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ABSTRACT 

Constant flow, rate solutions are presented for a 
fractured reservoir with transient interporosity flow in a 
convolution form, considering matrix, microfractures, 
and fractures flow. 
New solutions are presented for two cases, where there 
is no primary flow through the microfractures and 
where the compressive and distensive strength process 
has created an interconnected system of microfractures. 
In both cases there is an interaction between matrix, 
microfractures, and fracture systems. 
The numerical inversion was carried out with Stehfest’s 
algorithm. In addition, approximate analytical solution 
for short and long dimensionless time are obtained and 
compared with the solution obtained by numerical 
inversion, providing satisfactory results. The values of 
the numerical inversion were used to generate the “type 
curve”, presented in terms of the dimensionless groups 
derived from the approximate analytical solution.  

 
Introduction 
In areas lacking cores, open-hole wireline logs may be 
used to help identify microfractures zones; however, 
microfractures are not always recognized by 
conventional logs because of their limited vertical 
resolution.  
Microfractures porosity is common in many reservoirs, 
and its importance in the petrophysical and productive 
characteristics of a rock has been recognized by several 
authors. 
Microfracture porosity can be subdivided into 
connected and disconnected types. Microfractures effect 
on permeability is related to their connectivity. High 
permeability may be present in microfractures zones by 
solution enhancement of pore throats that creates an 
interconnected system of microfractures. The presence 
of high-porosity and high-permeability microfractures 
zones may diminish gasflood effectiveness and leave a 
large amount of bypassed fluids in the lower 
permeability matrix. One purpose of our work is to 
present a technique to identify high secondary porosity, 
mainly microfractures porosity. 
It has been observed in the literature that microfracture 
zones strongly influence production performance. The  

 
 
present addresses the problem of modeling 
microfractures in naturally fractured reservoirs, 
allowing the possibility of primary flow through 
microfractures, and develops a method to identify 
microfractures in reservoirs through well tests and 
decline curves analysis, evaluating porosity associated 
with microfractures and fractures, and determining 
microfractures connectivity. 
The proposed model can be used to elaborate numerical 
simulators. Some comparisons between results of 
analytical solutions derived in this work, and those 
obtained with a numerical simulator that uses the 
proposed model are presented.  
 
Background 
Dual porosity simulators consider only the matrix and 
fracture systems, where fluids are produced through the 
fracture system. 
The permeability of naturally fractured rocks is related 
to the amount of interparticle porosity, amount of 
separate microfracture porosity, the presence or absence 
of fractures, and the presence or absence of touching 
microfractures. Touching microfractures contribute to 
both effective porosity and permeability. 
A triple-porosity single-permeability model was first 
proposed by Abdassah and Ershagi. These authors 
considered an unsteady-state interporosity flow model 
between the fracture system, with two types of matrix 
blocks, and primary flow only through the fracture 
system. 
In order to use a double-porosity simulator to study the 
behavior of naturally fractured, with microfractures 
reservoir, it is required that matrix, fracture, 
microfractures reservoirs, it is required that matrix, 
fractures, and microfractures porosities be partitioned 
into primary and secondary porosities. The connected 
microfractures have to be treated as fractures in the 
numerical model, while the rest of the microfractures 
can be treated as isolate microfractures and included 
into the matrix porosity, as additional porosity.  
Of course, one of the challenges of modeling these 
reservoirs in this way is the determination of the percent 
of microfractures connected to the fractures and that 



