PROCEEDINGS. Twenty-SecondWorkshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 27-29, 1997 SGP-TR-155

THERMODYNAMIC CLASSIFICATION OF GEOTHERMAL SYSTEMS

Mahendra P. Verma

Depto. de Geotermia, Instituto de InvestigacionesElectricas Apartado Postal 1-475, Cuernavaca Morelos 62001, Mexico

ABSTRACT

A thermodynamic approach is presented to classify geothermal reservoir as vapor or liquid dominated. According to it, the vapor dominated reservoir has specific volume of fluid (i.e. combined vapor and liquid) greater than the critical volume of water whereas the liquid dominated reservoir has lesser specific volume. Enthalpy is not a conservative entity in a geothermal system. Apart from it, the measured enthalpy depends on the pressure and temperature conditions of well head and separator. It means that the enthalpy measured at well separator is not reservoir enthalpy. It should be called as production or discharge enthalpy instead of reservoir enthalpy at the temperature and pressure conditions of well head and separator. Using these concepts and a simplified two phase flow, a method is developed to calculate the specific volume of reservoir fluid. The approach is applied in case of well M-19A of Cerro Prieto geothermal system. The Cerro Prieto reservoir under this well is vapor dominated.

INTRODUCTION

On the basis of geological characteristics and the mechanisms of heat transfer to the earth's surface, the geothermal resources can be divided in three major classes as: **i**. *hydrothermal convection systems ii*. *geopressured geothermal systems and iii*. *hot dry rock and molten magma systems*. The hydrothermal systems are presently in exploitation stage in many parts of the world. The hydrothermal systems are further subdivided as *vapor dominated and liquid dominates systems* to understand the production characteristics and geochemistry of their reservoir.

Fluid geochemistry is a valuable tool in the evaluation of energy potentials of geothermal systems. It is used to determine various reservoir parameters such as temperature, state of water-rock interaction, fluid flow pattern, recharge zone, size of the reservoir, etc. The effect of the cooling processes of the fluid during ascent to the surface due to heat conduction and admixtures with cold waters or steam losses may be evaluated by means of changes introduced in the chemical and isotopic composition (Giggenbach et al, 1983). In order to obtain these reservoir parameters and to evaluate reservoir processes from fluid chemistry, various theoretical approaches have been developed, but the first step in these approaches is to determine the deep reservoir fluid composition from fluids, separated water and steam obtained from drilled wells and/or natural manifestations.

The various geothermal reservoirs have been distinguished as vapor dominated such as Larderello fields of Italy, The Geysers of California, Matsukawa, Japan which produce dry steam or superheated steam with little of no associated water (Truesdell and White, 1973). They also reviewed the existing models to explain the formation of vapor and liquid dominated reservoirs, which were based on the measured in-hole temperature and shut-in pressure. but they noticed that the in-hole temperature and shutin pressure in other vapor dominated fields seemed to be quite different. The model proposed by White et al (1971) considers that a geothermal reservoir contains both steam and water in its natural state prior to production. These systems are formed initially from hot water systems when the heat supply is large relative to the heat transfer ability of the convecting liquid water in the system. This situation is caused primarily by low permeability of the rocks bounding the sides of the reservoir, with resulting low rates of recharge. When, due to increasing heat or decreasing permeability form self sealing, more water is boiled off than is replaced by recharge, a vapor dominated system begin to form.

There exists an extensive literature on numerical calculation of reservoir characteristics of a vapor dominated geothermal reservoir (Young, 1996 and references cited in). But the basic definition of a vapor dominated is not clearily presented, yet. One can

In this article a thermodynamic definition of a vapor dominated geothermal system is presented, which is based on the calculation of specific volume of the fluid in the geothermal reservoir. The calculation of specific volume is done by applying a simplified two phase flow approach using the laws of conservation of mass and total energy (mechanical and thermal energies). The dissolved contents of gases and salts can change the thermodynamic characteristics of geothermal fluids drastically (White et al, 1971), but here the pure water characteristics are used to demonstrate the concepts of thermodynamic classification the geothermal reservoir as vapor or liquid dominated reservoir. The approach is applied in case of well M-35 of the Cerro Prieto geothermal system which shows that the Cerro Prieto geothermal reservoir under the well M-35 is vapor dominated.

P-V-T BEHAVIOR OF GEOTHERMAL FLUID

The characteristic thermodynamic properties, such as internal energy, enthalpy and Gibbs free energy of geothermal fluids cannot be measured directly, whereas these properties are of fundamental importance in chemical thermodynamic calculations. Fortunately, for fluids in equilibrium states the properties are function of measurable parameters such as pressure, temperature, volume and dissolved constituents. In discussing the thermodynamic behavior of geothermal fluid it can be assumed the effect of dissolved constituents as very small. Here, a general behavior of the PVT relation of the fluids (i.e. pure water) is looked for the definition of vapor-liquid dominated reservoir. The most of the discussion is taken from Smith and Ness (1975) for sake of completeness. These concepts are used in the computer programming of the two phase flow method. The work of Smith and Ness (1975) could be resumed as:

Figure I(a) demonstrates a general PT diagram for a pure material. The phases liquid and gas distinction cannot always be sharply drawn because the two phases become indistinguishable at critical point. Line 2-C is the vaporization curve and separates the liquid and gas regions. If the system exists along this two phase line, it is univariant, whereas in the single phase regions it is divariant. The vaporization curve 2-C terminates at point C. The coordinates of this point are called critical pressure Pc, and critical temperature Tc. These represent the highest temperature and pressure at which the geothermalfluid can exist in vapor-liquid equilibrium.

