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ABSTRACT 

Fractures play an important role in geothermal 
reservoir engineering as they dominate the fluid flow 
in the reservoir. Because of this reason determination 
of fracture permeability is very important to predict 
the performance of the geothermal reservoir. A 
fracture is usually assumed as a set of smooth parallel 
plates separated by a constant width. The absolute 
permeability of a smooth-walled fracture is related to 
the fracture aperture using the cubic law. However, 
the flow characteristics of an actual fracture surface 
would be quite different, affected by tortuousity and 
surface roughness. Though several researchers have 
discussed the effect of friction on flow, a unified 
methodology for studying flow on a rough fracture 
surface has not emerged. As experimental methods 
are expensive and time consuming most of the time 
numerical methods are used. In this work, we present 
results of the numerical computations for single 
phase flow simulations through two-dimensional 
synthetically created fracture apertures. These 
synthetic rock fractures are created using different 
fractal dimensions, anisotropy factors, and mismatch 
lengths that are obtained from the producing 
geothermal reservoirs in South Western Turkey. 
Lattice Boltzmann Method, which is a new 
computational approach suitable to simulate fluid 
flow especially in complex geometries, was then used 
to determine the permeability for different fractures. 
Regions of high velocity and low velocity flow were 
identified. The resulting permeability values were 
less than the ones obtained with the cubic law 
estimates. It has been found that as the mean 
aperture-fractal dimension ratio increased 
permeability increased. Moreover as the anisotropy 
factor increased permeability decreased with a 
second order polynomial relationship.  

1 INTRODUCTION 

The problem of modeling and simulating fluid flow 
in porous media always remained as the major 
research subject in reservoir engineering.  
Petrophysical properties of the reservoir rocks must 
be realistic and accurate for reservoir simulation 
works.  One of the most important properties of the 
reservoir rock is the permeability, which is defined as 
the measure of the capacity of the medium to transmit 
fluids (Amyx, et al, 1960).  The ability of a fracture 
to conduct a fluid when the saturation of that fluid is 
100 percent of the space is known as the absolute 
permeability of that fracture to that fluid. The 
effective permeability of the fracture to the fluid is 
the permeability when the fluid has a saturation of 
less than a 100 percent.  Researchers beginning with 
Lomize (1951), Snow (1965), Louis (1969), Bear 
(1972), Witherspoon et al (1980) and Golf-Racht 
(1982) studied the permeability of single-phase flow 
in fractures extensively.  They have all shown that for 
steady state, isothermal, laminar flow between 
parallel glass plates the absolute permeability is a 
function of fracture spacing, b, and is given by the 
following equation: 
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But as this equation does not represent the surface 
roughness of the real fractures a modification should 
be performed to consider the effect of surface 
roughness to the fracture permeability (Witherspoon 
et al, 1980): 
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Where f is defined as the surface roughness factor.  
 



Accurate representation of fracture permeability is 
still a challenging research topic in reservoir 
engineering.  In order to tackle this problem the use 
of lattice Boltzmann method is proposed (McNamara 
and Zanetti, 1988).  In this work, by using the lattice 
Boltzmann method two dimensional fluid flows in 
synthetically created realistic fractures were 
simulated.  Fracture fractal dimensions of some 
geothermal fields located in Turkey were used to 
create synthetic fractures using a fractal approach. 
The results were compared with the aforementioned 
empirical equations.  The paper is organized as 
follows: in Section 2 the theory of synthetic fracture 
generation and lattice Boltzmann method is 
introduced. In Section 3 the process of synthetic 
fracture generation and the usage of these fractures in 
lattice Boltzmann simulation are described. Section 4 
presents the results of the lattice Boltzmann 
simulation and comparison with other techniques. 
Finally, in Section 5 the main conclusions of this 
study are outlined. 
 
 
2 BACKGROUND 
 
In this section, theory of the lattice Boltzmann 
method is presented and compared with other 
numerical simulation techniques. Then, the concept 
of synthetic fractures and their reliability for defining 
the real fractures are described. 
 
2.1 Lattice Boltzmann Method 
 
Before giving the details of the method Cellular 
Automata theory will be given as it is the basis for 
lattice Boltzmann method.   
 
