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ABSTRACT 

In tracer test interpretation, fissured reservoirs are 
commonly referred to as double porosity systems. 
Different approaches have been proposed for 
analyzing their well tracer concentration responses. 
This work presents a double porosity model with 
transient fracture-matrix transfer, considering 
constant mass flux at the injection well, for the 
interpretation of the observed tracer response in the 
producing wells for continuous injection of a tracer. 
A new parameter is presented which represent the 
gradient of mass flow that governs the fracture-
matrix transfer and it is used to characterize the 
porous media. The solution for the proposed 
mathematical model was obtained in Laplace space.  

 
The numerical inversion was carried out with 
Stehfest’s algorithm. In addition, approximate 
analytical solution for short and long dimensionless 
time are obtained, and are compared with the solution 
obtained by numerical inversion, providing 
satisfactory results. The values of the numerical 
inversion were used to generate the “type curve”, 
presented in terms of the dimensionless groups 
obtained from the approximate analytical solution. 

INTRODUCTION 

Radioactive tracers are substances that are added to 
the injected fluid and they are used to study the 
trajectory of the fluids inside a reservoir, as they 
advance toward the producing wells. A tracer should 
meet certain characteristics, among others: not 
interfere with the fluid flow, require a small 
concentrations and easy detection. Another purpose 
of introducing a tracer in the injected fluid is to detect 
the fractures preferential orientation or discontinuities 
in the reservoir. In any project of fluid injection, the 
channels of high permeability in the reservoir can 
quickly establish “short-circuits” for the injected 
fluid, reducing the efficiency of the process 
drastically, and in some cases can cause the failure of 

the project. The field tests with well to well tracer 
injection and the data analysis with the correct model, 
provide the possibility for the improvement of the 
reservoir characterization.  

 
The information that is possible to obtain from well 
to well tracer tests is the following: sweeping 
efficiency, identification of high permeability zones, 
inadequate injectors wells, preferential flow 
tendencies, location of barriers, relative velocity of 
the injected fluids, and in general the trajectories of 
the fluids injected into the reservoir toward the 
producing wells. Radioactive tracers that have been 
successfully used in the industry are: tritiated 
methane, ammonium nitrate, isopropilic alcohol, 
thorium, tritium, deuterium, krypton 85, iodide and 
strontium. These tracers have fulfilled the national 
and international norms of security.  

 
Radioactive tracers such as tritium and krypton 85 
emit beta radiation, and can be detected using a 
highly sensitive proportional counter, in 
concentrations as low as of one picocurie/liter. 
Tritium in water is detected using a Geiger counter 
coupled with wireline. With respect to chemical 
tracers, these must be used in high concentrations, are 
relatively most expensive and easily detectable. The 
perfluorinated molecules are of great interest as gas 
tracers. SF6 has been used with success for many 
years. The focus has been put on perfluorinated 
cyclic molecules, like perfluorodimethylcyclobutane 
(PDMCB) and, perfluoromethylcyclopentane; these 
are commonly named PFTs. The PFTs are non toxic 
products, low-cost and with an exceptionally low 
detection limit with Geiger counters. The first field 
injection of PFTs was carried out in the Ekofisk field 
in the North Sea in 1987, on a trial-and error basis. 
The mass of radioactive tracer injected depends 
among other factors on the travel distance half life, 
degree of adsorption in the rock, high permeability 
channels, (short circuits), formation temperature, 
magnitude of the inaccessible pore volume, etc. 

 



The injection of a tracer in a naturally fractured 
reservoirs allows through a solution of the 
mathematical models that describe these flow 
problems, the interpretation of the response in 
producers wells, as a result we can estimate 
parameters of practical interest. 

