack of well 
temperatures and rock-fluid interaction experimental 
temperatures for low and intermediate temperature 
ranges, (6) limited number of data collected and 
outliers among them. Therefore, Santoyo and Verma, 
(1993) and Verma and Santoyo, (1997) examined 
Na/K geothermometer through statistical theory of 
error propagation, and on this basis proposed new 
Na/K geothermometers. 

APPLICATIONS OF NEW ANN MODEL FOR 
NA/K GEOTHERMOMETERS 

The ANN computational technique has been 
perceived as an effective tool; (1) for relatively 
simple solutions for complex numerical problems, (2) 
for substituting experimental works that are difficult 
to realize. 
 
Bayram (2001) and Can (2002) proposed new 
geothermometer equations of Na/K through 
implementation of ANN. Bayram (2001) proposed a 
simple ANN model using an non linear logistic 
activation function, which was trained with 6 known 
geothermometer equations. The architecture of ANN 
was trained with synthetic data of Na-K as input layer 
neurons and reservoir temperatures as output layer 
neurons that were inferred from the results of 6 
known geothermometers. On the other hand, Can 
(2002) empirically developed a new Na/K 
geothermometer on the basis of 39 data set collected 
from various geothermal fields around the world. The 
architecture of ANN also took into account of a 
simple input layer of one neuron, a hidden layer and 
an output layer of one neuron. Training was 
conducted with back-propagation algorithm using 
again a non-linear logistic activation function. 
 
Recently, Diaz et al., (2008) proposed 3 new Na/K 
geothermometers developed using ANN and ordinary 
linear regression. The obtained results appear to show 
that new geothermometers systematically provide 
better and reliable estimations of the deep 
equilibrium temperatures than the equations 
previously reported in the geothermal literature. They 
applied ANN method in obtaining two 
geothermometers and linear regression approach in 
the third one. In the first geothermometer the 
architecture of ANN was trained with real data of 
reservoir temperatures collected from different fields 
around the world as input layer neuron, a hidden 
layer and as output layer neuron of Na-K. Training 
was performed with back-propagation algorithm 
using a linear activation function taking advantage of 
linear nature of Na/K geothermometer [(1/T) = A 
log(Na/K) + B]. In the second geothermometer 
proposed by Diaz-Gonzalez et al., (2008), training 
was also conducted by back-propagation method 
using this time tangent hyperbolic activation 
function.  
 
Considering limitations and uncertainties of 
conventional Na/K geothermometers, in this study 
several models for this geothermometer have been 
developed through training ANN models with data 
created from 324 data of measured temperatures and 
chemical compositions collected from geothermal 
wells all around the world. Data collected and 
examined in Diaz et al., (2008) study was composed 



of a training data set of 212 and a test data set of 112. 
In our study we have also used these two data sets as 
training and test data sets, and on the other hand, we 
have also utilized another data set of 39 collected by 
Can, (2002) as test data for our models. 
 
Using our ANN software the following models are 
created in two groups, and in this first group of 
models the input is log(Na/K) and the output is 1/T: 
 

• Model#1: Hidden layer & Output Layers => 
Logistic (with 7-8 neurons and percentage of 
No. of output range: 20). 

• Model#2: Hidden Layer => Logistic; Output 
Layer => Linear (with 3 neurons and 
percentage of No. of output range: 20-40). 

• Model 2a: Hidden Layer => Logistic; 
Output Layer => Linear, applied linear 
regression for output weights (with 3 
neurons and percentage of No. of output 
range: 20). 

• Model#3: Hidden & Output Layers => 
Linear (with 3 neurons and percentage of 
No. of output range: 20). 

 
In the second group of following models inverse 
solution is used, and here input is temperature (1/T) 
and the output is log(Na/K). 
 

• Model#4: Hidden & Output Layers => 
Logistic (with 3 neurons and percentage of 
No. of output range: 40). 

• Model#5: Hidden Layer => Logistic; Output 
Layer => Linear (with 3 neurons and 
percentage of No. of output range: 60). 