Figure 1(b) shows the plot **d** pressure vs. molar or specific volume *d* isotherms which would be vertical lines in the Figure I(a). The isotherm labeled T_I is at temperature greater than the critical temperature T_{c} . The line T_2 is for lower temperature and consists of three distinct sections. The horizontal sections represent the phase change between vapor and liquid. The constant pressure at which this occurs for a given temperature is the vapor pressure, and is given by a point on Figure I(a) where the isotherm crosses the vaporization curve. Points along the horizontal lines af Figure l(b) represent all possible mixtures of vapor and liquid in equilibrium, ranging from 100 percent liquid at the left end to 100 percent vapor at the right end. The locus **d** these end points is represented by the dome-shape curve labeled ACB, the left half **d** which (from A to C) represents saturated liquid, and the right half (from C to B) saturated vapor. The area under the dome ACB is the two-phase region, while the areas to the left and right are the liquid and gas regions, respectively.

The significance *d* the critical point becomes evident from a consideration of the changes that occur when a pure substance is heated in a sealed upright tube of constant volume (Figure l(c)). If the tube is only partially filled with liquid (the remainder being vapor in equilibrium with the liquid), heating atfirst causes changes which are described by the vapor-pressure curve (solid line). If the meniscus separating the two phases is initially near the bottom **d** the tube (Figure l(c)iii), the liquid vaporizes, and the meniscus recedes to the bottom **d** the tube and disappears as the last drop **d** liquid vaporizes. For example in Figure 1(a), one such path is from (J,L,K) to N; it then follows the constantvolume line V upon further heating. If the meniscus is originally near the top **d** the tube (Figure l(c)i), the liquid expands upon heating until it completely fills the tube, One such process is represented by the pathfrom (J,L,K) to P; it then follows the constant- volume line V' with continued heating. The two path are also shown by the dashed lines in Figure 1(b), the first passing through points K and **N**, and the second, through J and P.

Between these there is an amount \mathbf{c} liquid that can be added to the tube (Figure l(c)ii) initially such that the path \mathbf{c} the heating process coincides with the vapor-pressure curve \mathbf{c} Figure l(a) all the way to its end at the critical point C. Further heating produces changes represented in Figure l(a) by a path along V_{c} , the constant-volume line corresponding to the critical volume \mathbf{c} thefluid.

It is clear from the above discussion that the geothermal system could be classified as vapor and liquid dominated which have specific volume of the fluid in the reservoir less or greater than the critical volume, respectively. If the specific volume of the reservoir fluid, combined liquid and vapor is less than the critical volume, all the fluid will convert in vapor only as it get heated with country rocks in the

reservoir and vice versa. But both the types of othermal reservoir could produce only vapor phase

the well head depending upon the pressure and mperature conditions of the production and in the servoir. And it is not correct to define the type of eothermal reservoir with the characteristics of eothermal fluid at well head. Thus it is necessary to alculate the deep reservoir fluid specific volume form in fluid characteristics at well head to classify the eothermal system.

is very commonly used to measure the reservoir athalpy from the production data of vapor and liquid .the well separator pressure. If the orifice of the well ead (i.e. well head pressure) is changed, the roduction of vapor and liquid at the same separator onditions will be different. Thus the enthalpy will lso be different. In other words, with changing the 'ell head parameters one can change the reservoir nthalpy, which does not sound correct. So, it is orrect to call the *production enthalpy*, instead of eservoir enthalpy at the well head and the separator 'mperature and pressure conditions.

comparative study of different approaches on the alculation of deep reservoir fluid parameter is resented by Verma (1996). The approach which is tore commonly used in the literature is based on the onservation of mass and thermal energy (Enthalpy). 'he first calculations are made assuming a single hase (liquid) in the reservoir which is not always the ase. To obtain the fraction of steam at the feeding one of a geothermal well Henley et al (1984) used he measured and chemical geothermometers (SiO₂ nd NaKCa) derived enthalpies to calculate excess nthalpy and excess vapor. According to them the eservoir fluid could be characterized as

Normal enthalpy fluid	$t_{NaKCa} > t_{quartz}$ $H_{TD} \cong H_{NaKCa} > H_{quartz}$
High enthalpy fluid	t _{NaKCa} >> t _{quartz} H _{TD} > H _{NaKCa} >H _{quartz}
Low enthalpy fluid	t _{quartz} < t _{NaKCa} H _{TD} ≅ H _{quartz} <h<sub>NaKCa</h<sub>

They have pointed out that the high enthalpy fluid is a result of reservoir boiling with preferential steam flow o the well, whereas low enthalpy discharge may occur where multiple feed zones intersect the well or where exploitation has led to inflow of relative cold water. They used the terms vapor "excess steam" for

