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IBSTRACT 

T2SOLV is an enhanced package of solvers for the 
TOUGH2 family of codes. T2SOLV includes all the 
'reconditioned Conjugate Gradient (PCG) solvers 
ised in T2CG1, the current solver package, as well as 
XBAND, a new direct solver, and DLUSTB, a PCG 
;olver based on the BiCGSTAB method. 
4dditionally, T2SOLV includes the D4 grid number- 
,ng scheme and two sets of preprocessors. Results 
From test problems indicate that LUBAND is faster, 
nore reliable and requires less storage than MA28, 
:he BiCGSTAB solver is superior to the other PCG 
methods in T2SOLV, and that the preprocessors im- 
prove the performance of the PCG solvers and allow 
the solution of previously intractable problems. 

INTRODUCTION 

Most of the computational work in the numerical 
simulations of fluid and heat flows in permeable me- 
dia arises from the solution of large systems of linear 
equations Ax = b, where A is a banded matrix of or- 
der N ,  x is the vector of the unknowns, and b the 
right-hand side. These are solved using either direct 
or iterative methods. The most reliable solvers are 
based on direct methods. The robustness of direct 
solvers comes at the expense of large storage require- 
ments and execution times. Iterative techniques ex- 
hibit problem-specific performance and lack the gen- 
erality, predictability and reliability of direct solvers. 
These disadvantages are outweighed by their low 
memory requirements and their speed especially in the 
solution of very large matrices. 

In the TOUGH2 general-purpose reservoir simulator 
[Pruess, 19911 the matrix A is a Jacobian with cer- 
tain consistent characteristics. A has a known block 
structure with well defined sparsity patterns. 
Typically, A is non-symmetric, not positive definite, 
not diagonally dominant and ill-conditioned. Due to 
the fact that A is a Jacobian, the elements of A in a 
single row may vary by many orders of magnitude. 
TOUGH2 creates very challenging matrices with all 
the attributes that cause most iterative techniques to 

fail. In addition, the general-purpose nature of 
TOUGH2 means that different matrix characteristics 
may arise for different types of problems. This ex- 
plains the past heavy reliance of TOUGH2 on the di- 
rect solver MA28 [ha, 19771. 

In the current TOUGH2 version, T2CG1, a package 
of preconditioned conjugate gradient solvers comple- 
ment the MA28 direct solver and significantly in- 
creases the size of tractable problems. T2CG1 in- 
cludes three solvers: (a) DSLUBC, a routine based on 
the Bi-Conjugate Gradient (BiCG) method, (b) 
DSLUCS, a Conjugate Gradient Squared (CGS) rou- 
tine, and (c) DSLUGM, a Generalized Minimum 
Residual (GMRES) routine. Tests of T2CG1 
[Moridis and Pruess, 19951 on a variety of computing 
platforms and from systems with up to 30,000 equa- 
tions have shown that the PCG routines in T2CG1 
are significantly (and invariably) faster than MA28 
and require far less memory. 

In this paper we discuss T2SOLV, an enhanced pack- 
age of solvers for the TOUGH2 family of codes. It 
was developed as a replacement for T2CG1, the cur- 
rent solver package. T2SOLV includes all the 
Preconditioned Conjugate Gradient (PCG) solvers 
used in T2CG1 as well as a new routine, DLUSTB, 
based on the Bi-Conjugate Gradient Stabilized 
(BiCGSTAB) method. T2SOLV also replaces the 
MA28 by LUBAND, a general banded-matrix direct 
solver. Additionally, it includes an option for using 
the D4 ordering scheme and two sets of matrix pre- 
processors to enhance the PCG performance. 

THE LUBAND SOLVER 

LUBAND is a direct solver which replaces the MA28 
solver currently used in the TOUGH2 family of 
codes. It is derived from routines in the LAPACK 
[ 19931 package, which have been enhanced and exten- 
sively modified to conform to the TOUGH2 architec- 
ture and memory management approach. It is based 
on a LU decomposition with partial pivoting and row 
interchange, and allows the solution of systems with 
a large number of zeros on the main diagonal. Unlike 
MA28 (which is a general solver), LUBAND is a 
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banded matrix solver, and as such it capitalizes on the 
significantly lower and well defined memory require- 
ments of this class of solvers. 

