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ABSTRACT

The frontal mathematicad model of water-steam
phase transition with capillary forces within porous
mediais proposed. The complete system of boundary
conditions at the boiling front is presented. Similarity
analytical solution is derived for the one-dimensional
problem of mass extraction from a contact boundary
between a hydrotherma reservoir and impermeable
rocks. It is shown that two different regimes of water
vaporization exist: 1) with formation of a two-phase
transition zone and 2) with formation of a sharp
vaporization front within nonwetting porous media
The effects of capillary forces on the main
characteristics of the vaporization process are
investigated.

NOMENCLATURE

Latin symbols

thermal diffusivity [m?/d],

heat capacity [J(K kg)],

intrinsic energy density [Jkg],

enthal py density [Jkg],

permeability [m?],

porosity,

pressure [Pal,

specific heat of phase transition [JKkg],
gas constant [J/(kg K)],

universal gas constant [J(kmole K)],
mean radius of the capillary meniscus [m],
temperature [K],

water or steam velocity [m/g],

velocity of the vaporization front [m/g],
molar volume of water [m® /kmole],
filter velocity [m/g],
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Greek symbols
a water compressibility coefficient [1/Pa],

water thermal expansion coefficient [L/K],
dimensionless similarity coordinate of the

vaporization front,
dimensionless similarity variable

contact angle,

thermal conductivity [W /(m K)],
viscosity [Pag],

r density [kg/ m*],

S  surfacetension [Jm?],
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Subscripts

n normal,

0 initia value,

S porous medium skeleton,

\' vapor,

w water,

+ quantitiesto the right of the front,
- guantities to the left of the front,

* values of the quantities at the front,

Superscript
0 boundary value.

INTRODUCTION

The fronta approach to phase transition problems is
developed. This method has been applied to
geothermal reservoir modeling by [Udell (1985)],
Pruess, Cdore, Celati and Wu (1987), Garg and
Pritchett (1988), Woods and Fitzgerald (1993),
Tsypkin (1994), etc.

Capillary pressure effects have been studied by Udell
(1985) and Pruess and O’ Sullivan (1992).

In Pruess and O'Sullivan (1992) numerica
simul ations were performed to evaluate the impact of
capillarity and vapor adsorption on the depletion of
vapor-dominated geotherma reservoirs. At the same
time, treatment of simple physica situations for
which solutions exist in a closed anaytical form is




also useful for illustrating the essentia features of the
phenomena.

The main am of the present study is to investigate
the capillary pressure effects on the movement of a
water-steam phase transition front in geotherma
reservoirs. In this case the effects of capillary forces
take place a the interface only. We assume that the
rock may be modelled as an isotropic porous medium
in which Darcy’s law is valid and al components
(skeleton of porous medium, water and vapor)
coexist in loca thermodynamic equilibrium. We
describe the vaporization process as movement of a
transition front that separates water-saturated and
vapor-saturated permeable rock. The keystone of the
work is the complete system of boundary conditions
a the vaporization front, which takes into account
capillary forces. Only a similarity solution of the one-
dimensiona depletion problem of mass extraction
from a contact boundary between a hydrothermal
reservoir and impermeable rocks is considered. The
whole problem is reduced to a system of
transcendental equations that is solved numericaly
for a wide range of physica parameters. The results
of numerical calculations show that there is adomain
of parametersin which frontal solutions exist.

We present distributions of the temperature and
pressure functions in each zone and derive the
analytical formula of the mass vaporizing function.
We show that the mass vaporizing function depends
nonmonotonically on porosity and decreases as a
function of the contact angle.

GOVERNING EQUATIONS

Let us assume that the hydrotherma reservair is an
incompressible porous medium at rest, saturated with
either water or steam. In order to describe the
processes of heat and mass transfer we will use the
following systems of mass and energy conservation
equations, Darcy’s law (O’ Sullivan, 1985), the
equations of state for water and steam, and the
thermodynamic relations. In the water zone we have
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In the vapor zone the main system has the form
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After identica transformations, the systems of the
basic equations reduce to the systems of two
equationsin T, P.

In the water zone, the system of basic equations has
the form
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In the vapor zone we have
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In the impermeable rock zone the usua heat equation
isvdid.