Cellular automata theory 
 
Cellular Automata (CA) are discrete dynamical 
systems whose behavior is completely specified in 
terms of local relations. They are mathematical 
models for complex natural systems containing large 
numbers of simple identical components with local 
interactions (Wolfram, 1984). Cellular Automata can 
be characterized as follows (Wolf-Gladrow, 2000): 
 

• CA is regular arrangements of single cells of 
the same kind. 

• Each cell holds a finite number of discrete 
states. 

• The states are updated simultaneously at 
discrete time levels. 

• The update rules are deterministic and 
uniform in space and time.  

• The rules for the evolution of a cell depend 
only on a local neighborhood of cells around 
it. 

 

CA is valuable because of its capability to display 
complex behavior by using the simple update rules. 
This property makes CA a strong candidate for the 
simulation tool for the physical phenomena like fluid 
flow. As it is stated in Ilachinski (2001) the most 
successful practical application of CA as computing 
devices is in the field of fluid mechanics.  Despite 
still being in their infancy, CA models of fluid 
dynamics have already demonstrated that they can 
reproduce many of the essential features of 
thermodynamical and hydrodynamical behavior.  
This capability of CA is proved by Frisch et al 
(1986).  They stated that a simple CA obeying 
nothing but conservation laws at microscopic level 
was able to reproduce the complexity of real fluid 
flows and named it as “Lattice Gas Automata 
(LGA)”.  
 
Lattice gas automata belong to a special class of CA 
designed to study various physical systems. Lattice 
Boltzmann method (LBM), which is used in our 
work, was developed by McNamara and Zanetti 
(1988) in response to the drawbacks of the lattice gas 
automata method. The main difference between two 
methods is that LBM describes the particle density as 
a continuous function instead of a Boolean variable. 
Moreover, LBM reduces the statistical noise 
produced by the Boolean arithmetic of the lattice gas 
automata.  
 
Principles of the Lattice Boltzmann method 
 
LBM as all other CA based methods that simulate 
natural phenomena like fluid flow uses an approach 
that is different from the conventional methods. This 
approach is named as “bottom-up” approach and is 
totally different from the techniques such as the 
“finite-element” and “finite-difference” methods. 
Figure 1 (Wolf-Gladrow, 2000) shows the difference 
between two methods.  
 

 
Figure 1. Difference between top-down and bottom-

up approach (After Wolf-Gladrow, 2000). 
 
In traditional methods (top-down approach) normally 
partial differential equations (PDEs) are used to 



simulate fluid flow. These PDEs are discretized by 
finite differences, finite volumes or finite elements. 
The resulting algebraic equations or systems of 
ordinary differential equations are solved by standard 
numerical methods.  As for numerical simulations, 
conventional highly nonlinear Navier-Stokes 
equations are solved for both porous and fractured 
media.  Numerical simulations have serious 
drawbacks like long computation times, poor 
convergence and numerical instabilities.  
 
LBM is developed as another computational method 
that is more efficient and it uses simple rules to 
represent the fluid flow rather than partial differential 
equations.  LBM is a discrete computational method 
based upon the Boltzmann equation. It considers a 
typical volume element of fluid to be composed of a 
collection of particles that are represented by a 
particle velocity distribution function at each grid 
point. In discrete time steps the fluid particles can 
collide with each other as they move. The rules that 
govern the collisions of the particles are designed 
such that the time averaged motion of the particles is 
consistent with the Navier-Stokes equation. One of 
the most important advantages of the LBM is its 
capability for handling fluid flow especially in 
complex geometries (Succi et al, 1989). The complex 
geometric details in the porous media and fractures 
can be handled in terms of simple bounce-back rules. 
Moreover, LBM could be applied to both two and 
three dimensional flows.  
 
2D Lattice Boltzmann BGK model 
 
In our work two-dimensional Bhatnagar-Gross-
Krook (BGK) Lattice Boltzmann method is used. 
This model uses a D2Q9 lattice with nine discrete 
velocities. The velocity vectors are illustrated in 
Figure 2.  
 

 
 

Figure 2. The nine-speed square lattice used in the 
lattice Boltzmann simulations. (After Guo 
et al, 2000) 

 
The velocity directions of the D2Q9 Lattice 
Boltzmann BGK model are defined as (Guo et al, 
2000). 
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Let fk(x,t) be a non-negative real number describing 
the distribution function of the fluid density at site x 
and time t moving with velocity ek towards the 
neighboring lattice site located at x+ ek, where the 
subscript k refer to the velocity direction (k=1,…,9). 
The distribution functions evolve according to the 
Boltzmann equation that is discrete in both time and 
space. 
 