LUBAND can be applied without any problem in the 
current TOUGH2 version and is fully backward com- 
patible with all older input data files. The 
MESHMAKER routine was also enhanced to mini- 
mize the bandwidth of matrix A. Defining work W 
as the number of multiplications and divisions neces- 
sary to convert the full matrix to an upper triangular 
form and to perform back substitution, Price and 
Coats 119741 showed that for direct solvers W = NMz 
and the minimum storage S = NB, where N is the or- 
der of the matrix and M its half-bandwidth, the full 
bandwidth being B = 2M+l. 

For a given problem size N, work and storage are 
minimized when M is minimized. If I ,  J ,  K are the 
number of subdivisions in the x- ,  y- and z-directions 
respectively, the shortest half-bandwidth is M =  J K  
when I>J>K.  This is called standard ordering [Aziz 
and Settari, 19791, and the resulting matrices are 
banded. As W increases with the square of M, it is 
obvious that the penalty for non-optimization of the 
ordering of equations may be substantial. 

THE DLUSTB SOLVER 

DLUSTB was developed based on the BiCGSTAB(m) 
algorithm [Sleijpen and Fokkema, 19931, a recent ex- 
tension of the more traditional BiCGSTAB algorithm 
of van der Vorst [1992] which is still an option in 
T2SOLV. It was developed to address the problem of 
irregular convergence behavior of the PCG solvers in 
situations where the iterations are started close to the 
solution (e.g. when approaching steady state). This 
is a weakness which afflicts most PCG solvers, and 
may lead to severe residual cancellation and errors. 
BiCGSTAB(m) alleviates the irregular (oscillatory) 
convergence common to the BiCG [Fletcher, 19761 
and CGS [Sonneveld, 19891 methods, thus improving 
the speed of convergence. It also alleviates potential 
stagnation or even breakdown problems which may 
be encountered in traditional BiCGSTAB. According 
to Sleijpen and Fokkema [ 19931, BiCGSTAB(m) 
combines the speed of BiCG with the monotonic 
residual reduction in the Generalized Minimum 
Residual (GMRES) method, while being faster than 
both. Theoretical analysis indicates that the 
BiCGSTAB(m) algorithm is especially well-suited to 
the solution of very large (Le. N>50,000) problems 
[van der Vorst , 19921. 

DLUSTB uses the Boeing-Harwell matrix storage 
scheme of TOUGH2, and has the same architecture as 
the other routines in T2SOLV. As in all other PCG 
solvers in T2SOLV, it uses a modified LU decompo- 
sition for preconditioning. Its memory requirements 

increase linearly with the order rn of the Minimal 
Residual polynomial. For m = 4, it requires twice 
the memory of BiCG or CGS. The optimum value 
of m is calculated internally in DLUSTB. 

THE D4 SCHEME 

The Alternating Diagonal Scheme (D4) for gridblock 
ordering was added as an option to T2SOLV. D4 is a 
technique belonging to the matrix-banding class of 
solvers, which derives its benefits from the number- 
ing of the grid points. More details can be found in 
Price and Coats 119741. 

D4 ordering partitions the matrix into four distinct 
entities. This structure allows forward elimination 
through the equations in the lower half of A, which 
zeroes all original entries in the lower left quadrant of 
A and transforms it into a null matrix, while creating 
non-zero entries in the submatrix ALU in the lower 
right quadrant of A. The submatrix ALU is of order 
N/2, and allows the calculation of the lower half of x, 
from which the upper half is obtained by simple sub- 
stitution. The resulting reduced matrix ALU can be 
solved using either direct or iterative methods. 

D4 numbering reduces the order of the matrix by 50% 
while not increasing the bandwidth. Depending on 
the grid geometry, D4 makes possible execution 
speed improvement by a factor ranging between 2 and 
5.85 [Price and Coats, 19741 over standard ordering. 
Moreover, it reduces storage requirements by a factor 
of 2. Compared to iterative solvers, D4 is competi- 
tive in 2-D systems and slower in 3-D systems, and 
offers the advantage of a robust solution. D4 with 
LUBAND makes possible the robust direct solution 
of large multi-dimensional problems. However, D4 
can only be used with regular grids. 