 
The purpose of this study is to present a new model 
with transient fracture-matrix transfer, for the tracer 
response in the producing wells, considering the 
continuous injection of a tracer. The main 
contributions of this work consist in taking into 
account radioactive decay, the inaccessible matrix 
pore volume, the definition of a dimensionless radius 
similar to that previously used in well test analysis 
(instead of the traditional one that is referred to as the 
mixing coefficient [dispersivity]), the approximate 
analytical solutions for short and long dimensionless 
times, and a type curve that allows the estimation of 
the radial dispersion coefficient (Dr) Models 
previously presented for Tracer Flow Study of the 
tracer dispersion in naturally fractured reservoirs is of 
growing interest for the characterization of a 
geothermal reservoir, mainly due to the current 
importance of fluid injection projects to improved the 
recovery of energy. The dispersion effect controls the 
success of a tracer injection process. In the past, 
several papers have discussed the theory related to 
the flow of tracers in porous media. A complete 
revision was presented by Perkins and Johnston 
(1963), as well as Pozzi and Blackwell (1963); 
Raimondi et al. (1959), presented an approximate 
solution for the chemical tracer flow under radial 
flow conditions. Bentsen and Nielsen (1965) 
presented laboratory data for radial systems, and 
showed that the tracer dispersion behavior can be 
appropriately described by means of the solution of 
Raimondi et al., when the mobility relationship is 
favorable. Brigham and Smith8 applied the solution 
of Raimondi et al. to predict the behavior of a 
chemical tracer in a five spot pattern. Yuen, Brigham 
and Cinco (1979), presented a methodology to 
predict the radial flow behavior of a chemical tracer 
in a stratified reservoir, where the response showed 
peaks depending on strata characteristics. Later, 
Abbaszadeh and Brigham (1984) continued this work 
to determine stratified characteristics. Moench and 
Ogata (1981), presented a solution in Laplace space 
for chemical tracer radial flow, and obtained the 
numerical inversion with the algorithm of Stehfest 
(1970), and through a finite difference solution. Tang 
and Babu (1979) presented a solution for the radial 
dispersion problem and confirmed the results of 
Moench and Ogata. Hsieh (1986) presented the 
solution to the problem of Moench and Ogata, 
expressed in terms of an integral in the complex 
plane.  

 
Ramírez S. et al.(1991) obtained a solution in 
Laplace space for the radial flow of tracers in 

naturally fractured reservoirs, and carried out the 
inversion of their Laplace space solution with 
Crump’s algorithm, coupled with Epsilon’s algorithm 
for acceleration. They considered slabs and cubic 
models for the matrix-fracture geometry. 

PROPOSED MATHEMATICAL MODEL 

With the purpose of allowing a mathematical analysis 
of the tracer flow problem, it is necessary to model 
the real system, irregular and complex, composed of 
matrix and fractures by matrix blocks that have the 
same size and form (Fig. 1). High percent of the 
connected pore volume in naturally fractured 
reservoirs is not accessible to injection; thus changes 
are required to include inaccessible pore volume in 
the mathematical models, because it affects tracer 
propagation significantly. 

The double porosity model proposed in this work 
considers the following assumptions: 

 
1. The matrix and fractures are homogeneous and 

compressible systems. 
2. Fluid is injected across the fractures and then  

flows from the fractures to matrix. 
3. There is not resistance to flow between the 

fracture and matrix. 
4. The matrix-fracture geometries considered are 

slabs and cubic blocks (Fig. 1). 
5. Injected flow rate is constant and uniformly 

distributed over the interval. 
6. Fracture width is small compared with that of the 

matrix block. 
7. The effective diffusivity coefficient in the 

fractures is constant, and in the matrix the 
longitudinal dispersion coefficient is proportional 
to the radial velocity. 

8. Diffusion in the fractures and in the matrix obeys 
Fick’s law. 

9. A uniform vertical gradient  concentration exists 
in the fractures in z direction. 

10. The porous media are of infinite extent. 
 

Under the previous assumptions, the equation for 
the radial flow of tracers in naturally fractured 
reservoirs can be expressed: 
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The longitudinal dispersion and radial velocity are 
expressed by Eqs. (2) and (3): 
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Combining Eqs. (2) and (3): 
 

arDr α=                                                              (4) 
 
Substituting Eqs. (3) and 4 in Eq. (1), the equation for 
the radial flow of tracers in naturally fractured 
reservoirs is obtained: 
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Where the tracer mass transfer by rock volume unit   

)t,h(*J f  is given by Eq. (6): 
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Substituting Eq. (6) in Eq. (5), the equation for the 
radial flow of tracers in naturally fractured reservoirs 
can be expressed as follows: 
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It is important to notice that in the left-hand side of  
Eq. (7) the first term refers to the tracer transfer by 
dispersion, the second to the concentration change of 
tracer due to the convection, the third to the 
radioactive decay, and the fourth term refers to 
fracture-matrix transfer, where the new interporosity 
flow coefficient governs the tracer flow to the matrix, 
and therefore controls the time period of the 
transition between the early tracer flow only through 
the fractures to the composite by fractures and matrix 
tracer flow. The right-hand side member of Eq. (7) 
considers the concentration change with time that 
represents the cumulative effect. 