BOUNDARY CONDITIONS

The formulation of the water-steam phase transition
problem admits the existence of a phase transition
front. The conditions at this interface can be obtained
from the mass conservation law for H,O and the

energy conservation law on discontinuities of the
water saturation function
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This system is not complete and must be
supplemented by the thermodynamic relations.

The first group of relations is based on the
assumption of local thermodynamic equilibrium
between al phases at the phase transition front (since
the velocity of the front is small)
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There is another relation between the saturated vapor
pressure and transition temperature. Saturated vapor

pressure above the flat surface of abulk liquid can be
written by the formula (V uka ovitch, 1955):
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A=544, B=-20051K, P, =10°Pa;

Considering capillary forces inside the porous
medium, condition (5) is given by
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where capillary pressure P, isdefined by
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Here, S is the surface tension, which depends on
temperature by the formula:
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We will assume that the characteristic pore

dimensionisequa tov K/ m.

The reduction of saturated vapor pressure above the
meniscus of water is given by Kelvin's equation
(wettingcase, S > 0):
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From (6) and (9) we have the generalized
Vukalovitch’'s equation for the capillary phase
transition front:
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The complete multidimensiona nonlinear system of
boundary conditions a the water-steam phase
transition front can be written as
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LINEAR APPROACH

We will consider the solutions to the problem in
linear approximation when the pressure and
temperature variations in each zone are smal. We
represent these functions in the form

P=P+P¢ T=T+T¢

Here, l? is the constant undisturbed vaue and f C is

the perturbation of the function. In both domains the
basic systems of equations in linear approximation
have the form
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The systems of equations (12) can be simplified in
each domain if the temperature and pressure are
smdler than the critica values. For the energy
equation in the water zone the absolute vaue of the
second-to-first ratio term is equa to dimensionless
parameter

mbP 10110710
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This estimate shows that we can neglect the work of
the water pressure forces compared with heat

conduction. The system of equations in the water
domain can then be reduced to the following form
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term in the energy equation of the vapor domain can
be neglected. Both terms on the left side of the
motion equation have identical orders of magnitude,
which coincide with the left side of energy equation.

Hence we have a motion equation which in first order
is given by
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the system of the main equations in the vapor domain
can be written as
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In the domain of impermeable rock heat transfer
equation has the form
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ONE-DIMENSIONAL BLOCK DEPLETION
PROBLEM

Let us consider the simplest model problem of fluid
extraction from a contact boundary between a
hydrotherma reservoir and the surrounding rocks.
This situation arises, for example, when the heat-
transfer medium flows out into a fracture between a
permeable block and impermeable rocks. The
pressure drop in the process of extraction leads to
vaporization and, consequently, to a decrease in the
temperature of the reservoir, which, as estimates
show, may be considerable. In this case there is a
heat inflow from the surrounding rocks, resulting in
intensification of the vaporization process and the
formation of the steam-filled zone (of considerable
size).

Let impermeable rocks occupy the half-space X < 0
while the water a a temperature T, and a pressure

P, occupies the haf-space X > 0. The initid

pressure must satisfy the thermodynamic condition
for the existence of water




PW+ (TO) > P\/ (TO) + Pc

We assume that on the stationary wal X =0
(corresponding to the fracture between blocks) the

pressure drops to arelatively small vaue P°.
Then the boiling front x = X(t) (X(t)=V.)
propagates to the right from the surface X = 0.
The initiad and boundary conditions have the form:
t=0 X(0)=0 x<0O T=T,
x>0 T=T, P,=PR,
x=0 P = P° (P°< P),
(I gradT),, =(1 grad T),.

(16)

if Ty, P, P° ae constant guantities, then the

problem (13)-(16) possesses a self-similar solution
that describes the propagation of a plane vaporization
front through awater-saturated hot rock:
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For the water domain X > X(t), solutions of
equations (13) giving the pressure and temperature ,

respectively, are
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Similarly, the pressure in vapor domain
0<x< X(t) canbewritten as

P, :%(PV* - P°)+P° (18)

Because @, » @, the unique heat transfer equation

can be used in vapor and impermeable domains.
Hence, the distribution of temperature in zone
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By substituting these solutions into the boundary
conditions at the moving fronts we obtain the systems

of transcendental equationsfor T., P,., P.,Q

| 23B 4sV, cosqf']
T RT A
P = Put P
Jﬁmqalrwg+I o Oep(-g°),, (&
T 18To g erfc(g) \a,

