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ABSTRACT

This paper presents new analytical models for
predicting the areal extent of the thermal zone in a
fractured geothermal reservoir during reinjection.
Models for the early- and late-time conduction
periods are presented, as are models for both double-
and triple-porosity reservoirs.  Methods for
incorporating measured fracture spacing distribution
data (instead of assuming uniform-sized matrix
blocks) are also presented.

INTRODUCTION

A variety of analytical models have been developed
for predicting the convective flow of heat through
geothermal reservoirs during reinjection (Lauwerier,
1955; Gringarten et al., 1975; Bodvarsson and Tsang,
1982; Satman, 1988; Marx and Langenheim, 1959;
Hearn, 1969; Closmann, 1967). While these models
have been useful, they all have limitations.  These
limitations include models limited to one-dimension,
models applicable only during the early-time period
when conduction in the matrix block is as if into a
semi-infinite medium, models that are too complex
for practical use, and models that have analytical
solutions only in the Laplace domain.  In this paper,
new analytical models for the advance of thermal
fronts in geothermal reservoirs are developed that
overcome many of these limitations.  These new
thermal advance models use matrix conduction
models that were previously presented (Reis, 2000).

THERMAL ADVANCE IN FRACTURE
NETWORKS

The areal extent of the thermal zone is obtained by
applying an energy balance to the injected water.  For
the case of the fracture porosity (as a function of bulk
formation volume) being negligible, i.e., the fluid in

the fractures have a negligible thermal capacity, this
energy balance can be written as
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where qw,inj is the enthalpy of the injected water, the
integrals are the thermal crossflow from the fracture
network to two different matrix domains, and A is the
surface area of the heated zone as seen from the top
of the horizontal formation (not the surface area of
the matrix blocks themselves).

Early-Time Period
The early-time period thermal advance models are
obtained by using the early-time period conduction
model in the energy balance integrals. For the early-
time period, i.e., for the case when the conduction
fronts from opposing faces within the matrix blocks
do not yet reach the center of the matrix blocks, the
conduction rate per unit area of the heated zone (as
seen from above the formation) can be expressed as
(Reis, 2000)
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DL =
4L xL y + 4LxLz + 36LyLz − 5Lx
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Lx, Ly, and Lz are the matrix block dimensions,  χ is
the volume fraction of an individual matrix domain,
H is the formation thickness, and α is the thermal
diffusivity.

Substituting Eq. 2 into Eq. 1 and solving for the area
of the thermal zone yields
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f2 = 1
a b − a( )− 1

ab
  , (13)

E1 = χ1ω 1J1 πtcl,1 + χ2ω 2J2 πtcl,2   , (14)
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The subscripts on the right-hand side of these
equations refer to the individual matrix block
domains.  This model has the following restrictions
on the matrix block dimensions:
Ly ≥ Lx
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Late-Time Period
The late-time period thermal advance models are
obtained by using the late-time period conduction
model in the energy balance integrals.  For the late-
time period, i.e., for the case when the conduction
fronts from opposing faces of the matrix blocks
interfere with each other, the conduction rate per unit
area of the heated zone can be expressed as (Reis,
2000)
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ρ and c are the density and heat capacity of the
matrix, and ∆T is the difference between the initial
formation temperature and injected water
temperature.  Substituting Eq. 19 into Eq. 1 and
solving for the area of the thermal zone yields
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where it has been assumed that the thermal properties
of the matrix blocks in the two domains are equal but
matrix block sizes are not, i.e., the fractures cut
homogeneous rock, and a matrix block size
parameter has been defined as

R =
576 LxLy + L xLz + LyLz( )δ

Lx
2 4LxL y + 4Lx L z + 36LyLz − 5Lx

2( ). (22)

This model does not have any restrictions on matrix
block dimensions other than the dimensions being
ordered such that Lx < Ly < Lz.

For the case of a double porosity reservoir, i.e., one
matrix domain (R1 = R2), Eq. 21 simplifies to
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INCORPORATION OF FRACTURE DATA IN
NETWORK MODEL

In naturally-fractured formations, fracture properties
normally govern fluid flow through the reservoir.  In
most reservoir models, it is assumed that all fractures
are uniformly spaced and all matrix blocks are
identical.  Fractures, however, are not uniformly
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spaced and the utility of this assumption remains
largely untested.