connected to the matrix. Microfractures interact with 
both matrix and fracture systems. 
The porosity and permeability of microfractures and 
fractures systems may be very different and lead to 
dominance of the overall response by processes in one 
of the two systems at different times. Also, fractures 
always occupy a very small portion of the reservoir 
volume, while porosities as high as 28% corresponding 
to intervals having secondary microfractures porosity 
can be found.  
Thus, it is important to recognize microfractures 
porosity so that accurate reservoir properties can be 
derived, resulting in less bypassed fluids and higher 
proven reserves. For these reasons, it is necessary to 
distinguish between these two void systems, and to 
model their behavior as two separate but interacting 
systems. 
In highly microfractured naturally fractured reservoirs 
some microfractures could be closed, containing fluids 
even below the fluid-water-contact, as the fluids may 
have been trapped during migration and flow channels 
may have been sealed due to post-migration tectonic. 
Herrera et. al. reported microfracture compressibility to 
be approximately six times that of the matrix. 
Considering that pore volume compressibility is a major 
energy source for microfractures in naturally fractured 
reservoirs, it is also necessary to distinguish between 
microfractures and matrix as separate but interacting 
systems. 
It is important to establish a triple porosity model, 
allowing an interaction between matrix, microfractures, 
and fractures, where primary flow occurs only through 
the fracture network. 
Using x-ray computed tomography Casar and 
Suro1found that porosity and permeability enhancement 
may be due to microfractures directly connected, and to 
microfractures connected through zones of slightly 
enhanced matrix porosity and permeability surrounding 
them. These halos are concentric around microfractures, 
and their porosity decrease from the microfractures 
centers to the extremes. Values as high as 700 md were 
measured in the halos around the microfractures, 
whereas lower values were measured for the regions of 
the core farther away from the microfractures.  
This difference in values suggests that the 
microfractures are interconnected to some degree 
through their halos. In fact, in some cases even fractures 
may be present, they are considered secondary in their 
effect on permeability in the microfractures zones.  
Some simple model has been proposed to evaluate 
microfractures permeability.  
Microfracture permeability in some reservoirs is very 
important. In fact, in some cases it is more important 
than fracture permeability. It is common to find that 
microfracture permeability of 3-5.5 Darcy was assigned 
to build different models.  
As Quintero et. al. explained, NMR tools will respond 
primarily to matrix permeability and will be insensitive 
to the dramatic influence on total permeability of open 
fractures or well-connected microfractures.  

A double porosity-double permeability model was first 
presented by Bourdet. This model uses the Cinco and 
Samaniego idealization, but allowing primary flow 
through the matrix. 
It is pertinent to establish a triple porosity model, 
allowing an interaction between matrix, microfractures, 
and fractures, but beside having flow through the 
fracture, also including the possibility of having primary 
flow through the system of microfractures. Thus, this 
model would be a triple porosity-dual permeability 
model. 
 
Results 
This section is divided in two parts. The first part 
presents the formulation of the model. The second part 
presents the pressure behavior during the transient 
period, for both dual and single-permeability models.  
 
Model Formulation 
In this work, a triple porosity model-dual permeability 
is proposed using the transient interporosity flow, and a 
skin between the two media the model the matrix-
secondary fractures and fractures, that could result in 
pseudosteady interporosity flow. The pseudosteady 
fluid transfer between matrix, microfractures, and 
fractures systems is directly proportional to the 
difference in the volume average macroscopic matrix, 
microfractures, and fractures pressure. A free 
interaction between matrix, microfractures, and 
fractures systems is allowed when the skin is zero 
between two media. This is different from the model 
proposed by Abdassah and Esshaghi, and for this reason 
the triple porosity model proposed in this work is 
unique. 
Radial flow in the large scale secondary porosity media 
with two source terms in convolution form is described 
in dimensionless variables, for the triple porosity-dual 
permeability model, as follows: 
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Where mFF  and fFF  are the source functions for matrix 
and microfractures. 
 

Transient matrix-fracture linear flow: 
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Transient microfractures-fractures linear flow: 
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Initial condition: 

0)0,r(p DfD =                                                             (4) 
 
Internal boundary condition: constant flow rate 

1
),1( −=

D

DFD

r
tp

∂
∂ .                                                (5) 

 
External boundary condition: Infinite reservoir  
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Radial flow in the small scale secondary porosity 
(microfractures) is given by: 
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The transient linear flow matrix-microfracture transfer: 
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Initial condition: 

0)0,r(p DFD = .                                                          (9) 
 

Internal boundary condition: constant flow rate 
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External boundary condition: Infinite reservoir  
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The porosities are defined by: 
 
Small scale secondary porosity: 
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Large scale secondary porosity:   
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Matrix porosity when uses the reference bulk rock: 
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Intrinsic matrix porosity: 
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Extension of Van Golft Rach definition for the intrinsic 
matrix porosity, mφ : 
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Matrix area exposed to large scale secondary porosity: 
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Matrix area exposed to small scale secondary porosity: 
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Microfracture area exposed to large scale secondary 
porosity: 
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Interporosity flow shape factor between medium i and 
medium j.  
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where the dimensionless variables are given by 
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The storativity ratios, for fractures and microfractures 
are given, by,  
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with ffF kk =  if  Ff pp > , and FfF kk =  otherwise. 
 