 
 
 
 
 

 
Equation for linear flow in the matrix taking into 
account the inaccessible pore volume: 
 

( ) ( )[ ] [ ] ( )
t

tzC
fCtzC

z

tzC
D sm

im
m

m

∂

∂λ
∂

∂ ,
1,

,
2

2

−−−−

( )
t

tzC
f m

∂

∂ ,
=                                                         (8) 

 
In Eq. (8) the first term on the left-hand side refers to 
the tracer transfer by diffusion, the second to the 
radioactive decay, and the third term represents the 
loss of tracer to the inaccessible pore volume; the 
right member of Eq. (8) considers the concentration 
change with the time, that represents the cumulative 
effect.  
Transfer between two zones in the matrix by 
inaccessible pore volume:  
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The dimensionless model for the radial flow of a 
tracer in a fractured system, is given by Eqs. (10) to 
(19).  
 

Tracer flow equation: 
 

( ) ( ) ( )DDfDD

D

DDfD

DD

DDfD

D

D trC
r

trC

rr

trC

r
,

,1,
2

2

λ
∂

∂

∂

∂α
−−  

( ) ( )

D

DDDf

D

DDfmD

D t

trC

t

tzC

∂

∂∂

σ

,,1 =
∂

+            (10) 

 
Initial condition:  
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Internal boundary condition: constant mass flux at 
injection well. 
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External boundary condition: infinite medium: 
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Dimensionless equation for linear flow in the matrix, 
taking into account the inaccessible pore volume: 
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Initial condition: 
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Internal boundary condition: free interaction between 
fracture and matrix: 
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External boundary condition: closed system: 
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Transfer between two zones in the matrix by 
adsorption: 
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Initial condition: 
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Dimensionless variables: 
 

Dimensionless radius: 
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Dimensionless time: 
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Dimensionless length in the matrix: 
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Dimensionless fracture half width: 
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Dimensionless (symmetrical) maximum distance for 
tracer flow in the matrix: 
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Dimensionless tracer concentration in the fractures:  
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where wm&  is defined by Eq. (A-1). 

  
Dimensionless tracer concentration in the matrix: 
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Dimensionless tracer concentration in the matrix 
inaccessible pore volume:  
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Dimensionless mixing coefficient: 
 

w
D r

αα =                                                             (28) 

 
Dimensionless interporosity coefficient: 
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Dimensionless effective diffusivity in the matrix: 
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Dimensionless adsorption coefficient for the 
inaccessible pore volume: 
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Dimensionless radioactive decay constant: 
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The wellbore concentration in Laplace space for the 
problem considered is (see Appendix A): 
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where: 
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For slabs matrix: 
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For cubic matrix: 
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Approximate analytical solution for short times  
During the early injection phase when a small pore 
volume has been injected, the fracture-matrix mass 

transfer is negligible, and the naturally fractured 
formation behaves as a “homogeneous in fractures 
media”. Thus for short dimensionless times, it is 
possible to invert Eq. (33) (see Appendix C):  
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Approximate analytical solution for long times  
For long dimensionless times the solution for the 
radial flow of a radioactive tracer in naturally 
fractured reservoirs, Eqs. (10) and (33) (see 
Appendix C ), can be expressed as follows: 
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These solutions given by Eqs. (37) and (38) were 
used in the present work to test the validity of the 
numerical inversion results.  

 

Derivation of the dimensionless groups  
If the analytical solution for short times for the 
continuous radial flow of a radioactive tracer given 

by Eq. (38), is derived with respect to time Dt  and 

multiplied by Dt , a useful way  to present the results 
of this problem is obtained in terms of: 
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Numerical inversion  
The comparison between the numerical inversion 
with Stehfest´s algorithm and the approximate 
analytical solutions for short and long dimensionless 
times indicates that the numerical solution is correct. 
(Figs. 2 and 3) were generated through numerical 
inversion using the algorithm of Stehfest (1970). Fig. 
3 shows in addition to the tracer response a graph of 
its logarithmic derivative. 