THE Z-PREPROCESSORS 

Some of the most numerically challenging matrices 
arising in TOUGH2 simulations involve a large 
number of zero entries on the main diagonal of the 
Jacobian. Such matrices are quite common in non- 
isothermal two-component systems (such as model- 
ing of two-water geothermal systems using the EOS 1 
module) and result in at least 0.5N of non-zero entries 
on the main diagonal of the matrix. 

Such matrices pose no problem for the LUBAND di- 
rect solver. The iterative solvers, however, are di- 
rectly affected by the diagonal dominance of the ma- 
trix and the relative number of the zero entries on the 
main diagonals. Up to 0.1N zero elements have little 
discernible effect on the PCG solvers in T2SOLV. 
Matrices with as many as 0.3N (and occasionally up 
to O S N )  zero elements are tractable without any spe- 
cial treatment, but usually require a large number of 
iterations for convergence, i.e. exceeding 0.5N. 
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'he four Z-preprocessors implemented in T2SOLV 
nhance the performance of the PCG solvers in matri- 
es with a large number of main-diagonal zeros. 
'hese preprocessors are invoked only when (a) PCG 
olvers are used to solve (b) matrices with main diag- 
inals populated with a large number of zeros and (c) 
he number of the primary variables NEQ>l. 

The first option, Z1, replaces the zeros with a small 
lumber (typically and can substantially de- 
:rease the number of iterations for convergence in ma- 
rices with as many as 0.5N zero main-diagonal ele- 
nents. The performance of the PCG solvers in Z1- 
rocessed matrices deteriorates rapidly when the main- 
liagonal zero elements exceed OSN. 

The second pre-processing option, 22, is more com- 
jutationally intensive and involves linear combina- 
ions of the flow equations in each gridblock. 22 in- 
h d e s  a search algorithm which identifies the appro- 
xiate equation to be added to the equation correspond- 
ng to the zero main-diagonal element. By adding the 
wo equations, the corresponding elements in the 
lacobian are replaced with the non-zero sum of the 
iriginal elements. The 22  option requires limited 
:omputational effort and significantly improves the 
ierformance of the PCG solvers. 

While very effective, Z2-preprocessing can still suffer 
'rom poor conditioning because of persisting lack of 
liagonal dominance and large differences in the mag- 
iitude of the added elements. The problem can some- 
imes be alleviated by the 2 3  option, which precedes 
:he linear combination with normalization with re- 
spect to the largest element in the corresponding row. 
dddition of the normalized elements leads to an im- 
)roved PCG performance because the relative magni- 
:ude of the elements and the corresponding roundoff 
mor can be reduced. The 2 3  option is more compu- 
tationally intensive than 22. The 22  and 2 3  prepro- 
:essors can easily handle up to 0.15N zero diagonal 
:lements. 

I'he 24 pre-processing option is somewhat more 
:omputationally intensive than 2 3 .  It creates unit 
main-diagonal submatrices through multiplication by 
the inverse matrix  AM-^, computed using the method 
of determinants. The PCG performance improvement 
delivered by 2% can be affected by roundoff errors; un- 
der favorable conditions, it matches those of 22 and 
23. 

THE O-PREPROCESSORS 

The O-preprocessors are applied to matrices with no 
zero entries on the main diagonal and aim to improve 
the PCG solver performance by improving the matrix 
conditioning. Four such preprocessors are available 
in T2SOLV. The first three options, 0 1  through 0 3 ,  
are in essence steps in the replacement of the AM 

submatrix by the unit matrix through a central pivot- 
ing process, and involve increasing levels of compu- 
tational effort. 

The 0 1  option eliminates the lower half of the main- 
diagonal submatrix, and thus removes NEQ- 1 subdi- 
agonals from the global matrix. This reduces the 
computational effort by reducing the number of non- 
zero matrix entries and can improve the PCG perfor- 
mance. Execution times are burdened by the addi- 
tional work for the elimination of the lower half of 
the matrix, but usually this is overcome by the sav- 
ings in the PCG computations. 