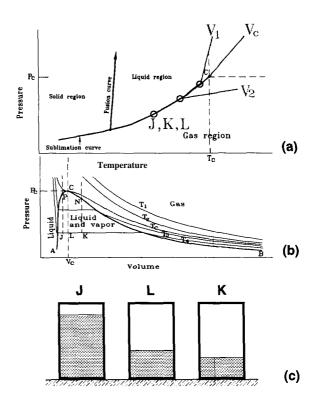


Fig. 1. P-V-T diagramfor a geotehrmalfluid without considering the efects of dissolved constituents. (a)P-T diagram (b)P-V diagram and (c) a hypothetical case of water-vapor ratio in a geothermal system is shown to distinguis the three possible options: i. liquid dominated, ii. critical condition and iii. vapor dominated reservoir.

the fraction of steam calculates with this methods and the "excess enthalpy" to the enthalpy associated with this steam in the reservoir.

The approach of Giggenbach to calculate excess steam is based on the distribution of gaseous components, methane, carbon dioxide, hydrogen and vapor. This approach is mostly used in geothermal fluid geochemistry literature. It is an outcome of the work on geothermal gas equilibria (Giggenbach, 1980). The equilibrium constants of two reactions: Fischer-Tropsch reaction and/or dissociation of ammonia into N_2 and H_2 are used. Because of the large differences in the solubilities of the gases considered, a small variation in the amount of deep vapor added to or lost from a geothermal discharge can lead to large variation in the relative gas contents. Nieva et al (1984) modified this approach for the case of high concentration of volatile species other than steam in the vapor phase.

The excess word in defining excess steam and excess enthalpy seems to be misleading. As in a geothermal reservoir there could be different proportion of vapor Shafaie, 1986). In the separator the mixture is separated into vapor and water at a specified pressure (or temperature). The separated water is flashed in the weirbox at atmospheric pressure. The samples of water after the weirbox and steam after the separator are, generally, collected to analyze geochemical parameters.

The earlier method is based on the two fundamental assumptions: equilibrium between vapor and water in the well and conservation of enthalpy. These assumptions are not always valid in the case of a geothermal system. The existence of superheated steam has been predicted in various geothermal reservoirs, but the production characteristics even the steam producing wells is not reported in the literature. It is clear thermodynamically that the wells which have superheated steam at the bottom, should also produce superheated steam at the well head. So, one has to measure both temperature and pressure at the separator and the well head, and use the steam table for compressed liquid and superheated steam to deal the geochemistry of the system, correctly. In case of wells which produce mixture of vapor and liquid, one can still assume the existence of equilibrium between the vapor and the liquid as there are usually no data on temperature and pressure measured independently in a geothermal well. So, it is still possible to use saturated steam table for the thermodynamic data of water.

Enthalpy is not a conservative parameter in geothermal systems (Verma, 1996). The fluid entering at the bottom of a well has practically no velocity, so it does not have any kinetic energy. But the measured high flow rate of steam and separated water after the separator is a direct indication of high kinetic energy of the fluid at the well head. Similarly as the fluid ascending to surface its potential energy increases. So the heat energy changes to mechanical energy

(potential and kinetic energies). Hence the total energy must be used as a conservative quantity not the enthalpy in dealing geochemistry of a geothermal system.

The steady state flow and no heat loss with conduction in the well are assumed in this approach, too. As the liquid (geothermal fluid) flows up in the well, it suffers to pressure drop caused by gravitational, frictional, and accelerational effects. The gravitational pressure drop is the dominant one, and friction accounts for only a few percentage of the total pressure drop in the well. So the frictional pressure drop will also be neglected here to simplify the approach.

If there are water and vapor in equilibrium at the separator, the well head parameters can be calculated in the terms of the separator water-vapor parameters. The mass and energy balance equations can written as

$$m_{l,hd} + m_{v,hd} = m_{l,sp} + m_{v,sp} \qquad \dots 1$$

$$\frac{1}{2}m_{l,hd}u_{i,hd}^{2} + \frac{1}{2}m_{v,hd}u_{i,hd}^{2} + m_{l,hd}H_{i,hd} + m_{v,hd}H_{v,hd} \qquad \dots 2$$

$$= \frac{1}{2}m_{l,sp}u_{i,sp}^{2} + \frac{1}{2}m_{v,sp}u_{i,sp}^{2} + m_{l,sp}H_{i,sp} + m_{v,sp}H_{v,sp}$$

The void fraction which is the fraction of cross section area occupied by vapor phase is defined as

$$\alpha_{hd} = \frac{V_{\nu,hd} m_{\nu,hd}}{V_{\nu,hd} m_{\nu,hd} + V_{l,hd} m_{l,hd}} \qquad \dots 3$$