The ratio of the bulk permeabilities of the fractures 
(large scale) to the total )kk( fbFb + , k , is defined as: 
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Note that in the definitions of mFλ  and

mfλ , we have 
used the matrix permeability km because we expect that 
under production conditions fluid goes from matrix to 
microfractures and fracture networks.  
For the case of the triple porosity-single permeability 
model, i.e. when there is only primary flow through the 
fractures or through the microfractures network, the 
microfractures and fractures permeability, in the above 
definitions is set equal to zero except in the numerator 
of fFλ . For these cases 1=κ  and 0, respectively. 
 
Dimensionless matrix area exposed to large scale 
secondary porosity: 
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Dimensionless matrix  area exposed to small scale 
secondary porosity: 
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Dimensionless microfracture area exposed to large scale 
secondary porosity: 
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Appendix A presents the solution in the Laplace space 
for the triple porosity single permeability model, 
considering constant flow rate and an infinite reservoir. 
 
 

Transient Well Test Behavior 
It is shown that the solution given by Eqs. (A-16) or (A-
17), extends the typical Warren and Root (1963) 
solution. Figures 1-3 present analytical results obtained 
by applying Stefhest algorithm (1970) to Eq. (A-16) for 
different values of the parameters mFλ , fFλ  y mfλ , 

Fω , and fω , considering that wellbore storage and 
skin are zero. In all cases the Cinco and Samaniego 
(1982) solution with 10S mf ≈  (Warren and Root) is 
represented by the continuous line. At early times a 
semilog straight line can be observed. The presence of 
an early semilogarthmic straight line indicates the 
fractures-controlled flow period.  
At late times, a straight line parallel to the early-time 
line represents the homogenous flow period of the 
matrix, microfractures, and fractures, where pressure in 
fractures, microfractures, and matrix, is the same (see 
Fig. 4). 
In a most curves, presented in Figs. 1-3, there are 
anomalous slope changes during the transition period, 
caused by the presence of microfractures. In some 
cases, another intermediate straight line, parallel to the 
above straight lines, is present during this transition 
period.  
This behavior is different from the double-porosity 
response. Before and after this intermediate straight line 
there are transition periods, whose slopes may be 
different from the characteristic constant pressure drop 
period of Warren and Root. During these transition 
periods, apparent straight lines may be fitted, with slope 
ratios that could be 2:1 for the early, intermediate, or 
late-time segments, which could be interpreted as a 
transient interaction between matrix and fractures, 
especially if one of the three parallel straight lines is 
missing because of wellbore storage effects, or because 
of the short duration of the test.  
 
The duration of the anomalous slope changes during the 
transition period is a function of fFλ / mFλ  and 

mfλ / mfλ . 
Figure 4 presents a comparison of fractures and 
microfractures pressure profiles, at different times, 
obtained with a finite difference numerical simulator, 
which considers the mathematical formulation presented 
in this work. We can observe an excellent agreement 
between  analytical and numerical results.  



As expected before the homogeneous flow period, 
microfractures pressure drop profiles around the 
wellbore are lower than fracture profiles. The matrix 
profiles, not shown in this figure, before the 
homogeneous period is very small. During the 
homogeneous flow period, fracture, microfractures, and 
matrix pressure profiles agree. Although profiles 
computed with the complete analytical solution, given 
by Eq. (A-23) are not presented in this figure, they are 
very close to the  numerical profiles.  
Using the analytical solution, given by Eq. (A-14), 
short, intermediate, and long time approximations are 
obtained. The asymptotic behaviors predicted by these 
expressions are shown in Fig. 5, for two cases of 
microfractures.  
The number of variables to be defined, three 
interporosity flow parameters, three interporosity flow 
parameters, two storativity ratios, wellbore storage 
constant, and skin factor, makes the use of a type curve 
matching procedure necessary. Figures 6 and 7 show 
two type curves for un connected microfractures, with 

mfλ = 10-7, Fω = 10-5, and considering no wellbore 
storage and skin effects.  
Fig. 6 includes pressure and pressure derivative curves 
for different values of  mFλ   and fω , for a constant 