• Model#6: Hidden & Output Layers => 
Linear (with 3 neurons and percentage of 
No. of output range: 80). 

 
As seen in the above models, logistic and linear 
activation functions, different percentage of number 
of output ranges and inverse models are used.  
 
RMSE values were calculated by comparing training 
results with test data set. Minimum RMSE values 
obtained for these models are given in Table 1.  
 
Table 1. RMSE Values for Different ANN Models. 

Models RMSE Values 
Model#1 0.000106  
Model#2 0.000098  
Model#3 0.000096 
Model#4 0.100533 
Model#5 0.096819 
Model#6 0.086503 

The results of first model are shown in Fig. 1. As 
seen from Fig. 4, Diaz-Gonzalez et al, (2008) and 
Verma and Santoyo (1997) geothermometers 
represent well lower and upper limits of scattered 

data (n=112), respectively. Our 3 models remain in 
between and seem to represent the whole data. Diaz 
et al., (2008)’s third geothermometer which was 
obtained by regression analysis is very close to our 
models.  
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Figure 4: Comparative results of our first three 

ANN models with Diaz-Gonzalez et al, 
(2008) data set. 

 
Similar results have been obtained with inverse 
models as seen in Fig. 5. These models also seem to 
represent the whole scattered data better. 
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Figure 5: Comparative results of 3 inverse ANN 

models with Diaz-Gonzalez et al, (2008) 
data set. 

 
As seen in Fig. 6 all results of our ANN models and 
some others for test data set (n=39) using from Can 
(2002) are pretty close each other. The best 



geothermometer which is close to measured 
temperatures is the one of Verma and Santoyo 
(1997). It appears that all geothermometers based on 
ANN models match better the measured temperatures 
in 180o-3500C range. In the lower range <160oC, 
Verma and Santoyo (1997) geothermometer performs 
better.  
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Figure 6: Comparative results of our 6 models with 

the others models with Can, (2002) data 
set. 

 
In order to evaluate the results, a comparative study is 
conducted on resulting model solutions. This study is 
based on the calculation of percentage of deviation 
equation proposed by Verma and Santoyo (1997) as 
follows:  
 
% DEV = [(tc-tm)/tm]*100 
 
Where, tc and tm are calculated by geothermometers 
and measured temperatures in wells, respectively, and 
%DEV is percentage of deviation.  
 
%DEV is used as statistical parameter to evaluate the 
exactness of calculated geothermometer 
temperatures, assuming that the measured 
temperatures are real downhole temperatures of 
wells. Results obtained in calculation of %DEV for 
the first 3 models are shown in Fig. 4. As it can be 
seen in Fig. 4 %DEV is around within 10% like other 
geothermometers. On the other hand, %DEV is 
unusually high below 160oC. In their work, Diaz et 
al., (2008) have pointed out the same problem. They 
have attributed this behavior to insufficient data in 
that range. We have also observed the same behavior 
for our models, as seen in Fig 7. 
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Figure 7: Comparative results of %DEV for the first 

4 ANN models with Diaz-Gonzalez et al, 
(2008) data set. 
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Figure 8: Comparative results of %DEV for the first 

3 ANN models with Can, (2002) data set. 
 
On the other hand, as seen in Fig. 8 all ANN based 
geothermometers seem to underestimate bottomhole 
temperatures in that range (<160oC) when Can (2002) 
data set is used. There is a remarkable difference 
between two data sets below 160oC. For this range, 
while log(Na/K) values range from 0.8 to 1.4 in Diaz 
et al., (2008) data set, they are found between 1.4 and 
2.2 in Can (2002) data set. This may have been born 
from the fact that very few data really exist in Can 
(2002) data set below 160oC. On the other hand, there 
might be a difference between chemical 
compositional characteristics of samples collected. 



Moreover, there may be outliers within the data set of 
Can (2002) data set.  

CONCLUDING REMARKS 

• A new ANN software using genetic 
algorithm is made  

• Several ANN models that represent well the 
Na/K geothermometer are created. 

• It seems more reliable data are needed to 
have a Na/K geothermometer representing 
better resources below 160oC. 
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