The mass flow rates for vapor and liquid phase at the well head can be expressed as

$$m_{\nu,hd} = \frac{u_{\nu,hd} \alpha_{hd} A_{hd}}{V_{\nu,hd}} \qquad 4$$
$$u_{l,hd} (1 - \alpha_{hd}) A_{hd}$$

$$m_{l,hd} = \frac{u_{l,hd} (1 - O_{hd}) A_{hd}}{V_{l,hd}} \qquad \dots 5$$

There are five equations to calculate the five unknown quantities such as $m_{l,hd}$, $m_{v,hd}$, α_{hd} , $u_{l,hd}$ and $u_{v,hd}$ The procedure can be repeated dividing the well height in small segments, until the liquid saturation conditions are reached. After this point, the pressure of the liquid increases and one has to use compress-water steam table data. One has to include the potential energy in the energy conservation equation (2) in these calculations in the well. The equation for concentration calculations is the same as discussed in earlier method with slight modification. The vapor fraction must be calculated as

$$y_{sp} = \frac{m_{v,sp}}{m_{v,sp} + m_{l,sp}} \qquad \dots 6$$

The calculation must be repeated as discussed above dividing the well height in small segments until vapor saturation is reached. After this point the two phase flow concepts must be used.

(1

Here it is supposed that the vapor and liquid don't

RESERVOIR PARAMETERS CALCULATION FOR CP-M19A WELL

the two approaches. It takes input data for liquid phase as the chemical composition of separated water at atmospheric pressure in weirbox and for vapor phase the chemical composition of gases on dry basis, gas fraction in vapor conduit in the separator and well head and separator pressures. Apart from it, the construct data of well and the conduits of vapor and liquid are also required. The program is composed on various subroutines and functions. Some of the important subroutines are the followings: i. Stm Tbl: It provides the saturated steam table from 0°C to the critical point of water (375.15°C). ii. FracCoeff: This subroutine computes the fractionation coefficients of the gases, CO_2 , H_2S , NH_3 , CH_4 , N_2 and H_2 at a specified temperature. iii. WellHead: This subroutine calculates the vapor and liquid phase compositions at well head using input data and conservation of mass and total energy (thermal and mechanical energy). iv. WellPos: Once the fluid compositions at well head are known. The subroutine WellPos starts calculating the compositions in the well with dividing it in small segments (say 10 m length) in an iterative way till reaching the bottom of the well. The details of the computer program are presented elsewhere (Verma, 1997).

Table 1 shows a data set for geochemical analysis of a geothermal well (M-19A) from Cerro Prieto. The chemical analysis data are taken from Henley et al (1984) and the production and well depth data are from Aragon (1986). The reservoir enthalpy, calculated from the flow rate of water and vapor, and the pressure at the separator, is somewhat higher than the reported one.

The reservoir temperatures calculated by applying quartz and Na-K-Ca geothermometers are 285 and 281°C, respectively; whereas the liquid temperature to enthalpy is 273°C. It is somewhat higher than that calculated with chemical geothermometers, but the quartz and Na-K-Ca temperatures are in good

agreement. So, it can be considered that there is no loss or gain of enthalpy and total discharge compositions are the deep reservoir concentration. The chemical compositions of reservoir fluid calculated using this approach are given in the Table 2. Applying Giggenbach method, there shows an excess steam of 33.6% in the reservoir and the chemical compositions of reservoir fluid calculated using this approach are also given in the Table 2.

We consider here a simple case of two phase (vapor and liquid) production. It could be possible to have only vapor phase at the well head, while there may be liquid and/or vapor at the bottom of the well. If there is a liquid phase at the bottom and we are getting only vapor at the well head. It means that the solid phase (dissolved constituents) are deposited on the wall of well or returned back to the reservoir.

The reservoir fluid compositions calculated with the two phase flow method are also shown in the Table **2**. If we change the depth of the well, we will get different composition of the reservoir fluid. It is similar to say that one can get different proportions of steam and separated water in the separator result from changing the orifice at well head. This has been observed almost in all the geothermal fields. Recently, it examined experimentally in the laboratory by Okabe (1996).

The specific volumes calculated for different depths of the well are shown in the Table 2, which are 12.6, 9.6 and 6.6 c.c./g for the well depths of 500, 1450 and 3000 m, respectively. The critical volume of water is 3.16 c.c./g. It means that the well CP-M19A is producing from a vapor dominated reservoir.

CONCLUSIONS

The reservoir which has specific volume of the fluid less than the critical specific volume is vapor dominated, whereas the reservoir having fluid specific volume greater than critical specific volume is liquid dominated. The two phase flow approach to calculate reservoir parameters is based on the valid theoretical concepts: *steady state* two *phase flow* and *total energy* conservation. It uses only parameters which can be measured correctly at the well head and separator. Whether the fluid entering at the bottom of well is compressed liquid, a mixture of vapor and water, or superheated steam, can be determined without using any empirical relations. The important contribution of this study is that it provides temperature and pressure with chemical compositions in the reservoir; these parameters are of fundamental importance in modeling geochemical processes in a geothermal reservoir. The approach can be improved by incorporating the friction among vapor and liquid phases and the walls of the well, the effect of dissolved species on the properties of vapor and liquid hases and compressed liquid and superheated steam able. The fractional pressure is also very important **as ie** diameter of well has very dominative role in overning the fluid flow conditions. The Cerro Prieto eservoir around the well M-19A is vapor dominated ccording to this thermodynamic classification.

lomenclatures

'he symbol stands for

- A Area of cross section
- B Gas distribution coefficient
- H Specific enthalpy
- m Flow rate
- P Pressure
- T Temperature
- u Flow velocity
- V Specific volume
- y Fraction of vapor
- a Void fraction

The subscripts have the following significance

- hd- wellhead
- 1 liquid phase
- R reservoir
- sp separator
- v vapor phase

hcknowledgment:

The work was developed as a part of the Technical Cooperation project MEX/8/020 funded by IAEA, Vienna.

