
'ROCEEDINGS, Twenty-Second Workshop on Geothermal Reservoir Engineering
tanford University, Stanford, California, January 27-29, 1997
GP-TR- 155

T2SOLV: AN ENHANCED PACKAGE OF SOLVERS
FOR THE TOUGH2 FAMILY OF CODES

George 3. Moridis and Karsten Pruess

Lawrence Berkeley National Laboratory
Earth Sciences Division, 1 Cyclotron Road, 90- 1 1 16

Berkeley, California 94720

IBSTRACT

T2SOLV is an enhanced package of solvers for the
TOUGH2 family of codes. T2SOLV includes all the
'reconditioned Conjugate Gradient (PCG) solvers
ised in T2CG1, the current solver package, as well as
XBAND, a new direct solver, and DLUSTB, a PCG
;olver based on the BiCGSTAB method.
4dditionally, T2SOLV includes the D4 grid number-
,ng scheme and two sets of preprocessors. Results
From test problems indicate that LUBAND is faster,
nore reliable and requires less storage than MA28,
:he BiCGSTAB solver is superior to the other PCG
methods in T2SOLV, and that the preprocessors im-
prove the performance of the PCG solvers and allow
the solution of previously intractable problems.

INTRODUCTION

Most of the computational work in the numerical
simulations of fluid and heat flows in permeable me-
dia arises from the solution of large systems of linear
equations Ax = b, where A is a banded matrix of or-
der N , x is the vector of the unknowns, and b the
right-hand side. These are solved using either direct
or iterative methods. The most reliable solvers are
based on direct methods. The robustness of direct
solvers comes at the expense of large storage require-
ments and execution times. Iterative techniques ex-
hibit problem-specific performance and lack the gen-
erality, predictability and reliability of direct solvers.
These disadvantages are outweighed by their low
memory requirements and their speed especially in the
solution of very large matrices.

In the TOUGH2 general-purpose reservoir simulator
[Pruess, 19911 the matrix A is a Jacobian with cer-
tain consistent characteristics. A has a known block
structure with well defined sparsity patterns.
Typically, A is non-symmetric, not positive definite,
not diagonally dominant and ill-conditioned. Due to
the fact that A is a Jacobian, the elements of A in a
single row may vary by many orders of magnitude.
TOUGH2 creates very challenging matrices with all
the attributes that cause most iterative techniques to

fail. In addition, the general-purpose nature of
TOUGH2 means that different matrix characteristics
may arise for different types of problems. This ex-
plains the past heavy reliance of TOUGH2 on the di-
rect solver MA28 [ha, 19771.

In the current TOUGH2 version, T2CG1, a package
of preconditioned conjugate gradient solvers comple-
ment the MA28 direct solver and significantly in-
creases the size of tractable problems. T2CG1 in-
cludes three solvers: (a) DSLUBC, a routine based on
the Bi-Conjugate Gradient (BiCG) method, (b)
DSLUCS, a Conjugate Gradient Squared (CGS) rou-
tine, and (c) DSLUGM, a Generalized Minimum
Residual (GMRES) routine. Tests of T2CG1
[Moridis and Pruess, 19951 on a variety of computing
platforms and from systems with up to 30,000 equa-
tions have shown that the PCG routines in T2CG1
are significantly (and invariably) faster than MA28
and require far less memory.

In this paper we discuss T2SOLV, an enhanced pack-
age of solvers for the TOUGH2 family of codes. It
was developed as a replacement for T2CG1, the cur-
rent solver package. T2SOLV includes all the
Preconditioned Conjugate Gradient (PCG) solvers
used in T2CG1 as well as a new routine, DLUSTB,
based on the Bi-Conjugate Gradient Stabilized
(BiCGSTAB) method. T2SOLV also replaces the
MA28 by LUBAND, a general banded-matrix direct
solver. Additionally, it includes an option for using
the D4 ordering scheme and two sets of matrix pre-
processors to enhance the PCG performance.

