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ABSTRACT 

This paper is an at tempt  to  model well decline in a 
vapor dominated reservoir with fractal geometry. The  
fractal network of fractures is treated as a continuum 
with characteristic anomalous diffusion of pressure. A 
numerical solver is used t o  obtain the solution of the 
partial differential equation including adsorption in 
the fractal storage space. The  decline of the reservoir 
is found t o  obey the empirical hyperbolic type relation 
when adsorption is not present. Desorption does not 
change the signature of the flow rate decline but shifts 
it on the time/flow rate axis. Only three out of six 
model parameters can be estimited from field data ,  
due to  the linear correlation between parameters. An 
application t o  real well da ta  from T h e  Geysers field is 
presented together with the estimated reservoir, frac- 
tal space and adsorption parameters. Desorption dom- 
inated flow is still a questionable approximation for 
flow in fractal objects. 

INTRODUCTION . 
Classical modeling approaches available in the litera- 
ture for describing fractured reservoirs are based ei- 
ther on discrete deterministic and/or statistical frac- 
ture geometry information or on a lumped parameter 
multiple (usually dual) continuum approach. In many 
cases, however, the discrete fracture network approach 
is bound t o  fail due t o  the prohibitively large number 
of fracture parameters required by the model. This is 
the case with T h e  Geysers geothermal field for which 
studies of the fracturing patterns have concluded that  
it can only be characterized as ”effectively random” 
( B e d  and Box, 1989). 

At the other extreme, the continuum approach, usu- 
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ally involving the presence of double continua with 
different storage parameters coexisting in a Euclidean 
space with dimension D=2 or 1, offers little flexibility 
for characterization a t  the reservoir scale. The  implicit 
assumption embedded in these models is that  there ex- 
ists a typical scale a t  which the variation of reservoir 
parameters is bounded, in other words tha t  there ex- 
ists a Representative Elementary Volume (REV). 

Alternatively, fractal geometry of fracture networks 
provides a promising framework for a realistic reservoir 
model unconstrained by the requirement of REVS and 
without ruling out the possibility of using the  contin- 
uum approach. Fractal geometry is characterized by 
self-similarity over all scales: zooming in a fractal ob- 
ject results in deterministic and/or statistically identi- 
cal copies of the whole. This repetitivity determines on 
one hand the degree to  which a fractal object fills the 
embedding space, or in other words the mass fractal 
dimension D and on the other hand the connectivity of 
the object, expressed by its spectral dimension. The  
discontinuous character of a fractal object, as opposed 
to  the perfectly connected embedding Euclidean space, 
renders functions defined on it nondifferentiable. Thus 
the very idea of a pitrtial differential equation writ- 
ten for flow in fractals would not be justified unless 
the properties of the medium were replaced by ana- 
lytical equivalents. Following the model developed by 
O’Shaughnessy and Procaccia (1985) for diffusion on 
fractals, Chang and Yortsos (1990) have established 
the differential equation which governs flow in a fractal 
network of fractures. The  solution of the welltest prob- 
lem presented by them illustrates the phenomenon of 
anomalous diffusion typical for fractal geometry. 

Often natural fracture systems have been successfully 
described within the framework of fractal geometry. 
Sammis et  al. (1991) studied graywacke outcrop frac- 
ture patterns at Geysers and found that  the scaling re- 



lationship char act eristic to  fr act a1 objects is applicable 
over a span of scale of two orders of magnitude. An 
interesting application of fractal analysis to  pressure 
transients in the Geysers field was shown by Acuna 
et  al. (1992) who found that  the mass fractal dimen- 
sion could range between 1.2 and more than 2.0. Ac- 
cording to them this type of analysis is more likely 
t o  give a plausible explanation for pressure transients 
than an alternative single finite conductivity fracture 
model. To, our knowledge, no at tempt  has been made 
to  date  to  interpret reservoir decline da ta  using the 
fractal network of fractures model. Studies of well de- 
cline a t  Geysers have usually used the semiempirical 
Fetkovich method. 

It has been suggested that  adsorption is a plausi- 
ble storage mechanism in vapor dominated reservoirs 
(Nghiem and Ramey, 1991). Measurements of adsorp- 
tion on cores from Geysers have shown that  adsorbed 
water completely saturates micropores in the reser- 
voir rock (Shang at al., 1993). However, the numeri- 
cal model set up  by Hornbrook (1994) to  compute the 
pressure response t o  production in a one-dimensional 
reservoir where adsorption was modeled by Langmuir 
isotherms has shown very small adsorption effects at 
late times. 