REFERENCES

Aragon A. (1986) Personal Communication.

Giggenbach W. (1980) Geothermal gas equilibria. Geochim. Cosmochim. Acta 44,2021-2032

Giggenbach W., Gonfiantini R. and Panichi C. (1983) Geothermal systems. In "Guide Book on Nuclear Techniques in Hydrology, International Atomic Energy Agency, Vienna, pp. 359–379.

Grant M.A., Donaldson A.G. and Bixley P.F. (1982) Geothermal reservoir engineering. Academic Press, N.Y. 369pp.

Haar L., Gallagher J.S. and Kell G.S. (1984) NBS/NRC Steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Hemishere Publishing Corporation, N.Y. 320pp.

Henley R.W., Truesdell A.H. and Barton P.B. (1984) Fluid-mineral equilibria in hydrothermal systems. Society of Economic Geologists, 268pp.

Irvine T.F. and Liley P.E. (1984) Steam and gas tables with computer equations, Academic Press, Inc. N.Y.

Michaelides E.E. and Shafaie F.F. (1986) A numerical study of geothermal well flow with salts and noncondensables present. J. Energy Resources Tech. **108**, 140-145

Nieva D., Cathelineau M., Izquierdo G., Barragán R.M. and Oliver R. (1984) Estudio de la estructura hidrológica y de la distribución de parámetros físicoquimicos en el yacimiento de Los Azufres, Mich. Unpublished IIE-CEF report.

Smith J.M. and Ness H.C van (1975) Introduction to chemical engineering thermodynamics, McGraw-Hill Kogakusha, ltd. Tokyo.

Truesdell A.H. and White D.E. (1973) Production of superheated steam from vapor dominated geothermal reservoirs, Geothermics, **2**, 154-173.

Verma M.P. (1994a) Necessity to measure pressure and temperature independently in geothermal systems, Memor. INAGEQ, pp. 191-192.

Verma M.P. (1994b) Enthalpy is not a conservative quantity in geothermal system, GeosUGM, Puerto Vallarta, Mexico

Verma M.P. (1996) **A** two-phase flow approach to calculate physical-chemical parameters of geothermal reservoir. 18th New Zealand Geothermal **Workshop**. pp. 199-203.

Verma M.P. (1997) A computer program to calculate the fluid thermodynamic parameter in a geothermal reservoir with two phase flow approach ... (in preparation)

White D.E., Muffler L.J.P. and Truesdell A.H. (1971) Vapor dominated hydrothermal systems compared with hot water systems, Econ. Geology, **66**, 75-97.