 
Numerical inversion has the advantage that the 
calculation time is smaller than the time simulation 
using finite differences. In addition, it has been 
concluded that the numerical inversion is efficient for 
any boundary condition. 
 
 



CONCLUSIONS  

The main aim of this work has been to develop an 
improved model and its solution for the flow of 
tracers in naturally fractured reservoirs, that considers 
injection under constant mass flux. This model 
assumes transient fracture matrix tracer transfer.  

 
 

From the result of this work, the following 
conclusions can be established: 
1. A solution for the tracer response has been 

derived. 
2. Approximate analytical solutions were presented 

for short and long dimensionless times, which can 
used to interpret the response of the radioactive 
tracer, and to obtain a representative value of the 
“in situ” mixing coefficient. 

3. A dimensionless “type curve” was developed for 
the interpretation of the continuous constant mass 
flux injection of a radioactive tracer. 

4. The combination of the interpretation techniques 
through the “type curve” and of the analytical 
solutions, allows the improvement of reservoir 
characterization obtained by the interpretation of 
a tracer injection test. 

 

NOMENCLATURE  

fa  = injection constant, Eqs. 2 and 3 

 = hq π2/ , L2/T. 

oC  = initial tracer concentration, M/L3. 

),( tzCsm  = tracer concentration absorbed in the 

matrix, M/L3. 

),( tzCm  = tracer concentration in the matrix, 

M/L3. 

),( trC f   = tracer concentration in the fractures, 

M/L3. 

rD   = longitudinal dispersion coefficient, 
L2/T. 

mD   = effective diffusivity coefficient, 

L2/T. 
f  = ratio between accessible and 

inaccessible porosity 
),( trG  = mass as a function of the radial 

distance and time. 
h  = thickness of the porous media, L. 

fh  = fracture half width, L. 

H  = half of the average matrix block 
size, L. 

J  = mass flux density,M/L2T. 

*J  = rock volume unit, mass transfer 
(M/L3)/(L2T).  

M  = amount solute mass injected 

iq  = injection flow rate in the porous 

media, L3/T. 
r  = radial distance, L. 
t   = time 
U  = macroscopic velocity, L/T. 
v  = microscopic velocity, L/T. 
Vu = fluid volume in the fracture, 

transfer area of the matrix block 
multiply by half of the width 
fracture, L3. 

Ai(z) and Bi(z) = Airy functions.   
)(sβ  = transfer function in the Laplace 

space, Eq. 10.   
)(tδ   = Dirac’s δ -function. 

Greek symbols 
α  = fracture mixing coefficient α (dispersivity), L. 

φ  = effective porosity, dimensionless. 

λ  = radioactive decay constant, 1/T. 
κ = mass flow gradient, 1/T. 
σ  = interporosity shape factor, 1/L2. 

Subscripts 

b  = bulk. 
D = dimensionless. 
f  = fracture. 

m  = matrix. 
sm  = inaccessible matrix pore volume. 
w  = well. 
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APPENDIX A. INTERNAL BOUNDARY 
CONDITION USING FICK’S LAW. 

The mass flux is generated due to a gradient 
concentration across a perpendicular area, and it is 
proportional to the molecular diffusion constant: 
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The mass flux per unit area (mass flux density) can 
be obtained from the previous Eq. A-1: 
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Solving for the derivative: 
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For the conditions at the well: 
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Defining mass flux at the well: 
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Substituting Eq. (A-5) in Eq. (A-4), the internal 
boundary condition for a continuous constant mass 
flux tracer injection is obtained:  
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The internal boundary for conditions of a constant  
mass flux pike injection: 
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Initial condition: uniform distribution. 
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Internal boundary condition: constant mass flux: 
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Internal boundary condition: pulse mass flux: 
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where 0T  is given by Eq. (A-14). 
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M
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External boundary condition: infinite reservoir: 
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r
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APPENDIX B. SOLUTION IN LAPLACE 
SPACE FOR THE FLOW  OF TRACERS IN 
NATURALLY FRACTURED RESERVOIRS. 