A o ep(-9%a,/a,) kar,b alk,

Ty ﬁ1+erf(g allaz) m,Ta 1- a,/k,

o, Oeexp( 9°) |a exp(-g allkl)“

T ﬂ@ erf (9) k, erf(g./a,/k, )u

kar Ry &, &R, 1oexp( g al/kl)
mT, V8P et (glalk,)

vpakimm,g R 8 Vp k,m,,
kP, 8 r

JRLo 2g\a m,

R. &R, P°0 bT, a o 6
f RLEP, Po aPk.-adl '»

€k, exp(-9%) _ exp(-g°a,/k,)U-
u
gl a erfc(g) erfc(g) g

&R 0exp(-g “aylky) _
gPO zerfc(gq/allk )

The pressure and temperature distributions calculated
in the solution process must be fitted with
thermodynamical conditions of existence of steam
and water. In the water-saturated domain the local
phase transition temperature, calculated in
accordance with the pressure obtained from formula
(17), must be no lower than the local water




temperature, otherwise the water will be in the
superheated state. Analogoudly, the steam phase
transition temperature must be no higher than the
steam temperature, otherwise the steam will be in
supercooled state. If  the conditions  of
thermodynamical existence of water and steam are
not satisfied, then the physica phenomenon cannot
be described using the model proposed.

The steam supercooling condition is

édT, u <§dTg
esdzu gEU

where the phase transition temperature T, is

determined by equation (10) and the steam pressure
function is defined by formula (18). As a result we
have:
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The water superheating condition can be similarly
determined:
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Using solution (17) we obtain:
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The disappearance condition of the left side of these
relations determines the critical surfaces in the
parameter space.
Let us consider how the rate of vaporization depends
upon the main parameters of the physica process.
Mass vaporizing is given by the quantity
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Substituting in (22) the state equation of water and
using (17) &fter identica transformation we obtain
the final formula
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M not only depends on the parameters, initial and

boundary conditions but aso contains T., P,.,g ,

which are found in the process of solving the
problem.

NUMERICAL RESULTS

The system of transcendental equations was solved
numericaly for the following characteristic values of
initial and boundary conditions and parameters
(Grigoriev, 1997). Parameters of water and vapor are
computed as a functions of the fixed initia
temperature.

T, = 450K, P, =15x10° Pa, P° =5x10° Pa
m=01 k=10""n?, | ( =2W/(mxK),

C. =10°J/ (kg xK), r ¢ =2x10°kg/ m°,

a =07540"° Pa*,r , =0888x10°kg/ m’,
b =113x10°K"*,C,, = 4.39x0°J/ (kg *K),
|, =0678W/(mxK), q=204x10°J/kg,
R=461J/(kgxK),m, = 0148X0° Paxs,
m, =0159X10™* Pa>xs,

Some calculation results for neutra (q = 90°%),
wetting ( 0£q<90°) and
(90° £q <180° ) cases are presented below. There
are two typica regimes of vaporization. One of them

isplotted in Figures 1 and 2. Figure 1 shows a typical
distributions of temperature (curve 1) and phase

transition temperature T, = T, (P) (curve 2). The

nonwetting

latter is determined from relations (7) (10). As may

be seen from Figure 1, the fal in pressure in the
water domain leads to a change in the loca phase
transition temperature, which lies below the
temperature curve in all cases, i.e. the relation (21) is
valid. Physically, this correponds to the superheating



of water (T,>T;) in the zone ahead the

vaporization front. Hence, the conditions of
thermodynamical equilibrium existence of water in
this domain are not satisfied. Thus, the mathematical
model has a thermodynamical contradiction and the
vaporization process cannot be described within a
framework of a front approach; hence formation of a
two-phase domain should be taken into account. The
degree of superheating determines the extension of
the two-phase zone.

1,00
T,

0,98 -

0,96

0,94

Fig.1 Distributions of the dimensionless temperature
and phase transition temperature functions (curves 1
and 2, respectively).