 ( , 1) ( , ) ( , )k k k kf x e t f x t x t+ + = + Ω  (4) 
 
Where ( , )k x tΩ is the collision operator representing 
the rate of change of the particle distributions due to 
collisions (Kumar et al, 1999). Collection of particles 
of unit mass and unit momentum moves on the 
lattice. Mass and momentum of the particles are 
locally conserved after collision of the particles. 
 
The fluid density ρ  and velocity u are obtained from 
the density distribution function fk(x,t): 
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As it is stated in (Wolf-Gladrow, 2000) at 
macroscopic scale the behavior of these particles is 
the same as that is predicted by the incompressible 
Navier-Stokes equations.  
 
Boundary Conditions 
 
A boundary condition with a constant pressure 
difference is used at inlet and outlet of the fracture 
aperture, where all fluid densities are propagated 
from non-occupied nodes along the lattice-connection 
lines to their next neighbors.  The physical boundary 
condition at solid-fluid interfaces is the no-slip 
boundary condition, which in LBM is usually 
realized as bounce-back rule. This is physically 
appropriate whenever the solid wall has a sufficient 
rugosity to prevent any net fluid motion at the wall 
(Succi, 2001). The complete bounce-back scheme is 
used to simulate the no-slip boundary condition, 
which requires that when a particle distribution 
streams to a solid boundary node, it scatters back to 
the node it came from. The velocity vector of all fluid 
densities is inverted, so all the fluid densities will be 
sent back to the node where they were located before 



the last propagation step, but with opposite velocity 
vector.  
 
Algorithm 
 
There are many different algorithms available for 
implementing LBM.  The following pseudo code 
shows how LBM was implemented in Matlab V 7.0 
in this study (Keehm, 2003).   
 
Start Program 
Read in Obstacle Location File 
Set initial density distribution 
Loop for T time Steps 
{ 
 Redistribute along first lattice column 
 Propagate fluid particles 
 Check for obstacle (bounce-back) 
 Calculate density and velocity from Eqn 5 & 6 

Calculate permeability 
If((new perm-old perm) < tolerance_value)) 

exit loop 
} 
Write velocity data to file 
End 
 
2.2 Synthetic Fractures 
 
It is very important to understand the fluid flow 
through natural fractures in rocks.  The geometry of 
the fracture surfaces affects the hydraulic properties 
of the fractured rock. Roughness at the surface of the 
fractures could be described efficiently by using the 
fractal geometry concepts (Feder, 1988).  Since 
studying rough, anisotropic fractures in the laboratory 
is difficult synthetic fractures could be used.  
Synthetic fracture is the term used to describe 
fractures that are created numerically in such a way 
that they share the same mean geometrical 
characteristics as specific natural fractures measured 
by profiling and then tuning (Glover, et al, 1998).  
For example numerical synthetic fractures can be 
created from unmatched fractal surfaces (Amedei et 
al, 1994).  Geostatistical techniques like conventional 
kriging and conditional simulation (Deutsch and 
Journel, 1992) could also be used to create synthetic 
fractures.  In this work numerical modeling is used to 
simulate fluid flow in synthetic rock fractures that 
share the same physical properties with the natural 
fractures.  In our work SynFrac software is used to 
create synthetic fractures (Glover et al, 1998).  This 
software uses modified methods for producing 
synthetic rough surfaces whose geometric properties 
are tuned to mimic natural fractal surfaces in rocks in 
order to create synthetic fractures that are statistically 
identical to those found in rocks.  
 
 
3 FRACTURE GENERATION AND FLOW 
SIMULATION  

 
In this section methodologies used both for synthetic 
fracture generation and the simulation of the fluid 
flow in these fractures will be defined. 
 
3.1 Synthetic Fracture Generation 
 
SynFrac software originally generates three-
dimensional fractures.  The resolution of the fracture 
can be altered with in the range from 64x64 to 
1024x1024.  In addition to resolution, parameters like 
fractal dimension or anisotropy factor could be 
altered to generate fractures that have the same 
resolution but different physical properties.  Fractal 
dimension for each surface is a value between 2 and 
3; this value determines the roughness of the fracture 
surface. Another parameter that is altered is the 
anisotropy factor, which is used to generate 
anisotropic synthetic fractures. As the anisotropy 
factor deviates from unity all the scales in one 
direction along the fracture surface will be greater 
than the scales in other direction.  A sample fracture 
surface created by SynFrac is given in Fig 3 (Glover 
et al, 1998).    
 