fFλ  of 10-7 , are presented. In Fig. 7, the parameters 

fFλ  and fω  are varied and  mFλ = 10-7 . In both 

figures we observe a change of slope during the 
transition period,  that shows in the pressure derivative 
as two “dips”, which is not present in typical double-
porosity type curves. 
As explained in the Background section, permeability 
may be enhanced through the connection of 
microfractures. This solution, that also includes a skin 
in both microfractures and fractures, extends the single 
permeability solution. The inclusion of microfractures 
skin factor is important, because well-connected large 
microfractures are usually invaded by drilling mud. 
Figures 8 and 9 present results obtained by using 
Sthefest algorithm for different values of the 
parameters: κ , mFλ , fFλ , mfλ , Fω , and fω , 
considering that wellbore storage and skins are zero. In 
all cases the Warren and Root solution is represented by 
the continuos line without symbols. The more general 
solution that includes the microfractures is given by Eq. 
(A-16). At early times no well defined semilog straight 
line can be observed for the connected microfracture 
cases. This is in agreement with the findings of 
Gringarten (1979) for the case of double porosity-
double permeability. At late times, a straight line 
corresponding to the homogenous flow period of 
fractures, microfractures, and matrix, is present. In 
general, before the homogeneous flow period, the 
behavior is different when primary flow through the 
microfractures network is allowed, being more dramatic 
this difference when fω  is big as it is in Fig. 9. As the 
parameter κ  decreases, keeping the rest fixed, the 

solution loses its characteristic fractured reservoir and it 
tends to the homogeneous one. 
Figure 10 shows a comparison of pressure profiles of 
fractures and microfractures obtained with a numerical 
simulator. Comparing these results with those of Fig. 4, 
we observed that when microfractures are connected, 
the fracture and microfractures pressure at the sandface 
is the same, when skin in both fractures and 
microfractures are zero. The analytical solution, 
presents a very good agreement with the numerical 
profiles. This is a verification of both numerical and 
analytical solutions. 
We observe that expressions  derived in the present 
paper, can predict the behavior at early times, which 
may be of practical interest. The long time 
approximation for this case will be similar to that of 
unconnected microfractures. 
For connected microfractures, is even more necessary 
the use of a type curve matching technique to find all 
the parameters that control the response.  
Even the type curve matching procedure may be 
difficult and not unique, it represents an attractive 
possibility to obtain the distribution of porosity between 
fractures, microfractures, and matrix, and their 
interaction. This is important because core data 
underestimate the permeability of microfractures zones, 
and microfractures are not always recognized by 
conventional logs. 
 

CONCLUSIONS 

The main purpose of this work has been to present a 
more general transient test analysis for NFR based on 
the transient interporosity flow, including the matrix 
and microfracture skin effect.  
From the results of this study, the following conclusions 
can be established: 
• Approximate analytical solutions for short and long 

times are presented; others previously presented 
solutions are particular cases. 

• The fracture parameters of permeability and 
storativity can be estimated through the 
methodology of this study. 

• The estimated flow rate considering transient matrix 
to fractures transfer, and transient microfracture to 
fracture transient obtained in this work, is higher 
than the value of pseudosteady state given by 
Rodriguez de la Garza et. al.  
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NOMENCLATURE 

A  = drainage area, ft2. 
B  = formation volume factor, RB/STB. 
tc  = compressibility, psi-1. 

AC  = dimensionless pseudo steady state shape 
factor. 

fbC  = fracture area; is the ratio between matrix 
surface and rock volume, ft-1. 

h  = formation thickness, ft. 
H  = matrix block size, ft. 
In = modified Bessel function, first kind, nth  

   order. 
k  = permeability, mD. 

Kn = modified Bessel function, second kind, nth  
   order. 

p  = pressure, psi. 

p  = Laplace transform of p . 

wfp  = wellbore flowing pressure, psi. 

)t(q  = volumetric rate, bbl/day. 

pN  = cumulative production, bbl. 

n  = number of normal set of fractures. 
Dr  = dimensionless radius. 

er  = outer boundary radius, ft. 
�

eDr  = effective dimensionless well outer radius. 

wr  = wellbore radius, ft. 
'rw  = effective wellbore radius, ft. 

s  = Laplace space parameter. 

fS  = fracture skin. 

wS  = Van Everdingen and Hurst skin factor. 
t  = time, hours. 

DAt  = dimensionless time based on drainage area 
A. 