THE LUBAND SOLVER

LUBAND is a direct solver which replaces the MA28
solver currently used in the TOUGH2 family of
codes. It is derived from routines in the LAPACK
[19931 package, which have been enhanced and exten-
sively modified to conform to the TOUGH2 architec-
ture and memory management approach. It is based
on a LU decomposition with partial pivoting and row
interchange, and allows the solution of systems with
a large number of zeros on the main diagonal. Unlike
MA28 (which is a general solver), LUBAND is a

295

banded matrix solver, and as such it capitalizes on the
significantly lower and well defined memory require-
ments of this class of solvers.

LUBAND can be applied without any problem in the
current TOUGH2 version and is fully backward com-
patible with all older input data files. The
MESHMAKER routine was also enhanced to mini-
mize the bandwidth of matrix A. Defining work W
as the number of multiplications and divisions neces-
sary to convert the full matrix to an upper triangular
form and to perform back substitution, Price and
Coats 119741 showed that for direct solvers W = NMz
and the minimum storage S = NB, where N is the or-
der of the matrix and M its half-bandwidth, the full
bandwidth being B = 2M+l.

For a given problem size N, work and storage are
minimized when M is minimized. If I , J , K are the
number of subdivisions in the x- , y- and z-directions
respectively, the shortest half-bandwidth is M = J K
when I>J>K. This is called standard ordering [Aziz
and Settari, 19791, and the resulting matrices are
banded. As W increases with the square of M, it is
obvious that the penalty for non-optimization of the
ordering of equations may be substantial.

THE DLUSTB SOLVER

DLUSTB was developed based on the BiCGSTAB(m)
algorithm [Sleijpen and Fokkema, 19931, a recent ex-
tension of the more traditional BiCGSTAB algorithm
of van der Vorst [1992] which is still an option in
T2SOLV. It was developed to address the problem of
irregular convergence behavior of the PCG solvers in
situations where the iterations are started close to the
solution (e.g. when approaching steady state). This
is a weakness which afflicts most PCG solvers, and
may lead to severe residual cancellation and errors.
BiCGSTAB(m) alleviates the irregular (oscillatory)
convergence common to the BiCG [Fletcher, 19761
and CGS [Sonneveld, 19891 methods, thus improving
the speed of convergence. It also alleviates potential
stagnation or even breakdown problems which may
be encountered in traditional BiCGSTAB. According
to Sleijpen and Fokkema [19931, BiCGSTAB(m)
combines the speed of BiCG with the monotonic
residual reduction in the Generalized Minimum
Residual (GMRES) method, while being faster than
both. Theoretical analysis indicates that the
BiCGSTAB(m) algorithm is especially well-suited to
the solution of very large (Le. N>50,000) problems
[van der Vorst , 19921.

DLUSTB uses the Boeing-Harwell matrix storage
scheme of TOUGH2, and has the same architecture as
the other routines in T2SOLV. As in all other PCG
solvers in T2SOLV, it uses a modified LU decompo-
sition for preconditioning. Its memory requirements

increase linearly with the order rn of the Minimal
Residual polynomial. For m = 4, it requires twice
the memory of BiCG or CGS. The optimum value
of m is calculated internally in DLUSTB.

THE D4 SCHEME

The Alternating Diagonal Scheme (D4) for gridblock
ordering was added as an option to T2SOLV. D4 is a
technique belonging to the matrix-banding class of
solvers, which derives its benefits from the number-
ing of the grid points. More details can be found in
Price and Coats 119741.

D4 ordering partitions the matrix into four distinct
entities. This structure allows forward elimination
through the equations in the lower half of A, which
zeroes all original entries in the lower left quadrant of
A and transforms it into a null matrix, while creating
non-zero entries in the submatrix ALU in the lower
right quadrant of A. The submatrix ALU is of order
N/2, and allows the calculation of the lower half of x,
from which the upper half is obtained by simple sub-
stitution. The resulting reduced matrix ALU can be
solved using either direct or iterative methods.