Henley et al ((1))+) and magon (1)0						
Well No :		,	Well head pressur	e:	35 ha	r (absolute)	
Well Height:	1425 m		Well separator pre			bar (absolute)	
Well Diameter:	30 cm		Atmospheric press			1 bar (absolute)	
			Vapor production		63.2 to	· · · · ·	
Date of sampling: .			Water production				
1 0		1	Reservoir Enthalp		1203J/	′gm	
Chemical A	nalysis of separated wate	r at the weirb	ox:				
]	Na ⁺ 73	70 ppm	Cl			13800ppm	
]	K ⁺ : 16	60 ppm	SO4	2-		18 ppm	
	Ca^{2+} 4	438 ppm HCO _{3 T} :			52 ppm		
Ì	Mg ²⁺ :	0.4 ppm		SiO ₂		808 ppm	
		00 ppm	pH ((at 20°C):		7.4	
	B:	14.4 ppm					
-	As	<u>5 ppm</u>					
	nalysis of vapor at the sep						
Tot	al gas in steam (x_g) : 5.88 t	nmole/ mole s	team				
		-	822 mmole/mol	0			
		1 ₂ S:	79.1 mmole/mol				
		CH4:	39.8 mmole/mol				
		12:	28.6 mmole/mol				
		$l_2(+Ar)$:	5.1 mmole/mol				
	N	H3:	23.1 mmole/mol	e total gases	8		
uble 2. The deep reservoir	physical-chemicalparame		a culculated what	1	-		
arameter	Henley et al (1984)	Giggenback (1980)			phase flow approa	ch'	
arameter	Henley et al (1984)	Giggenbach (1980)	h 1	Two	phase flow approa	3	
arameter emperature(°C)	Henley et al (1984) 281	Giggenbach (1980) 281	n 1 2	Two I 48	phase flow approa	3 276	
arameter emperature (°C) ressure (bar Abs.)	Henley et al (1984) 281 65.1	Giggenbach (1980) 281 65	n1 2 i.1	Two 1. 48 38.7	2 260 46.9	3 276 60.1	
arameter emperature(°C) ressure (bar Abs.) 'apor Fraction	Henley et al (1984) 281 65.1 0	Giggenback (1980) 281 65	n1 5.1 0.015	Two 1 48 38.7 0.224	2 260 46.9 0.203	3 276 60.1 0.171	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ²	Henley et al (1984) 281 65.1 0	Giggenback (1980) 281 65	n1 5.1 0.015	Two 148 38.7 0.224 12.6	phase flow approa 2 260 46.9 0.203 9.6	3 276 60.1	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ²	Henley et al (1984) 281 65.1 0	Giggenback (1980) 281 65	n1 5.1 0.015	Two 148 38.7 0.224 12.6	phase flow approa 2 260 46.9 0.203 9.6	3 276 60.1 0.171	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ²	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605	Giggenback (1980) 281 65 tionsare in ppr	n 5.1 0.015 n or 10 ⁻⁵ molar ga	Two Two 48 38.7 0.224 12.6 ws/mole wate	phase flow approa 2 260 46.9 0.203 9.6 er) 5921	3 276 60.1 0.171 6.6 5692	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ²	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263	Giggenback (1980) 281 65 tionsare in ppr 5692 1282	n 24 5.1 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13	Two 1 48 38.7 0.224 12.6 us/mole wate 77 69	2 260 46.9 0.203 9.6 er) 5921 1334	3 276 60.1 0.171 <u>6.6</u> 5692 1282	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ²	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338	n 24 0.1 0.015 n or 10 ⁻⁵ molar ga 60 2 13 3 3	Two Two 48 38.7 0.224 12.6 us/mole wate 77 69 61	2 260 46.9 0.203 9.6 er) 5921 1334 352	3 276 60.1 0.171 <u>6.6</u> 5692 1282 338	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ² $ a^+$ a^{2+} $1g^{2+}$	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338 (n 24 0.1 0.015 n or 10 ⁻⁵ molar ga 60 2 13 3 3 0.3	Two 1 48 38.7 0.224 12.6 us/mole wate 77 69 61 0.3	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3	3 276 60.1 0.171 <u>6.6</u> 5692 1282 338 0.3	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² /a ⁺ -a ⁺ a^{2^+} /g ²⁺ a^+	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338 (154	n 1 24 5.1 0.015 n or 10 ⁻⁵ molar ga 60 2 13 3 3 3 3 2. 1	Two Two 0.224 12.6 s/mole wate 77 69 61 0.3 64	phase flow approa 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ² $ a^+$ a^+ a^{2+} a_2^{2+} a_1^+	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338 (154 1	n 1 24 5.1 0.015 n or 10 ⁻⁵ molar ga 60 2 13 3 3 3 3 1.1	Two Two 48 38.7 0.224 12.6 is/mole wate 77 69 61 0.3 64 11.9	phase flow approa 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² a^{+} a^{+} a^{2+} a^{2+} a^{2+} a^{2+} a^{3} As	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338 (154 11 23	n 24 5.1 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 1.1 3.9	Two Two 148 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1	phase flow approach 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² $ a^+$ a^2 dg^{2+} i^+ a^2 a^2 dg^{2+} i^+ a^2	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338 (154 11 2 310658	n 1 24 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 0.3 4 1 1.1 3.9 3 113	Two Two 148 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1 79	phase flow approact 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089	3 276 60.1 0.171 <u>6.6</u> 5692 1282 338 0.3 154 11.1 3.9 10658	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² la ⁺ a^{+} a^{2-}	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7	Giggenback (1980) 281 65 tionsare in ppr 5692 1282 338 (154 11 3 10658 12	n 1 24 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 0.3 4 1 1.1 3.9 3.9 113	Two Two 148 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8	phase flow approact 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5	3 276 60.1 0.171 <u>6.6</u> 5692 1282 338 0.3 154 11.1 3.9 10658 13.9	