 
 
Figure 3. Fracture aperture distribution created by 

SynFrac. Blacks are low aperture areas. 
 
As the lattice Boltzmann simulation is performed at 
two-dimensions, 2D slices are obtained from the 3D 
fracture apertures.  Figure 4 shows a 2D fracture 
aperture obtained by slicing the three-dimensional 
fracture for a given plane. 

 



 
Figure 4. Two dimensional fracture aperture 

obtained by slicing. 
 
This sliced two-dimensional fracture forms the basis 
for our lattice Boltzmann simulation. SynFrac 
software outputs the heights of the top and bottom 
surfaces of the created fracture, an instance of the 
output data is shown in Table 1.  This data is then 
converted into binary format (1’s and 0’s) in order to 
be used with lattice Boltzmann algorithm.  This 
process is illustrated in Fig 5, where 1’s represent 
grains and 0’s represent pore space.  In order to 
increase accuracy of the simulation synthetic 
fractures are created at maximum resolution (1024).  
Resolution of the fracture is, 1024 in x-direction and 
a value which is determined according to the min-
max value of the bottom and top in y-direction 
changes between 500 and 700. 
 
Table 1. Sample 2D fracture data. 

X-
Loc 

Y-
Loc 

Top 
(mm) 

Bottom 
(mm) 

Aperture 
(mm) 

1 103 4.879 4.140 0.738 
1 104 4.852 4.151 0.701 
1 105 4.848 4.165 0.683 
1 106 4.856 4.165 0.691 
1 107 4.828 4.193 0.636 
1 108 4.812 4.216 0.596 

 
 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 
0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 
0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
 
 
 
Figure 5. Binary representation of two-dimensional 

fracture aperture.  
 
 

3.2 Lattice Boltzmann Simulation of Fluid Flow in 
Fractured Geothermal Reservoirs 
 
Fractal dimensions of the fracture patterns of some 
geothermal reservoirs (Kizildere and Germencik) 
located in south western Turkey was used to generate 
synthetic fractures (Babadagli, 2001; Babadagli, 
2002).  Fractal dimensions obtained by applying 
methods like box counting from aerial photographs, 
outcrops and thin sections ranged from 2.21 to 2.50 
(Table 2).   
 
Table 2. Results of the lattice Boltzmann simulations 
for different fractal dimensions. 

Fractal 
Dimension 

Mean Aperture 
(mm) 

LB-Perm 
(md) 

2.21 1.3443 1.59E+06 
2.25 1.4550 1.68E+06 
2.30 1.6051 1.81E+06 
2.32 1.6691 1.86E+06 
2.35 1.7693 1.94E+06 
2.38 1.8746 2.02E+06 
2.40 1.9478 2.05E+06 
2.45 2.1411 2.18E+06 
2.47 2.2224 2.23E+06 
2.50 2.3486 2.29E+06 

 
Simulations (Table 3) were performed in order to 
understand the effects of the parameters during the 
fracture generation phase to the absolute permeability 
of the fractures.  At each step synthesized fracture 
with its fractal dimension or anisotropy factor was 
changed, converted into binary format and used as an 
input for the lattice Boltzmann simulation.  Velocity 
vectors on each grid point were calculated by the 
lattice Boltzmann method (Fig 6).  Absolute 
permeability k  of the fracture could then be obtained 
by calculating the mean flux from the velocity 
vectors and with the Darcy’s law. 

 x
k dP

q
dxµ

=  (7) 

Where µ is the dynamic viscosity of the fluid and 

xq is the volumetric average of fluid flux.   

 
Table 3. Parameters used in the LBM simulations for 
different fractal dimensions, anisotropy factors and 
mismatch lengths. 
Resolution 1024 
Physical size (mm) 100.00 
Transition length (mm) 10.00 
Standard deviation (mm) 1.00 
Max matching fraction 1.00 
Min matching fraction  0.00 
 
 
 

X 

Y 



Permeability values obtained by LBM are compared 
by the empirical results that are calculated by using 
Eqn 1 without or with roughness. Moreover, 
permeability is estimated from the following equation 
(Zhang et al, 1996): 

βδ≈k     (8) 
Where δ is mean fracture aperture and β is an 
exponent. 
 