D4 numbering reduces the order of the matrix by 50%
while not increasing the bandwidth. Depending on
the grid geometry, D4 makes possible execution
speed improvement by a factor ranging between 2 and
5.85 [Price and Coats, 19741 over standard ordering.
Moreover, it reduces storage requirements by a factor
of 2. Compared to iterative solvers, D4 is competi-
tive in 2-D systems and slower in 3-D systems, and
offers the advantage of a robust solution. D4 with
LUBAND makes possible the robust direct solution
of large multi-dimensional problems. However, D4
can only be used with regular grids.

THE Z-PREPROCESSORS

Some of the most numerically challenging matrices
arising in TOUGH2 simulations involve a large
number of zero entries on the main diagonal of the
Jacobian. Such matrices are quite common in non-
isothermal two-component systems (such as model-
ing of two-water geothermal systems using the EOS 1
module) and result in at least 0.5N of non-zero entries
on the main diagonal of the matrix.

Such matrices pose no problem for the LUBAND di-
rect solver. The iterative solvers, however, are di-
rectly affected by the diagonal dominance of the ma-
trix and the relative number of the zero entries on the
main diagonals. Up to 0.1N zero elements have little
discernible effect on the PCG solvers in T2SOLV.
Matrices with as many as 0.3N (and occasionally up
to O S N) zero elements are tractable without any spe-
cial treatment, but usually require a large number of
iterations for convergence, i.e. exceeding 0.5N.

J

296

'he four Z-preprocessors implemented in T2SOLV
nhance the performance of the PCG solvers in matri-
es with a large number of main-diagonal zeros.
'hese preprocessors are invoked only when (a) PCG
olvers are used to solve (b) matrices with main diag-
inals populated with a large number of zeros and (c)
he number of the primary variables NEQ>l.

The first option, Z1, replaces the zeros with a small
lumber (typically and can substantially de-
:rease the number of iterations for convergence in ma-
rices with as many as 0.5N zero main-diagonal ele-
nents. The performance of the PCG solvers in Z1-
rocessed matrices deteriorates rapidly when the main-
liagonal zero elements exceed OSN.

The second pre-processing option, 22, is more com-
jutationally intensive and involves linear combina-
ions of the flow equations in each gridblock. 22 in-
h d e s a search algorithm which identifies the appro-
xiate equation to be added to the equation correspond-
ng to the zero main-diagonal element. By adding the
wo equations, the corresponding elements in the
lacobian are replaced with the non-zero sum of the
iriginal elements. The 22 option requires limited
:omputational effort and significantly improves the
ierformance of the PCG solvers.

While very effective, Z2-preprocessing can still suffer
'rom poor conditioning because of persisting lack of
liagonal dominance and large differences in the mag-
iitude of the added elements. The problem can some-
imes be alleviated by the 2 3 option, which precedes
:he linear combination with normalization with re-
spect to the largest element in the corresponding row.
dddition of the normalized elements leads to an im-
)roved PCG performance because the relative magni-
:ude of the elements and the corresponding roundoff
mor can be reduced. The 2 3 option is more compu-
tationally intensive than 22. The 22 and 2 3 prepro-
:essors can easily handle up to 0.15N zero diagonal
:lements.

I'he 24 pre-processing option is somewhat more
:omputationally intensive than 2 3 . It creates unit
main-diagonal submatrices through multiplication by
the inverse matrix AM-^, computed using the method
of determinants. The PCG performance improvement
delivered by 2% can be affected by roundoff errors; un-
der favorable conditions, it matches those of 22 and
23.

THE O-PREPROCESSORS

The O-preprocessors are applied to matrices with no
zero entries on the main diagonal and aim to improve
the PCG solver performance by improving the matrix
conditioning. Four such preprocessors are available
in T2SOLV. The first three options, 0 1 through 0 3 ,
are in essence steps in the replacement of the AM

submatrix by the unit matrix through a central pivot-
ing process, and involve increasing levels of compu-
tational effort.

The 0 1 option eliminates the lower half of the main-
diagonal submatrix, and thus removes NEQ- 1 subdi-
agonals from the global matrix. This reduces the
computational effort by reducing the number of non-
zero matrix entries and can improve the PCG perfor-
mance. Execution times are burdened by the addi-
tional work for the elimination of the lower half of
the matrix, but usually this is overcome by the sav-
ings in the PCG computations.