Flow in the matrix taking into account the 
inaccessible pore volume: 
 

( ) ( ) [ ] ( )
D

DDsmD
DDmDD

D

DDmD
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( )
D

DDmD

t

tzC
f

∂

∂ ,
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Initial condition: 
 

0)0,( =DmD zC                                                 (B-2) 

 
Internal boundary condition: free fracture matrix 
interaction: 
 

( ) ( )DDfDDDfmD trCtzC ,, =                            (B-3) 

 
External boundary condition for the matrix block: 
 

( )
0

,
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D

DDHmD

z

tzC
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∂
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Transfer in the matrix between the effective and non-
effective (inaccessible) pore volume: 
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                                                                             (B-5) 
 

Initial condition: 
 

0)0,( =DsmD zC                                                (B-6) 

 
Applying the Laplace transform to equation     (B-5), 
substituting the initial condition given by     Eq. (B-6) 
and solving for the tracer concentration in the 
inaccessible matrix volume pore: 
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M
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Applying the Laplace transform to the Eq. (B-1) and 
substituting the initial conditions  (B-2) and (B-6): 
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Substituting Eq. (B-7) in Eq. (B-8): 
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                                                                             (B-9) 
 
The general solution for flow in the matrix can be 
obtained solving Eq. (B-9): 
 

( ) ( ) ( )sm(s)zhsinBsm(s)zhcoss,zC DDDmD += A  

                                                                           (B-10) 
 
where: 
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Applying the Laplace transform to Eqs. (B-3) and Eq. 
(B-4): 
 

( ) ( )srCszC DfDDfmD ,, =                               (B-12) 
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D

DHmD
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Applying the condition Eq. (B-13) to the general 
solution for matrix: 
 

( )(s)smztanhAB DH−=                       (B-14) 

 
Substituting Eq. (B-14) in Eq. (B-10): 
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                                                                           (B-15) 
 
Evaluating Eq. (B-15) in the fracture-matrix 
interface, and using (B-12): 
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−
=  
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Substituying Eq. (B-16) in Eq. (B-15), obtaining the 
equation that represents the tracer matrix 
concentration in function of the fracture 
concentration: 
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The gradient concentration in the matrix block is 
obtained deriving Eq. (B-17), and the resulting 
expression at the fracture-matrix interface is: 
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Radial tracer flow in the fractures, source term 
including the that considers the fracture matrix 
interaction: 
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Initial condition:  uniform distribution: 
 

( ) 00, =DfD rC                                                 (B-20) 

 
 

Internal boundary: constant mass flux: 
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External boundary: infinite reservoir: 
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Applying the Laplace Transform to Eq. (B-20) and 
substituting the initial condition given by (B-20): 
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Substituting the Eq. (B-18) in Eq. (B-23):  
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This may be written: 
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where: 
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The general solution of the ordinary variables 
coefficients differential equation is given for Eq.    
(B-26): 
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Applying the Laplace transform to the boundary 
conditions given by Eq. (B-21)and (B-22):  
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Applying the external boundary condition and 
considering that the Airy function Ai(x) for big 
arguments tend to zero, B2 =0 in Eq. (B-26).  

 
Substituting the constant  B2 in Eq.(B-26): 
 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +=
3/2

2

1
2

)(

4/1)(
,

s

sr
AiBesrC DD

r

DD
D

D

β
αβα  

                                                                           (B-29) 
 
Applying the internal boundary condition:  
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From this equation, B1  can be expressed: 
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Substituting this constant in the general solution 
given by Eq. (B-26): 
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The wellbore concentration: 
 

( )sCsC fDwD ,1)( =                                         (B-32) 
 
The wellbore concentration: 
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where: 
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Using the Bender and Orszag method (Bender and 
Orszag, 1978) we proposed a new original 
approximation for Airy Function (Fig. 2). 
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The original analysis for the relationship between 
the Airy function and derivative (Fig. 3):  
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Using the ratio between the Airy function and its 

derivate, we get for wrr = : 
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where:         
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Appendix D discusses the solution of or a constant 
mass flux pulse injection. 
 