Although exact information about the fracture
locations, distributions, spacings, and apertures in the
reservoir can never be completely known, relevant
statistical fracture properties can often be obtained
from outcrop and/or wellbore measurements.  These
statistical fracture properties can then be used in
reservoir models to determine the probable reservoir
behavior.  In this section, methods for incorporating
statistical parameters from measured fracture spacing
distributions into the models for the area of the
thermal zone will be presented.  The outcome of this
analysis is to determine the appropriate values of Lx,
Ly, and Lz to be used in the thermal advance models.

The fracture spacing distribution used in this study is
the negative-exponential model (Mahtab et al., 1973;
Call et al., 1976; Priest and Hudson, 1976; Baecher et
al., 1977; Einstein et al., 1979; Wallis and King,
1980; Einstein and Baecher, 1983; and Sen and Eissa,
1992).  Other distributions have been discussed by
these and other authors.

Early-Time Period: Single Matrix Domain
Fracture spacing data is incorporated in the single
matrix domain, early-time period model by noting
that thermal crossflow between the fractures and
matrix blocks during this period is controlled by the
surface area of the matrix blocks.  Many small matrix
blocks result in a large matrix block surface area and
a rapid energy transfer.  The average surface area per
matrix block was calculated for a reservoir having a
different negative-exponential fracture spacing
distribution in each of the three directions using a
Monte Carlo approach.  Over 10,000 individual
matrix blocks were simulated for each assumed set of
average fracture spacings.  The surface area was
calculated for each matrix block and the average of
all of the matrix blocks was determined.  The average
surface area per matrix block was then compared to
the corresponding surface area calculated assuming
all matrix blocks were identical and had dimensions
equal to the average fracture spacing in each
respective direction.  As seen in Fig. 1, the average
matrix block surface area for a reservoir having a
negative-exponential fracture spacing distribution is
virtually identical to that of a reservoir having
uniformly spaced fractures with the same average
spacing.  Each point in this figure corresponds to a
different set of assumed average fracture spacings.
This result is to be expected as long as the orthogonal
fracture spacings are independent of each other.

Based on this result, the fracture spacing distribution
data are incorporated into the one matrix domain,
early-time period model by using the average fracture
spacings in each direction in Eq. 9.  These spacings
are ordered such that Lx < Ly < Lz.  Since there is
only one matrix domain, χ1 =1 and χ2=0.

Early-Time Period: Two Matrix Domains
The fracture spacing data for two matrix domains is
incorporated into the early-time period model by
finding an appropriate average matrix block surface
area for each matrix domain and then selecting
appropriate fracture spacings for each domain that
yield the desired average matrix block surface area.
One domain will tend to have the smaller matrix
blocks and the other will have the larger matrix
blocks.

The first step is to select the volume fractions
associated with each domain.  This is a choice made
by the user.  Then the midrange cumulative volume
fractions for each matrix domain are determined.
The midrange volume fraction is the characteristic
cumulative volume fraction for each domain.  If the
matrix domains are assumed to each occupy 50% of
the reservoir, the midrange cumulative volume
fractions are 25% (midrange between 0 and 50%) and
75% (midrange between 50 and 100%).  If the matrix
domains are assumed to be 25% and 75% of the
reservoir volume, the midrange cumulative volume
fractions are 12.5% and 62.5%, respectively.

Next the surface area for matrix blocks in each
domain is obtained from the midrange volume
fraction.  A relationship between the matrix block
volume and surface area was obtained through a
Monte Carlo analysis.  For a particular set of average
fracture spacings in three orthogonal directions,
thousands of realizations of specific fracture spacings
were generated and the surface area and volume of
each corresponding matrix block was calculated.
These data were then sorted by increasing matrix
block volume.  The cumulative surface area was then
calculated as a function of cumulative matrix block
volume for the entire set of matrix blocks
realizations.  These curves were normalized by the
total surface area and volume yielding the fractional
cumulative surface area in the reservoir as a function
of fractional cumulative volume of the reservoir,
sorted by increasing matrix block volume.  This
process was repeated for a wide variety of average
fracture spacings.  Figure 2 shows this relationship
for three arbitrary sets of average fracture spacings.
It can be seen that there is little difference between
these curves for different fracture spacings.  This
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relationship can be approximated by the following
equation:
A frac = Vfrac

0.47

 . (24)
This curve is shown in Fig. 2 without plot symbols.