In the 0 2 option, in addition to 0 1 the upper half of
the main-diagonal submatrix is eliminated, resulting
in a diagonal submatrix and eliminating an additional
NEQ- 1 superdiagonals from the global matrix.
Compared to the original, the 02-preprocessed matrix
is significantly sparser and better-conditioned and the
performance of the PCG solvers can be enhanced.
The increased computational effort for the 0 2 prepro-
cessing is usually compensated by the reduction in
the PCG iterations.

The 0 3 options involves normalization of the 0 2
matrix, resulting in a unity main diagonal. 0 3 does
not further increase matrix sparsity, but may improve
the matrix conditioning. Finally, the 0 4 option is
identical to the 24 option discussed previously.

TEST PROBLEMS

The solvers were tested in four test problems.
Performance results are presented in Figures 1
through 3 and Tables 1 through 4.

Test Problem 1
Test problem 1 involves a study of non-isothermal
flow in a "two-water" system. Such systems are
known to be the most challenging for the solvers in
TOUGH2, as they routinely create matrices with
0.67N zeros on the main diagonal. The PCG rou-
tines in T2CGl have in the past been unable to solve
even the smallest of this class of problems. The
problem discussed here involves injection of "water
2" at a temperature of 30 OC into a geothermal reser-
voir of "water 1" at 280 OC. The EOSl module is
used. The 3-D domain consists of 9 x 8 ~ 5 = 360 grid-
blocks in (x,y,z), with NK = 2 and NEQ = 3 , result-
ing in a total of N = 1080 equations.

The fundamental weakness of MA28, i.e. its large
(especially for 3-D problems) and not well defined
memory requirement, was obvious in the problem.
Despite memory allocation which sufficed for the
LUBAND solution of 3-D problems 15 times larger,
MA28 could not complete the LU decomposition due
to insufficient memory.

297

rable 1 and Figure 1 show that DLUSTB with and
without the Z-preprocessors has the best performance.
[t is the fastest and requires the least number of PCG
iterations to convergence. DLUSTB seems to be the
mly solver that can proceed without Z-preprocessing.
Note that the use of the Z-preprocessors makes possi-
Ae the solution of a previously-intractable problem
sy all the PCG solvers in T2SOLV. The 22 prepro-
:essor seems to offer the best overall performance.

rest Problem 2
rest problem 2 involves a laboratory convection cell
:xperiment. A porous medium consisting of glass
beads fills the annular region between the two vertical
;oncentric cylinders. Application of heat generates a
thermal buoyancy force, giving rise to the develop-
ment of convection cells. This problem has been dis-
:ussed in detail by Moridis and Pruess [1992]. The
EOSl module is used. The domain consists of
16x26 = 416 gridblocks in (r ,z) , with NK = 1 and
NEQ = 2, resulting in a total of N = 832 equations.

Table 2 and Figures 2 and 3 show the performance of
the various solvers in Problem 2, which does not
pose any significant challenges to the T2SOLV rou-
tines. DLUSTB is the fastest routine and requires the
least number of iterations to convergence.

In this 2D problem LUBAND appears as a competi-
tive alternative. The effect of the 0-preprocessors
vary. With 01 , it is pronounced in terms of PCG
iterations and execution times in DSLUBC and
DLUSTB, but seems to be limited in DSLUCS and
DSLUGM. The evolution of residuals of DSLUCS
and DSLUGM in the first Newtonian iteration of the
first timestep is identical with and without 0 1
preprocessing (Figures 2 and 3), while the DSLUCS
execution time with 0 1 increases. Conversely, the
use of the 0 2 and 0 3 preprocessors seems to offer the
greatest improvement in the performance of DSLUCS
and DSLUGM.

Test Problem 3
Test problem 3 examines fluid and mass flow in a
large three-dimensional model of a geothermal reser-
voir. The basic computational grid is composed of
15x15~20 = 4500 grid blocks in (X J Z) . Cold water
is injected through 4 wells, while hot water is with-
drawn from 5 wells. EOSl is used with NK = 1,
NEQ = 2, resulting in a total of N = 9000 equations.