In the 0 2  option, in addition to 0 1  the upper half of 
the main-diagonal submatrix is eliminated, resulting 
in a diagonal submatrix and eliminating an additional 
NEQ- 1 superdiagonals from the global matrix. 
Compared to the original, the 02-preprocessed matrix 
is significantly sparser and better-conditioned and the 
performance of the PCG solvers can be enhanced. 
The increased computational effort for the 0 2  prepro- 
cessing is usually compensated by the reduction in 
the PCG iterations. 

The 0 3  options involves normalization of the 0 2  
matrix, resulting in a unity main diagonal. 0 3  does 
not further increase matrix sparsity, but may improve 
the matrix conditioning. Finally, the 0 4  option is 
identical to the 24 option discussed previously. 

TEST PROBLEMS 

The solvers were tested in four test problems. 
Performance results are presented in Figures 1 
through 3 and Tables 1 through 4. 

Test Problem 1 
Test problem 1 involves a study of non-isothermal 
flow in a "two-water" system. Such systems are 
known to be the most challenging for the solvers in 
TOUGH2, as they routinely create matrices with 
0.67N zeros on the main diagonal. The PCG rou- 
tines in T2CGl have in the past been unable to solve 
even the smallest of this class of problems. The 
problem discussed here involves injection of "water 
2" at a temperature of 30 OC into a geothermal reser- 
voir of "water 1" at 280 OC. The EOSl module is 
used. The 3-D domain consists of 9 x 8 ~ 5  = 360 grid- 
blocks in (x,y,z), with NK = 2 and NEQ = 3 ,  result- 
ing in a total of N = 1080 equations. 

The fundamental weakness of MA28, i.e. its large 
(especially for 3-D problems) and not well defined 
memory requirement, was obvious in the problem. 
Despite memory allocation which sufficed for the 
LUBAND solution of 3-D problems 15 times larger, 
MA28 could not complete the LU decomposition due 
to insufficient memory. 
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rable 1 and Figure 1 show that DLUSTB with and 
without the Z-preprocessors has the best performance. 
[t is the fastest and requires the least number of PCG 
iterations to convergence. DLUSTB seems to be the 
mly solver that can proceed without Z-preprocessing. 
Note that the use of the Z-preprocessors makes possi- 
Ae the solution of a previously-intractable problem 
sy all the PCG solvers in T2SOLV. The 22  prepro- 
:essor seems to offer the best overall performance. 

rest Problem 2 
rest problem 2 involves a laboratory convection cell 
:xperiment. A porous medium consisting of glass 
beads fills the annular region between the two vertical 
;oncentric cylinders. Application of heat generates a 
thermal buoyancy force, giving rise to the develop- 
ment of convection cells. This problem has been dis- 
:ussed in detail by Moridis and Pruess [1992]. The 
EOSl module is used. The domain consists of 
16x26 = 416 gridblocks in (r ,z) ,  with NK = 1 and 
NEQ = 2, resulting in a total of N = 832 equations. 

Table 2 and Figures 2 and 3 show the performance of 
the various solvers in Problem 2, which does not 
pose any significant challenges to the T2SOLV rou- 
tines. DLUSTB is the fastest routine and requires the 
least number of iterations to convergence. 

In this 2D problem LUBAND appears as a competi- 
tive alternative. The effect of the 0-preprocessors 
vary. With 01 ,  it is pronounced in terms of PCG 
iterations and execution times in DSLUBC and 
DLUSTB, but seems to be limited in DSLUCS and 
DSLUGM. The evolution of residuals of DSLUCS 
and DSLUGM in the first Newtonian iteration of the 
first timestep is identical with and without 0 1  
preprocessing (Figures 2 and 3), while the DSLUCS 
execution time with 0 1  increases. Conversely, the 
use of the 0 2  and 0 3  preprocessors seems to offer the 
greatest improvement in the performance of DSLUCS 
and DSLUGM. 

Test Problem 3 
Test problem 3 examines fluid and mass flow in a 
large three-dimensional model of a geothermal reser- 
voir. The basic computational grid is composed of 
15x15~20 = 4500 grid blocks in ( X J Z ) .  Cold water 
is injected through 4 wells, while hot water is with- 
drawn from 5 wells. EOSl is used with NK = 1, 
NEQ = 2, resulting in a total of N = 9000 equations. 