T h e  objective of this paper is to analyze the adsorption 
effects on reservoir decline when fluid flow takes place 
in a fractal network of fractures. The  partial differen- 
tial equation established for pressure diffusion and in- 
corporating an adsorption source term is solved using 
a numerical solver. Following the theoretical analysis 

’ of the results, the  application of the model t o  specific 
well decline d a t a  from The  Geysers gives an estimate 
of the model parameters and allows for an evaluation 
of the present approach. 

MATHEMATICAL MODEL 

The physical model considered consists of a fracture 
network embedded in the Euclidean rock matrix, con- 
sidered t o  be impermeable. Traditionally the storage 
and flow properties of the porous medium included 
in the mathematical model are porosity and perme- 
ability, respectively. In a fractal object neither poros- 
ity nor permeability have a constant value across the 
model. Both porosity and permeability are considered 
t o  decrease with the Euclidean distance, r ,  from the 
well in a power law fashion (Chang and Yortsos, 1988): 

aVs D - d  pOTOSity : 9 = -T B 

where a is a constant characteristic of the fractal ob- 
ject expressing the number of sites per fractal mass 
(dimension L - D ) ,  V, the volume of each site assumed 
constant across the fractal object (dimension L 3 ) ,  B 
a geometric constant (of dimension L 3 - O )  which de- 
scribes the appropriate symmetry ( B  = A ,  27rh, 4x for 
rectilinear, cylindrical and spherical symmetry, respec- 
tively, where A and h represent cross-sectional area 
and reservoir thickness respectively), m is a parame- 
t,er akin to  permeability which expresses connectivity 
and flow conductance, D is the mass fractal dimension, 
d is the dimension of the embedding Euclidean space 
and @ is a parameter related to  the spectral dimension 
of the fractal network (O’Shaughnessy and Procaccia, 
1985). Note that  for a Euclidean fracture network: 
D = d and 9 = 0. In this case the two relations above 
reduce to: 

Bd = aV, (3) 

k m = -  
9 (4) 

The  partial differential equation describing diffusion 
on a fractal network of fractures has been derived 
by Chang and Yortsos (1988). The  nondimensional 
form of this equation and the associated dimension- 
less group is: 

where rW is the well radius and p ,  the  initial reser- 
voir pressure. The  choice for this nondimensionaliza- 
tion of the pressure was determined by the fact that  
for the purposes of a well decline analysis the bound- 
ary condition at the well is usually prescribed (con- 
s t  ant /variable) pressure. 

Two important observations should be made with re- 
spect to  this equation: 1) nowhere in Eqn. (5) does 
the embedding Euclidean space dimension appear and 
2) the anomalous diffusion phenomenon is captured 
by the power law relation between the diffnsivity and 
radial distance. 

The  addition of a new term representing the desorp- 
tion of water in the fracture network as a source a t  ( 2 )  

avs D-d--8 p e r m e a b i l i t y  : I; = - m r  B 

-176- 



each site in the fractal object will bring the partial 
differential equation to  the desired form for studying 
the adsorption effects on the fluid flow. In order to  
derive the adsorption source term we will consider the 
Langmuir isotherm model for the mass X of water ad- 
sorbed in a unit volume of rock: 

where d is the magnitude factor which determines the 
maximum amount adsorbed a t  p = p s ,  c is a shape 
factor which determines the rate a t  which desorption 
occurs and p ,  represents the saturation pressure a t  ini- 
tial reservoir temperature, hereafter considered equal 
to  the initial pressure in the reservoir. Let V be the 
volume of rock available for adsorption in a cylinder 
of radius T .  If the space available for adsorption has a 
mass fractal dimension, Z then: 

where V, is a geometric factor of dimension L3-’. To- 
tal adsorbed mass in the cylinder of radius T is, there- 
fore: 

where p~ represents the rock density. The  dimensional 
form of the adsorption source term can be obtained by 
differentiating At with respect to  T and t :  

Q A  = ( Z  + 1) T ~ - ’ ~ C V ,  P s  a (p’ )  
2 p  ( p s  + (c - 1) p)’ at PR 

Expressing p in terms of the nondimensional p ~ :  

and using the assumption that  the reservoir was ini- 
tially a t  saturation conditions, p ,  = p ,  , after normal- 
ization we obtain: 

with constant A given by: 

where p c  is the density of saturated vapour, exponent 
(Y is Z - D and the pressure function F is given by: 

(15)  
1 

F ( P D )  = 4F-G (1 + ( c  - 1) 4F-G) 

Note that  F ( p o )  > 0 for any value of the shape fac- 
tor c > 0 and any p~ in ( 0 , l ) .  Also note that  large 
values for this term can be expected when the dimen- 
sionless pressure is small: p~ + 0 (which occurs a t  
the beginning of the drawdown) and the shape factor 
has a small value: c + 0 (favorable for desorption). 
Reasonable estimates of parameter A are of the order 
of io3 .  