This is a relatively large but well-behaved problem,
the size of which precluded the use of a direct solver.
The use of D4 allowed a direct solution by LUBAND,
which is competitive with the PCG solutions. D4
with DLUSTB had a performance on a par with
DLUSTB, the fastest PCG solver. In light of the
overhaed needed to set up the D4 system, this result
is very encouraging.

DLUSTB demonstrated its superiority by being the
fastest and requiring the least number of PCG itera-
tions to convergence. DSLUGM seems to be an in-
appropriate method for this type of problem. As ex-
pected, the benefits of 0-preprocessing in this well-
behaved system are not evident in the execution
times, although the PCG iterations are often reduced.
It is noteworthy, however, that despite the increased
computational load, the execution times for the 0-
preprocessed solutions are practically identical to
those without any preprocessing.

Test Problem 4
Test problem 4 describes a variation of the Thermal
Enhanced Vapor Extraction System process, which is
designed to extract solvents and chemicals contained
in the Chemical Waste Landfill at Sandia National
Laboratories. No NAPL is present in this system.
In this process the ground is electrically heated, and
boreholes at the center of the heated zone are main-
tained at a vacuum to draw air and vaporized contami-
nants into the borehole and to a subsequent treatment
facility. The 3-D grid consists of 1300 gridblocks.
EOS3 is used (NK = 2, NEQ = 3), and N = 3900
equations are solved. Additional information can be
found in Moridis and Pruess [1995].

Without any preprocessing, the performance of
DLUSTB in this rather well-behaved problem is
practically identical to that of DSLUCS. These two
are the fastest solvers, but DLUSTB requires the least
number of PCG iterations. D4 with LUBAND
appears as a competitive alternative. DLUSTB is the
most responsive to 0 1 preprocessing, which results
in the fastest solution with the least number of PCG
iterations.

CONCLUSIONS

The following conclusions can be drawn:

(1) Without any matrix preprocessing, DLUSTB is
shown to be a fast and efficient solver which outper-
forms the other PCG routines. It is the fastest and
the most robust in T2SOLV and is shown to be prac-
tically free of stagnation, oscillation, and divergence
problems.

(2) The use of the Z-preprocessors makes possible the
solution of problems which were previously in-
tractable to all the PCG solvers. The combination of
the Z-preprocessors with the BiCGSTAB routine
gives the best performance in such problems.

(3) In problems which are known to confound the
other PCG solvers, DLUSTB converges smoothly
but slowly to a solution without invoking the ma-
trix-preprocessing facility.

298

e

(4) The 0-preprocessors are shown to improve the ro-
bustness and decrease the number of iterations to con-
vergence, but their effect depends on the PCG solver
in T2SOLV. DLUSTB appears to be the solver most
consistently responsive to the 0-preprocessors. In
well-behaved problems the effect of the O-preproces-
sors on the execution speed is not significant.
(5) LUBAND is shown to be consistently faster and
more reliable than MA28, and can solve much larger
problems.

(6) The gains in execution speed when the D4 scheme
is used in regular grids are shown to be significant
(especially compared to the direct solver). D4 with
direct matrix solution seems to be competitive (in
speed) to the PCG solvers in medium-sized problems,
although this advantage is expected to disappear in
large problems due to memory limitations.

Table 1. Solver Performance in Problem 1
(Macintosh PowerPC 95W132)

PP: Preprocessors
Ats: Number of timesteps
NI: Newtonian iterations
Imx: Maximum number of PCG iterations
Imn: Minimum number of PCG iterations
IT: Total PCG iterations
ET: Execution time (sec)

Number of PCG iterations

Fig. I . PCG solvers with 22 preprocessing in Test
Problem I (1st NI of the 1st At).

1 o2

1 oo

1 o-2

lo4

1 o-6

- m

% cz

1 o-8

1 0 ” O

-

.-+- DSLUCS+Ol
-0- DSLUBC

-
-
-

-

-
1 1 1 1 ’ 1 1 1 1 1 1 1 1 1 1 1 1 1 ’ 1 1
0 10 20 30 40

Number of PCG iterations

Fig. 2. DSLUBC and DSLUCS performance with
and without 0 1 preprocessing in Test
Problem 2 (1st NI of the 1st At).