4 RESULTS OF THE LATTICE BOLTZMANN 
SIMULATION 
 
The method was first verified for pipe flow using 
Hagen-Poiseuille law.  It was observed that the 
difference between the results were less than %0.09.  
Then several runs were conducted to identify flow 
velocity patterns.  Synthetic 2D fractures were 
selected from the same location in 3D.  That’s why 
the fracture geometry was similar but the rugosity 
was somewhat different for each case (Fig 6).  Thus, 
the fracture sloped upwards first following a downhill 
that ended with increasing slope.  It was observed 
that for a constant pressure gradient the highest 
velocity was observed near the inlet of the fracture 
corresponding to locations where the aperture was 
significantly lower than the rest of the fracture.  Then 
the high velocity flow dissipated near the end of the 
fracture for all cases.  For constant anisotropy factor, 
as the fractal dimension increased (from 2.21 to 2.5 
corresponding to %13 increase) the magnitude of the 
highest velocity observed increased (approximately 
%30).  On the other hand, as the anisotropy factor 
increased from 1 to 3, the location of highest 
velocities along the fracture changed.  Moreover, the 
magnitude of the highest velocity decreased.  As the 
mismatch length increased mean fracture aperture 
increased and thus the permeability increased (Fig. 
7).  The magnitude of the highest velocity observed 
along the fracture couldn’t be correlated.  
 
Simulations were then conducted to understand the 
effect of fractal dimension and anisotropy factor to 
fracture permeability.  While creating synthetic 
fractures each of these parameters was altered and 
other parameters were held constant.  Table 2 shows 
the result of the LBM permeability calculations for 
different fractal dimension values.  Figure 8 shows 
permeability values that are calculated by LBM vs. 
mean aperture – fractal dimension ratio.  The fracture 
permeability increases linearly with a high 
correlation coefficient as the mean aperture fractal 
dimension ratio increases.  LBM fracture 
permeabilities were two orders of magnitude lower 
than the permeabilities obtained from the cubic law 
(Eqn 2).  This suggests that for a rough self-affine 
fracture one may have a fractal dimension dependent 
exponent that is larger than 2.  Our simulations 
suggest an exponent range from 4.27 to 5.66 that are 
in accord with the range (2 to 6) provided by Zhang 

et al (1996).  Moreover, for anisotropy equal to 1, 
there is a linear relationship between the fractal 
dimension D and the exponent given by the following 
equation: 6.4154 - 4.8065D  =β   (9) 

 

  

 

 
Figure 6. Generated fracture aperture and velocity 

distribution for fractal dimension and 
anisotropy factor values top to bottom 
(2.21 and 1.0), (2.5 and 1.0), (2.25 and 
1.0), (2.25 and 3.0). 



 

 

 
 
Figure 7. Generated fracture aperture and velocity 

distribution for mismatch length of 5, 15 
and 25 mm.  

 
Another set of simulations was performed to 
understand the effect of the changes in anisotropy 
factor to the fracture permeability.  Anisotropy factor 
is a ratio of the wavelengths in each direction.  If 
anisotropy factor is less than 1 anisotropy is 
transverse to x direction; however, if anisotropy 
factor is more than 1 anisotropy is transverse to y 
direction (Glover et al, 1998).  As the anisotropy 
factor increased from 1 to 3, permeability decreased 
(Table 3).  Similar results are reported in the 
literature for self-affine fractures (Madadi and 
Sahimi, 2003).  When permeability values are plotted 
against anisotropy factors a second-order polynomial 
relationship was observed (Fig 9).  It was observed 
that for a given fractal dimension, anisotropy and 
exponent relationship is linear.  For example for D 

equals to 2.25 the following relationship was 
observed.  
 
β = 0.5063*A + 3.8642  (10) 
 
Where A is anisotropy factor.  
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Figure 8. Relationship between LBM permeability 

and mean aperture-fractal dimension 
ratio. 

 
Table 3. Permeability values of the fractures for 
different anisotropy factors. 