V  = ratio of total volume of medium to bulk 
volume. 

x  = thickness, ft. 
α  = interporosity flow shape factor, ft-2. 
ς  = characteristic dimension of the  

heterogeneous medium, ft. 



λ  = dimensionless matrix-fracture permeability  
ratio, reflects the intensity of the fluid 
transfer matrix-fractures.  

η  = diffusivity. 
µ  = viscosity, cp. 
φ  = porosity, fraction. 
ω  = dimensionless fracture storativity, is the ratio 

of the storage capacity of the fracture to the 
total capacity of the medium.  

SUBSCRIPTS 

b  = bulk (matrix and fractures). 
D = dimensionless. 
d   = damaged zone. 
e  = external. 
f  = microfracture 

F  = fracture 
m  = matrix 
surf = matrix-fracture surface 
t   = total 
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Appendix A.  General and Approximate Solutions 
for the Transient Flow of a Fluid in a Naturally 
Fractured Reservoirs, with Transient. 
 

Applying the transform to matrix-fracture function: 
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The is Summatory in Eq. (A-1) can be represented by a 

continuous function: 
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Applying the transform microfracture-fracture: 
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Summatory can be represent by continuous function: 
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Applying the Laplace transform to Eq. (1) that describes 

the radial flow in the large scale secondary porosity 

media: 
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Replacing the initial condition given by Eq. (9) in the 
right hand side of Eq. (A-5): 
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Eq. (A-6) can be written as follows: 
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where: 
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The general solution of the equation of flow in the large 
scale secondary porosity medium is: 

( )( ) ( )( )ssfrBKossfrAIo)s,r(p DDDFD +=   (A-9) 

 

Applying the Laplace transform to the boundary 
conditions given by Eqs (10) and (11): 
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The for Eqs. (A-9) to (A-11) gives the Laplace space 

dimensionless pressure in the large scale secondary 

porosity: 
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where: 
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Where the parameters mFbDC  and fFbDC  are given by 
Eqs. (32) and (34), and the transient transfer functions 
including the skin are: 
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The dimensionless wellbore pressure can be expressed 

considering 1rD =  in Eq. (A-10): 
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Complete Analytical Solution  

The following Bessel function relations are valid for 
great arguments: 
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Substituting the approximations given by Eqs. (A-18) 
and and (A-19) in Eq. (A-16): 
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The complete solution in real time is: 
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Approximate Analytical solution for short times 
For small arguments, the function )s(f  given by Eq. 
(A-17) can be expressed: 
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Replacing is limit for the transfer function in the 
wellbore pressure given by Eq. (A-16): 
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The following approximations for the Bessel functions 
are valid for small arguments: 
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Replacing the approximations given by Eqs. (A-28) and 
(A-29) in Eq. (A-20): 
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The inversion of Eq. (A-30) results in the solution for 
early times: 
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Approximate Analytical solution for long times: 
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For small arguments 
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Replacing the is limit given by Eq. (A-32) in the 

wellbore pressure: 
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The following approximations for the Bessel functions 
are valid for small arguments: 
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Substituting Eqs. (A-35) and (A-36) in Eq. (A-16): 
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The inversion of this expression results in Eq. (A-38): 
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Fig. 1. Wellbore Transient Behavior, Unconnected 
microfractures, Constant Rate 



 
 

Fig. 2. Wellbore Transient Pressure, Constant Flow 
rate. 
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Fig. 3. Wellbore Transient Pressure Behavior, 

Unconnected Microfractures, Constant Flow 
rate. 

 

 
 
Fig. 4. Numerical Simulation Transient Pressure 

Profiles for Fractures and Microfractures 
Constant Flow rate. 

 
 
Fig. 5. Short, Intermediate, and Long Time 

Approximation,Unconnected microfractures. 
 
 

 
Fig. 6. Type Curve for Unconnected Microfractures 

 
 

 
Fig. 7. Transient Type Curve for Unconnected 

microfractures, Constant Flow Rate. 
 
 
 



 
 
Fig. 8. Wellbore Transient Behavior, Connected (k<1) 

and Unconnected (k<1) microfractures, 
Constant Rate. 

 
 

 
 
Fig. 9. Wellbore Transient Behavior, Connected and  

Unconnected microfractures, Constant Rate. 
 
 

 
 
Fig. 10. Transient Pressure Profiles for microfractures 

and microfractures Networks Connected, 
Constant Flow Rate. 