The characteristic fractional cumulative surface areas
for each matrix domain are obtained by substituting
the midrange cumulative volume fractions for the
matrix domains into Eq. 24.  The characteristic
fractional cumulative matrix domain surface areas for
each of the two domains are then normalized by
dividing them by the characteristic fractional area of
the reservoir if the reservoir were modeled as having
only a single matrix domain, i.e., they are divided by
the fractional cumulative area from Eq. 24 at a mid-
range fractional cumulative volume fraction of 0.5.
This fractional area is 0.72.  This gives the
normalized fractional cumulative surface area for
each domain relative to that of a reservoir with a
single matrix domain.

The final step is to relate the normalized fractional
cumulative surface areas to the measured average
fracture spacings.  This is done by multiplying the
values of average fracture spacings by the square root
of the normalized fractional cumulative surface area
for each domain and using those values in Eq. 9.
This approach extends the method for a single matrix
domain to two matrix domains.  The square root is
used because it yields the proper adjusted surface
area for each domain when two lengths are multiplied
to get an area.

Late-Time Period
The fracture spacing data is incorporated into the
late-time period models in a different way because
the thermal cross flow during this period is not
governed by the matrix block surface areas.  For this
case, a direct relationship was obtained between the
matrix block size parameter, R, and the statistical
parameters governing the fracture spacing
distribution through Monte Carlo simulation.
Fracture spacing realizations were obtained for three
orthogonal directions assuming different negative
exponential fracture spacing distributions in each of
the three directions.  Each set of three fracture
spacings was then ordered such that Lx < Ly < Lz.
These values were then substituted into Eq. 22 to
obtain individual matrix block size parameters.  The
associated matrix block volumes were also
determined by multiplying the three fracture
spacings.  This process was repeated thousands of
times to obtain a statistical distribution between the
matrix block size parameter and the matrix block
volume.

The matrix block size parameters and volumes were
then sorted in order of increasing matrix block size
parameter and the cumulative volume fraction
determined.  These values were then curve-fit to a
log-normal distribution of the cumulative matrix
block volume as a function of increasing matrix
block size parameter:

P Vfrac( )= 1
2π
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2
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For a negative-exponential fracture spacing
distribution, it was found that the log-normal
relationship between the matrix block size parameter
and volume could be reasonably modeled with the
following parameters:

µR = 2 ln
1

Lx

+ 1
Ly

+ 1
L z
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 
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 

 
 + 1.41 (26)

and
σR = 1.45  , (27)
where <Lx>,  <Ly>, and <Lz> are the respective
average fracture spacings for the three orthogonal
fracture sets defining the fracture network.  One such
data set is shown in Fig. 3.

A dimensionless matrix block size parameter was
defined as

X R = ln R( )− µR

σR

 (28)

and is plotted in Fig. 4 terms of the cumulative matrix
block volume.  The matrix block size parameter, R, is
determined from the dimensionless matrix block size
parameter by inverting Eq. 28:
R = exp XR σR + µR{ }  , (29)
where µR and σR are obtained from Eqs. 26 and 27,
respectively.

The late-time period model is used by selecting the
matrix domain volume fractions and corresponding
midrange volume fractions, determining the
dimensionless matrix block size parameter from Fig.
4 using the midrange volume fractions (y-axis),
calculating the matrix block size parameter from Eq.
29 with the measured average fracture spacings, and
then using those parameters in Eq. 23 for the case of
a single matrix domain or Eq. 21 for two matrix
domains.

COMPARISON ON MODELS

The effect of using fracture spacing information in
the models for the area of the thermal zone is
demonstrated in this section.  The fracture spacing
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distribution for the example reservoir are assumed to
follow the negative-exponential distribution, with
average spacings of 10 m, 20 m, and 100 m in the
three orthogonal directions, respectively.  The other
properties are given in Table 1.

Early-Time, One Matrix Domain
The values of Lx, Ly, and Lz to be used in Eq. 9 are
the average fracture spacings, 10 m, 20 m, and 100
m, respectively.  For this case, χ1 =1 and  χ2 =0. The
resulting area of the thermal zone is plotted in Fig. 5
as a function of time.