Anisotropy Factor LB-Permeability (md) 
1,00 1,68E+06 
1,20 1,60E+06 
1,30 1,56E+06 
1,35 1,53E+06 
1,40 1,51E+06 
1,50 1,46E+06 
1,60 1,42E+06 
1,80 1,33E+06 
2,50 1,21E+06 
3,00 1,15E+06 
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Figure 9. Relationship between LBM permeability 

and anisotropy factor. 
 
The final parameter that affects fracture permeability 
is mismatch length.  It was shown previously that 
natural fractures are correlated to some degree at long 



wavelengths but at short wavelengths the surfaces are 
not identical (Brown, 1995).  These two different 
behaviors are modeled by a critical wavelength called 
the mismatch length.  Above this length the fracture 
surfaces are correlated but below it the fractures 
behave independently.  In our simulations, as the 
mismatch length increased the fracture surfaces 
became correlated and smoother for a given fractal 
dimension.  The mean aperture also increased.  This 
results in an increase in permeability.  A linear 
relationship was observed with mismatch length and 
the LBM permeability (Fig 10). 
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Figure 10. Relationship between LBM permeability 

and mismatch length. 
 
In order to generalize the findings, simulations that 
cover a wide range of fractal dimensions, anisotropy 
factors, mean fracture apertures and mismatch 
lengths need to be conducted.  However, it is not 
possible to cover all parameters within a reasonable 
time frame.  In order to tackle this problem artificial 
neural network (ANN) technology was used (Fig 11).  
Back propagation technique (Rumelhart et al, 1986) 
and 71 different LBM simulations were used to train 
different artificial neural networks and the best 
performing network was selected (Table 4).  ANN 
input parameters consisted of fractal dimensions, 
anisotropy factors, average mean apertures and 
fracture porosities and LBM permeability is selected 
as ANN output.  Approximately %10 of the input 
data was held for validation purposes.  Since there 
were several orders of magnitude difference between 
the input data the LBM permeability was scaled to 
values between 0 and 1 by dividing the LBM 
permeabilities to maximum calculated permeability 
(2.29x106 md).  It was observed that the mean square 
errors were less than %0.71 for the validation data set 
(Fig 12).  Using the trained ANN several runs were 
conducted to check the aforementioned results.   
 
Table 4. ANN model properties. 
Input nodes 4 
Output nodes 1 
Hidden layer 1 20 
Hidden layer 2 8 
Momentum factor 0.1 

Learning parameter 0.2 
 

 
 
Figure 11. Architecture for LBM simulation and 

artificial neural network training.   
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Figure 12. Mean square errors observed for artificial 

neural network training and validation 
data sets.   

 
The ANN results confirmed the aforementioned 
findings (Fig 13).  For example the second order 
relationship observed between the anisotropy factor 
and LBM permeability was obtained for all fractal 
dimensions.  One of the advantages of using the 
ANN technology is that one can establish the 
importance of parameters that influence a process.  
For a given average fracture aperture it was observed 
that the as anisotropy factor increased from 1 to 3 the 
permeability decreased %62 and %75 for low and 
high fractal dimensions respectively.  On the other 
hand, for a given mean fracture aperture, the fractal 
dimension change from 2.25 to 2.35 resulted in 
approximately %1.8 to %5.2 change in permeability.  
It was also observed that as the anisotropy factor 
increased from 1 to 3 the change in permeability 
decreased as the fractal dimension or mean fracture 
aperture increased.  Thus it could be concluded that 
as the fracture rugosity increases mean fracture 
aperture and fractal dimension do not dominate the 
permeability change anymore.   
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Figure 13. ANN results.  Permeability anisotropy 

factor, mean fracture aperture and 
fractal dimension relationships.   

 
5 CONCLUSIONS 
 
Lattice Boltzmann Method was used to obtain 
fracture permeabilities of synthetic fractures created 
using a fractal technique.  For the fractal geothermal 
reservoirs located in South West Turkey it was 

observed that velocity increased at locations where 
the fracture aperture decreased along the fracture.  
There is a linear relationship between permeability 
and mean aperture – fractal dimension ratio as well as 
the mismatch length.  However, the relationship is 
second order for anisotropy factor.  A neural network 
trained using the LBM simulations showed that 
anisotropy of the fracture has more influence on the 
fracture permeability than the fractal dimension and 
the mean fracture aperture.  Thus the fracture 
geometry is important.   
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