arameter Temperature (°C) Tressure (bar Abs.) Vapor Fraction pecific Volume (c.c./g) ² la^+ la^+ la^{2+} lg^{2+} lf^* a_3 As Cl OQ^{2-} ICO_{3T}	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39	Giggenback (1980) 281 65 165 1282 1282 338 (154 11 3 10658 12 3 38 105 10 40	n 1 24 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 3.3 4 1 1.1 3.9 3.9 3.9 0.1	Two Two 48 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9	phase flow approact 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8	3 276 60.1 0.171 <u>6.6</u> 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² la^+ dg^+ dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2-} ICO_3^{-} ICO_3^{-} ICO_3^{-}	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614	Giggenback (1980) 281 65 281 65 1082 1282 338 (1282 338 (1282 338 (1282 1282 1282 1282 1282 1282 1282 1	n 1 24 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 3.3 4 1 1.1 3.9 3.9 3.9 0.1 4 6	Two Two 48 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624	
arameter Temperature (°C) ressure (bar Abs.) Vapor Fraction pecific Volume (c.c./g) ² la^+ dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2+} dg^{2-} IO_4^{2-} IO_3^-T IO_2 O_2	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19	Giggenback (1980) 281 65 281 65 1082 1282 338 0 154 11 3 10658 12 3 38 0 (154 11 3 40 624 624	n 1 24 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 3.3 4 1 1.1 3.9 3.9 3.9 3.9 0.1 4 6 56.90	Two Two 48 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71	phase flow approace 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624 16.67	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² la^+ la^+ la^+ la^{2+} lg^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2-} $lf^{$	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28	Giggenback (1980) 281 65 281 65 1082 1282 338 0 154 11 3 10658 12 3 38 0 (154 11 3 40 624 624	n 1 24 3.1 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 3.3 4 1 1.1 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.1 4 6 66.90 8.75	Two Two 48 38.7 0.224 12.6 s/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624 16.67 3.61	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² la^+ la^+ la^+ la^{2+} lg^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2+} lf^{2-} $lf^{$	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69	Giggenback (1980) 281 65 281 65 1082 1282 338 0 154 11 3 10658 12 3 38 0 (154 11 3 40 624 624	h 24 5.1 0.015 m or 10 ⁻⁵ molar ga 2 600 2 13 3 3 4 13 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.	Two Two 48 38.7 0.224 12.6 as/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15	$\begin{array}{r} 3\\ 276\\ 60.1\\ 0.171\\ 6.6\\ \end{array}$	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² la^+ da^+ da^{2+} da^{2+} da^{2+} da^{2+} da^{2+} da^{2+} da^{2-} ICO ₃ T iO ₂ da^2 $da^$	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03	Giggenback (1980) 281 65 281 65 282 1282 338 0 154 11 3 10658 12 3 10658 12 3 10658 12 3 10658 12 3 10658 12 3 10658 12 3 10658 12 3 10658 12 3 10 5 6 9 12 12 12 12 12 12 12 12 12 12 12 12 12	h 24 3.1 0.015 m or 10 ⁻⁵ molar ga 26 26 21 33 3.3 41 1.1 3.9 3.3 41 1.1 3.9 3.9 3.1 4 5.9 3.9 3.1 4 5.9 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	Two Two 48 38.7 0.224 12.6 as/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624 16.67 3.61 0.29 0.15	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ² a^{+} a^{+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2-} $CO_{3}\tau$ iO_{2} CO_{2} CO_{2} CO_{2} $CO_{3}\tau$ iO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} $CO_{3}\tau$ iO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} CO_{2} $CO_{3}\tau$ CO_{2} $CO_{3}\tau$ CO_{2} $CO_{3}\tau$ CO_{2} $CO_{3}\tau$ CO_{2} $CO_{3}\tau$ CO_{2} $CO_{3}\tau$	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72	Giggenback (1980) 281 65 281 65 282 1282 338 0 154 11 3 10658 12 40 624 6	n 24 5.1 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 4 11 3.9 3 3.9 113 3.9 113 3.9 5 1.1 6 66.90 8.75 1.82 1.02 0.01	Two Two 48 38.7 0.224 12.6 is/mole wate 77 69 61 0.3 64 11.9 4.1 779 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05	phase flow approa 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01	$\begin{array}{r} 3\\ 276\\ 60.1\\ 0.171\\ 6.6\\ \end{array}$	
arameter emperature (°C) ressure (bar Abs.) apor Fraction pecific Volume (c.c./g) ² a^{+} a^{2-} a^{2-	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03	Giggenback (1980) 281 65 281 65 282 1282 338 0 154 11 3 10658 12 40 624 6	h 24 5.1 0.015 m or 10 ⁻⁵ molar ga 2 60 2 13 3 3 4 1 1.1 3.9 3.3 4 1 1.1 3.9 3.9 3.1 4 6 6 6.90 8.75 1.82 1.02	Two Two 48 38.7 0.224 12.6 as/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624 16.67 3.61 0.29 0.15	