This is a relatively large but well-behaved problem, 
the size of which precluded the use of a direct solver. 
The use of D4 allowed a direct solution by LUBAND, 
which is competitive with the PCG solutions. D4 
with DLUSTB had a performance on a par with 
DLUSTB, the fastest PCG solver. In light of the 
overhaed needed to set up the D4 system, this result 
is very encouraging. 

DLUSTB demonstrated its superiority by being the 
fastest and requiring the least number of PCG itera- 
tions to convergence. DSLUGM seems to be an in- 
appropriate method for this type of problem. As ex- 
pected, the benefits of 0-preprocessing in this well- 
behaved system are not evident in the execution 
times, although the PCG iterations are often reduced. 
It is noteworthy, however, that despite the increased 
computational load, the execution times for the 0- 
preprocessed solutions are practically identical to 
those without any preprocessing. 

Test Problem 4 
Test problem 4 describes a variation of the Thermal 
Enhanced Vapor Extraction System process, which is 
designed to extract solvents and chemicals contained 
in the Chemical Waste Landfill at Sandia National 
Laboratories. No NAPL is present in this system. 
In this process the ground is electrically heated, and 
boreholes at the center of the heated zone are main- 
tained at a vacuum to draw air and vaporized contami- 
nants into the borehole and to a subsequent treatment 
facility. The 3-D grid consists of 1300 gridblocks. 
EOS3 is used (NK = 2, NEQ = 3), and N = 3900 
equations are solved. Additional information can be 
found in Moridis and Pruess [1995]. 

Without any preprocessing, the performance of 
DLUSTB in this rather well-behaved problem is 
practically identical to that of DSLUCS. These two 
are the fastest solvers, but DLUSTB requires the least 
number of PCG iterations. D4 with LUBAND 
appears as a competitive alternative. DLUSTB is the 
most responsive to 0 1  preprocessing, which results 
in the fastest solution with the least number of PCG 
iterations. 

CONCLUSIONS 

The following conclusions can be drawn: 

(1) Without any matrix preprocessing, DLUSTB is 
shown to be a fast and efficient solver which outper- 
forms the other PCG routines. It is the fastest and 
the most robust in T2SOLV and is shown to be prac- 
tically free of stagnation, oscillation, and divergence 
problems. 

(2) The use of the Z-preprocessors makes possible the 
solution of problems which were previously in- 
tractable to all the PCG solvers. The combination of 
the Z-preprocessors with the BiCGSTAB routine 
gives the best performance in such problems. 

(3) In problems which are known to confound the 
other PCG solvers, DLUSTB converges smoothly 
but slowly to a solution without invoking the ma- 
trix-preprocessing facility. 
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(4) The 0-preprocessors are shown to improve the ro- 
bustness and decrease the number of iterations to con- 
vergence, but their effect depends on the PCG solver 
in T2SOLV. DLUSTB appears to be the solver most 
consistently responsive to the 0-preprocessors. In 
well-behaved problems the effect of the O-preproces- 
sors on the execution speed is not significant. 
( 5 )  LUBAND is shown to be consistently faster and 
more reliable than MA28, and can solve much larger 
problems. 

(6) The gains in execution speed when the D4 scheme 
is used in regular grids are shown to be significant 
(especially compared to the direct solver). D4 with 
direct matrix solution seems to be competitive (in 
speed) to the PCG solvers in medium-sized problems, 
although this advantage is expected to disappear in 
large problems due to memory limitations. 

Table 1. Solver Performance in Problem 1 
(Macintosh PowerPC 95W132) 

PP: Preprocessors 
Ats: Number of timesteps 
NI: Newtonian iterations 
Imx: Maximum number of PCG iterations 
Imn: Minimum number of PCG iterations 
IT: Total PCG iterations 
ET: Execution time (sec) 

Number of PCG iterations 

Fig. I .  PCG solvers with 22 preprocessing in Test 
Problem I (1st NI of the 1st At). 
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Fig. 2.  DSLUBC and DSLUCS performance with 
and without 0 1  preprocessing in Test 
Problem 2 (1st NI of the 1st At). 
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