Figure 2 presents the distributions of the pressure
functions in the vicinity of the interface for neutral,
wetting and nonwetting cases. In the neutral case
(without capillary forces) the pressures of water and
vapor a the phase transition front are equd. In the
presence of capillary forces there is a jump in the
pressure function a the front. In the wetting case
(Fig.2b), the water pressure is less than that of vapor.
In the nonwetting case (Fig.2c) the opposite is the
case.
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Fig.2a. Distribution of the dimensionless pressure
function in water (curve 1) and vapor domains

(curve 2). Neutral case (0 = 90°)

g =0176; P. =P, =7.0440° Pa
T. =436.68 K.
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Fig.2b. Distribution of the dimensionless pressure
function in water (curve 1) and vapor domains (curve

2). Wetting case (0 £ q < 90°)
g =0157; T. =43618K: q = 78°;
P, =692X0° Pa; P,. =169x0° Pa;
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Fig.2c. Distribution of the dimensionless pressure
function in water (curve 1) and vapor domains (curve
2). Nonwetting case (90° < q £ 180°)

g = 0195 T, =43713K; q =102°
P, =715%0° Pa; P, =124x0° Pa;

There is a range of parameters with a second regime
of vaporization, described by a thermodynamical
non-contradictory solution, when the conditions of
equilibrium existence of water and steam are

satisfied, i.e. T, <T; in the water domain and

T, >T; in the vapor domain. As an example, we

present the results of numerical calculations for the
following values of parameters, initial and boundary
conditions:



T, =400K, P, =3x10° Pa, P° =15x10° Pa
m=01 k =10" n?

a =054x0"°Pa*t,r A =0926X0°kg/n’,
b =093X0°K™*,C, =4.28x10°J/ (kg xK),
|, =0685W/(mxK), q=218x10°J/ kg,
m, = 0213X10° Paxs, q =102°

m, = 014510 * Pa>s,

1,008 1
T,
1,004

1,000 1

0,996

L L i L L ,
T
-10 -0,5 0,0 g 0,5 1,0 7 15
Fig.3. Distributions of the dimensionless temperature
and phase transition temperature functions (curves 1
and 2, respectively) in nonwetting case.

g =0024; T. =397.63K;
P. =255X0° Pa; P, =21140° Pa;

Figure 3 shows that the temperature in the water zone
is lower than the phase transition temperature

(T, <T;), which indicates the consistency of the

frontak model of the vaporization process in
nonwetting porous media Hence, capillary forces
play a stabilizing role for the vaporization front in the
nonwetting case. Distributions of pressure in this case
are asin Figure 2c.

Figure 4 presents, for different vaues of initia
pressure, the domains of existence of fronta

solutions in the plane (K, T,), which lie under the

critical curves. Above the curves are frontal solutions
that are characterized by thermodynamica
contradiction ahead of the vaporization front.

42r
To/100 )
411

40t

391

6 7
10 k

Fig.4. Critical curves of existence of a frontal
solution for the initial pressures P, = 3X10° Pa

(curve 1) and P, = 4x10° Pa (curve2)
g =102°

The results of our numerical caculations show that
an increase in initia pressure leads to the expansion
of the domain of anoncontradictory solution.

Figure 5 shows how the tota mass vaporizing
depends upon the contact angle, permeability and
porosity if other parameters are constants:

T, =400K; g =102, m=01 k =10 m?;
P, =4x0° Pa; P°=15x0° Pa;

As the contact angle decreases, the mass vaporized
increases linearly.

9.0 9.5 160 165 1i0

q
Fig.5a. Mass vaporizing as a function of contact
angle.

Figure 5b shows that the mass vaporized increases
with permeability.
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Fig.5b. Mass vaporizing as a function of
permeability.

The mass vaporizing is a nonmonaotonic function of
porosity.
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Fig.5c. Mass vaporizing as a function of porosity.

CONCLUSIONS

A new model of fronta water vaporization in
geothermal reservoirs, which takes into account
capillary forces, is presented. A similarity solution is
derived for the one-dimensiond problem of fluid
extraction from a contact boundary between a
hydrothermal reservoir and impermeable rocks. The
model shows that for nonwetting porous media there
exists a range of parameters where capillary forces
play a stabilizing role for the vaporization front,
hence a sharp front develops. A parametric study of
the vaporizing mass fraction shows that the latter has
amaximum as afunction of porosity.
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