arameter emperature (°C) ressure (bar Abs.) apor Fraction pecific Volume (c.c./g) ² a^{+} a^{2-} a^{2-	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72 4.49	Giggenback (1980) 281 65 281 65 1082 1282 338 (154 11 3 10658 12 10658 12 40 624 6	n 24 5.1 0.015 n or 10 ⁻⁵ molar ga 2 60 2 13 3 3 4 11 3.9 3 3.9 113 3.9 113 3.9 5 1.1 6 66.90 8.75 1.82 1.02 0.01	Two Two 12.6 0.224 12.6 0.224 12.6 0.224 12.6 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05 3.18	phase flow approach 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01 3.47	$\begin{array}{r} 3\\ 276\\ 60.1\\ 0.171\\ 6.6\\ \end{array}$	
arameter emperature (°C) ressure (bar Abs.) /apor Fraction pecific Volume (c.c./g) ² /a ⁺ a^+ a^+ a^{2^+} $a_2^{2^+}$ a_1^+ $a_2^{2^+}$ a_1^+ $a_2^{2^+}$ a_1^+ $a_2^{2^+}$ a_1^+ a_2^+ a_1^+ a_3^+ a_1^+ a_1^+ a_1^+ a_2^+ a_1^+ a_3^+ a_1^+ a_3^+ a_3^+ a_1^+ a_3^+ a_3^+ a_1^+ a_3^+	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72 4.49	Giggenback (1980) 281 65 281 65 281 65 282 1282 338 0 154 11 3 10658 13 10658 13 40 624 62 40 624	n 1 24 10.015 n or 10 ⁻⁵ molar ga 2 600 2 13 3 3 3.3 4 1 1.1 3.9 3.9 0.1 4 6 66.90 8.75 1.82 1.02 0.01 4.30	Two Two 12.6 0.224 12.6 0.224 12.6 0.224 12.6 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05 3.18	phase flow approach 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01 3.47	$\begin{array}{r} 3\\ 276\\ 60.1\\ 0.171\\ 6.6\\ \end{array}$	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ² $ a^+$ a^{2+} a_{2}^{2+} a_{1}^{2+} a_{2}^{2+} a_{1}^{2+} a_{2}^{2+} a_{1}^{2-} $ICO_{3}T$ IO_{2} O_{2} $I_{2}S$ H_{4} A_{2} A_{2} A_{2} A_{2} A_{3} M_{4} A_{2} A_{2} A_{3} M_{4} A_{2} A_{2} A_{3} M_{4} A_{2} A_{2} A_{3} M_{4} A_{2} A_{3} A_{4} A_{2} A_{4} A_{2} A_{3} A_{4} A_{2} A_{4} A_{2} A_{4} A_{2} A_{3} A_{4} A_{3} A_{4} A_{3} A_{4} A_{3} A_{4} A_{4} A_{3} A_{4} A	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72 4.49	Giggenback (1980) 281 65 281 65 281 65 282 1282 338 0 154 11 3 10658 13 10658 13 40 624 62 40 624	h 24 3.1 0.015 m or 10 ⁻⁵ molar ga 2 600 2 13 3 3 3.3 4 11 3.9 3.9 3.1 4 6 56.90 8.75 1.82 1.02 0.01 4.30 are in mmole gas/1 52.82	Two Two 48 38.7 0.224 12.6 38/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05 3.18 mole steam 7.55	phase flow approact 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01 3.47 0 8.19	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624 16.67 3.61 0.29 0.15 0.02 3.90 9.37	
arameter emperature (°C) ressure (bar Abs.) 'apor Fraction pecific Volume (c.c./g) ² (a^+ + a^+ a^{2+} a_2^{2+} a_1^{2+} a_2^{2+} a_1^{2+} a_2^{2+} a_1^{2-} $ICO_3\tau$ IO_2 O_4^{2-} $ICO_3\tau$ IO_2 I_2S H_4 I_3 I_2 I_3 I_4 I_4 I_5 I_4 I_5 I_5 I_4 I_5	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72 4.49	Giggenback (1980) 281 65 281 65 281 65 282 1282 338 0 154 11 3 10658 13 10658 13 40 624 62 40 624	h 24 3.1 0.015 m or 10 ⁻⁵ molar ga 2 600 2 13 3 3 3 3 3 4 1 1.1 3.9 3 113 3.9 3.1 4 6 66.90 8.75 1.82 1.02 0.01 4.30 are in mmole gas/f	Two Two 48 38.7 0.224 12.6 38/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05 3.18 mole steam	phase flow approact 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01 3.47	3 276 60.1 0.171 6.6 5692 1282 338 0.3 154 11.1 3.9 10658 13.9 40.2 624 16.67 3.61 0.29 0.15 0.02 3.90 9.37 0.81	
arameter Temperature (°C) Tressure (bar Abs.) Vapor Fraction pecific Volume (c.c./g) ² a^{+} a^{+} a^{+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2+} a^{2-} b^{2	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72 4.49	Giggenback (1980) 281 65 281 65 281 65 282 1282 338 0 154 11 3 10658 13 10658 13 40 624 62 40 624	$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	Two Two 48 38.7 0.224 12.6 is/mole wate 77 69 61 0.3 64 11.9 4.1 79 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05 3.18 mole steam 7.55 0.69 0.37	phase flow approact 2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01 3.47 0 8.19 0.74 0.41	$\begin{array}{r} 3\\ 276\\ 60.1\\ 0.171\\ 6.6\\ \end{array}$	
arameter Temperature (°C) Tressure (bar Abs.) Vapor Fraction pecific Volume (c.c./g) ²	Henley et al (1984) 281 65.1 0 Liquid phase (concentrat 5605 1263 333 0.3 152 10.9 3.8 10495 13.7 39 614 116.19 11.28 5.69 4.03 0.72 4.49	Giggenback (1980) 281 65 281 65 281 65 282 1282 338 0 154 11 3 10658 13 10658 13 40 624 62 40 624	$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$	Two Two 48 38.7 0.224 12.6 is/mole wate 77 69 61 0.3 64 11.9 4.1 779 14.8 42.9 66 6.71 1.66 0.11 0.09 0.05 3.18 mole steam 7.55 0.69	2 260 46.9 0.203 9.6 er) 5921 1334 352 0.3 161 11.6 4.0 11089 14.5 41.8 649 9.84 2.31 0.15 0.08 0.01 3.47 0 8.19 0.74	$\begin{array}{r} 3\\ 276\\ 60.1\\ 0.171\\ 6.6\\ \end{array}$	

A data set for the geochemical analysis of a geothermal well from Cerro Prieto (M-19A). The data are taken from Table 1: Henley et al (1994) and Aragon (1986).

¹ the concentrations are calculated utilizing well depths of 500, 1425 and 3000 m for cases 1,2 and 3. ² The specific volume of the fluid in the reservoir including both vapor and liquid.