APPENDIX C. APPROXIMATE ANALYTICAL 
SOLUTIONS 

For large s values ∞→ : 
 

( ) 31
0 )(sY β≈                                                  (C-1) 

 
When substituting practical values of Table 1 in Eq. 
(B-39), the function m(s) presents an almost constant 
value (Fig. 4): 
 

2500)( ≈sm                                                      (C-2) 
 

Then: 

sssm 50)( ≈                                               (C-3) 

 
Then, when m(s) is substituted in )(sβ  given in Eq. 
(B-38), we obtain the behaviour for this function also 
shown in (Fig 4): 
 

ss 75.0)( ≈β                                                 (C-4) 
 

Then: 
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Using the ratio of the Airy function given by   Eq. 
(35): 
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                                                                             (C-6) 
 
Substituting (C-5) and (C-6) in the second tem of the 
denominator of Eq. (B-33): 
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Substituting Eq. (C-7) in Eq. (B-33): 
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For large arguments ( ∞→s ), this expression can 
be written as, 
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The analytical inversion for short times of Eq. (C-9) 
is given by Eq. (C-10): 
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)3/4(2968.0

3/1

Γ
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t
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For large times (short arguments, → ), 
 

sssm 50)( ≈                                             (C-11) 

 
Substituting this value in Eq. (B-37), (Fig 5): 
 

4/375.0)( ss ≈β                                              (C-12) 
 
Then, from Eq. (C-1):  
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0 908.075.0 ssY ≈≈                       (C-13) 

 
Using Eq. (C-13), the second term of the 
denominator of Eq. (B-33) can be expressed:  
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Similarly  to the short times previous solution, 
substituting Eqs. (C-13) and (C-14) in the second 
term of the denominator of Eq. (B-33). 
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Substituting Eq. (C-15) in Eq. (B-33): 
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For large times arguments ( 0→s ), 
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The analytical inversion for large times is expressed 
as follows: 
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APPENDIX D. A SOLUTION FOR CONSTANT 
MASS FLUX PULSE INJECTION. 

Applying the Laplace transform to the inner 
boundary condition for a pulse mass flux given by 
Eq. (A-13): 
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The solution for a constant mass flux pulse: 
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where: 
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and 0Y  is given by Eq. (B-34). 

 
The wellbore concentration for a constant mass flux 
pulse: 
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Considering only one pulse: 
 

10 =T                                                                    (D-5) 

 
Comparing Eq. (D-5) with Eq. (B-31): 
 

( ) ( )sCssC wDpulsewD =                                     (D-6) 

 
The analytical inversion of Eq. (D-6): 
 

( ) ( )
D

DwD
pulseDwD dt
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From this expression we observe the known fact that 
the derivative of the continuous tracer injection 
solution yields the pulse injection solution (Chen, 
1887). 
 
 
 

 
 
Fig. 1. Representation of a naturally fractured 

reservoir. 
 
 

 
 
Fig. 2. Solutions for homogeneous continuous 

constant mass flux tracer injection, for 
radial flow in a slabs naturally fractured 
reservoir. 



 
Behavior of Concentration and Derivative for constant mass 

flux and infinite boundary
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Fig. 3. Solutions for homogeneous continuous 

constant mass flux tracer injection, for 
radial flow in a slabs naturally reservoir 
with transient fracture-matrix transfer. 

 
 

Behavior of Airy Function and Derivative
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Fig. 4. Airy function and its derivative compared with 

data of Abramowitz and Stegun  
 
 
 

Behavior of m(s) and sqrt(sm(s))
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Fig. 5. The m(s) function is constant for several set of 

practical values; it only changes when the 
inaccessible pore volume is higher than 50%. 

 
 

Approximations for Beta(s) function for practical 
values
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Fig. 6. Approximations for the Beta(s) function using 

the practical values of Table 1. 

Behavior of Airy Function and Approximation
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Fig. 7. New approximation for the Airy function. 
 
 
Table 1. Practical values used in the evaluation of 

m(s) function. 

Q h a α  Mm Dm λ σ  

m3/D m M2/H m 1/s m2/s 1/s adim 

2 200 0.04 0.5 0.500 1.E-04 1.E-06 0.032 

 

tφ  fbφ  mbφ  H hf vb smφ  
f=( mbφ -

smφ )/ mbφ  

fraction fraction fraction m m M3 adim adim 

0.130 0.0169 0.1131 1.5 0.0085 3.43 0.01 0.89 

 