J

299

-

*+- DLU STB+O 1 + DSLUGM + DLUSTB SOLVER

MA28

LUBAND

D 4 t
LU BAN D

D4+
DLUSTB

DSLUBC

'OL 1
PP I At I NI I Imx I Imn I IT I ET

lnsuff icient Memory

Insufficient Memory

- 10 46 - - 7 8 6

- 10 46 S? 43 1736 426

- 10 46 106 63 2M3 579

I-

01

a?
-

01

a2
-

01

02
-

01

02

F
10

10

10

10

10

10
10

10

10

10

10

0 10 20 30 40
Number of PCC iterations

46
46

46
46
46

46
46
46

46
46
46

Fig. 3. DSLUGM and DLUSTB performance with
and without 0 1 preprocessing in Test
Problem 2 (1st NI of the 1st At).

75 57 2477

75 9 2475

95 5 0 2 0 5 1

98 5 0 2 0 3 4
94 5 0 2 0 3 3

930 9514842

930 9514994

930 95 15113

58 41 1736

60 3 7 1 6 %

58 37 1719

01
02
03

26 98 41 1 1685 38.9
26 102 3 1 1684 40.6
26 98 33 14 1728 39.7

-

Z i K

-
DLUSTB

Table 4. Solver Performance in Problem 4
(DEC Alphastation 200/233)

DLUSTB - 50 249 15 4 2544 509

01 50 249 15 4 222 484

300

ACKNOWLEDGMENT

This work was supported by the Assistant Secretary
for Energy Efficiency and Renewable Energy, Office
Df Geothermal technologies, of the U.S. Department
of Energy, under contract No. DE-AC03-76SF00098.
Drs. Curt Oldenburg and Stefan Finsterle are thanked
for their helpful review comments.

REFERENCES

Aziz, K. and A. Settari (1979), Petroleum Reservoir
Simulation, Elsevier, London and New York.

Duff, I.S. (1977) MA28 - A set of Fortran
Subroutines for Sparse Unsymmetric Linear
Equations, AERE Harwell Report R 8730.

Fletcher, R. (1976), Conjugate gradient methods for
indefinite systems. Numerical Analysis, Lecture
Notes in Mathematics 506, Springer-Verlag, New
York.

LAPACK (1993), Univ. of Tennessee, Univ. of
California at Berkeley, NAG ltd., Courant Institute,
Argonne National Lab., and Rice University, Version
1.1.

Moridis, G.J. and K. Pruess (1992), TOUGH
simulations of Updegraffs set of fluid and heat flow
problem, Lawrence Berkeley Laboratory report LBL-
3261 1, Berkeley, CA.

Moridis, G.J. and K. Pruess (1995), T2CG1: A
package of preconditioned conjugate gradient solvers
for the TOUGH2 family of codes, Lawrence Berkeley
Laboratory report LBL-36235, Berkeley, CA.

Price, H. S. and K. H. Coats (1974), Direct methods
in reservoir simulation, Trans. SPE of AIME (SPEJ),

Pruess, K (1991), TOUGH2 - A general-purpose
numerical simulator for multiphase fluid and heat
flow, Lawrence Berkeley Laboratory report LBL-
29400, Berkeley, CA.

Sleijpen, G.L.G. and D. Fokkema (1993),
BiCGSTAB(1) for linear equations involving
unsymmetric matrices with complex spectrum,
Electronic Transactions on Numerical Analysis, 1,

Sonneveld, P. (1989), CGS, A fast Lanczos-type
solver for nonsymmetric linear systems. SIAM J.
Sci. Stat. Comput., 10(1), 36-52.

van der Vorst, H.A. (1992), Bi-CGSTAB: A fast and
smoothly converging variant of Bi-CG in the
presence of rounding errors, SIAM J. Sci. Statist.
Comput., 13, 631-644.

257, 295-308.

11-32.

J

30 1