Early-Time, Two Matrix Domains
It will be assumed that the two matrix domains have
equal volume fractions.  The midrange volume
fractions are 0.25 and 0.75, respectively for the two
domains.  The corresponding area fractions from Eq.
24 are 0.52 and 0.87, for the respective domains.  The
normalized area fractions after dividing by 0.72 are
0.72 and 1.21, respectively.  The average fracture
spacings for the two domains are then obtained by
multiplying the measured average fracture spacing by
the square root of the normalized area fraction.  The
values of Lx, Ly, and Lz to be used in Eq. 9 are then
8.5 m, 17.0 m, and 85 m for the first domain and 11
m, 22 m, and 110 m for the second domain.  The
resulting area of the thermal zone is plotted in Fig. 5
as a function of time.

Late-Time, One Matrix Domains
For the assumed fracture spacing distribution, the
dimensionless matrix block size parameter is
determined from Fig. 4 at the midrange volume
fraction of 0.50.  This yields a dimensionless matrix
block size parameter of 1.  The statistical values for
the mean and standard deviation of the logarithm of
the fracture spacings from Eqs. 26 and 27 are -2.26
and 1.45, respectively.  The resulting matrix block
size parameter is given by Eq. 29 as 0.44 m-2. This
matrix block size parameter was then used in Eq. 23.
The resulting area of the thermal zone is plotted in
Fig. 5 as a function of time.

If all matrix blocks were identical and had the same
dimensions as the average fracture spacing, the value
of the matrix size parameter can be determined
directly from Eq. 22.  However, uniform matrix
blocks are not consistent with the assumption of a
negative-exponential fracture spacing distribution.

Late-Time, Two Matrix Domains
It will be assumed that the two matrix domains have
equal volume fractions.  The midrange volume
fractions are 0.25 and 0.75, respectively for the two

domains.  The corresponding logarithms of the
dimensionless matrix block size parameter from Fig.
1 are -0.67 and 0.67, for the respective domains,
yielding dimensionless matrix block size parameters
of 0.512 and 1.95, for the two domains, respectively.
The values for the mean and standard deviation of the
logarithm of the fracture spacings given by Eqs. 26
and 27 are -2.26 and 1.45, respectively.  The resulting
matrix block size parameters are given by Eq. 29 as
0.22 m-2 and 1.76 m-2 for the two domains,
respectively. These matrix block size parameters are
then used in Eq. 21.  The resulting area of the thermal
zone is plotted in Fig. 5 as a function of time.

Discussion
The four models demonstrated in this section are
shown in Fig. 5.  This figure shows that the
difference between the double-porosity and triple-
porosity models, i.e., one or two matrix domains, is
minor.  Within the typical accuracy of most fracture
spacing data, the additional complication of using
models having multiple matrix domains is probably
not justified.

The approximate time when the early-time period
ends for time for this example (given by Eq. 8) is
about 40 days.  Before this time, the early-time
period models are believed to be most accurate, while
after this time, the late-time period models are
believed to be most accurate.

CONCLUSIONS

New models have been presented for estimating the
size of the thermal zone in a geothermal reservoir
following reinjection.  These models utilize thermal
conduction models previously presented (Reis, 2000).
Models have been presented for both the early-time
period in which conduction fronts in the matrix
blocks from opposite sides have not yet merged at the
matrix center and for the late-time period in which
the conduction fronts have merged.  In both cases,
models have been presented for a traditional double-
porosity reservoir having one matrix domain and for
a triple-porosity reservoir having two matrix
domains.  The difference between the double- and
triple-porosity models is minor.  For each model, a
method for incorporating measured statistical fracture
spacing information was also presented.
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Table 1 Example Reservoir Data
L 10 m
hinj 1.0x106 J/s
H 100 m
km 2.8W/m/K
ρM 2630 kg/m3

cm 800 J/kg/K
∆T 200 K

Figure 1.  Comparison of Average Matrix Block
Surface Areas
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Figure 2.  Relationship Between Fractional Surface
Area and Fractional Volume

Figure 3.  Log-Normal Model for Matrix Block Size
Parameter

Figure 4.  Dimensionless Relationship Between
Matrix Block Size Parameter and Matrix Block
Volume Fraction

Figure 5.  Comparison of Models
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