The partial differential equation including desorption 
effects becomes: 

It can be assumed that  the dimension of the  storage 
space coincides with the dimension of the adsorption 
space: D = Z. 

A numerical solver based on the method of lines was 
used t o  solve Eqn. (16) for prescribed wellbore pres- 
sure and infinite acting outer boundary conditions. 
The  solution, represented with cubic Hermite polyno- 
mials, is presented in the next section. 

RESULTS AND DISCUSSION 

The solution of the equation of flow in a fractal net- 
work of fractures was computed first for the case where 
the adsorption term was neglected ( A  = 0). T h e  re- 
sults are presented in terms of dimensionless flow rate 
vs. dimensionless time in Fig. 1. As expected, they 
reduce to  the well-known solutions for one-, two- and 
three-dimensional cases, when the flow space has a Eu- 
clidean geometry. The  distinct feature of the solution 
for D < 2 is a practically constant log-log slope at late 
time: 

l o g  q = a log t + b 

where a and B = lob  are constants related to  the 
model parameters: D and 8. Differentiating relation 
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Figure' 1: Well decline with no adsorption, (a) 
9 = 0.0 and (b) 9 = 0.5 

(18) with respect to  time and replacing t i m e t  with the 
power 1 / a  of the flow rate q divided by the constant 
B we obtain: 

T h e  generic form of (19): 

is known as the  general empirical hyperbolic decline 
relationship and has been used in specific forms to  
analyze the  decline of wells a t  T h e  Geysers. 

1 1.2 1 4 1.6 1.8 2 

Figure 2: Effects of fractal parameters on the 
log-log slope of the well decline (a) Mass frac- 
tal dimension effect (b) Effect of parameter 
0 

3 clearly shows that  D and 8 are linearly correlated. 

The  next step was t o  compute the solution for the case 
where adsorption was present. For this a fractal geom- 
etry with parameters D = 1.9, 8 = 0.25 was considered 
(in agreement with the results obtained by Acuna e t  
al., 1992, in one of the wells at T h e  Geysers), a dimen- 
sionless adsorption parameter between 1 and 100 and 
an adsorption curve shape coefficient ranging between 
0.01 and 10. Fig. 4a) shows the effects of increas- 
ing the dimensionless adsorption coefficient. I t  can be 
seen that  beyond a threshold value of A (10 for this set 
of parameters) the decline curves s tar t  with a plateau 

A sensitivity analysis was conducted for the two model 
parameters involved: mass fractal dimension D and 
the spectral dimension dependent parameter 8. The 
results, presented as a graph of the log-log slope of 
flow rate - time relation versus D and 8 respectively 
(Fig. 2) shows tha t  the solution is more sensitive to  
the mass fractal dimension D than to  the parameter 8, 
specially at lower values of D (closer to  1.0). Also, Fig. 

Figure 3: Linear correlation of fractal param- 
eters 
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value corresponding to  a maximum flow rate that  can 
be sustained by the specific geometry of the reservoir. 
Although the  ratio of the flow rates sustained by the 
reservoir for different dimensionless adsorption coeffi- 
cients decreases with time, the curves remain distinct 
during the entire time span examined. The  adsorption 
curve shape coefficient c has practically the same in- 
fluence as A on the decline curve (curves in Fig. 4b) 
were obtained for A = 1000). The  maximum sustain- 
able flow rate  was obtained for c = 1, which is exactly 
the value which divides the interval of possible values 
of c into two classes: the adsorption favorable class 
( c  > 1) and the desorption favourable class ( c  < 1). 
For values of adsorption coefficients in excess of the 
threshold values the reservoir can be characterized as 
desorption dominated. 

Examining the radius T~ a t  which interference can be 
noted ( T  for which p , f  = 0.01) it can be seen from Fig. 
5a) and 5b) that  a power law relation between T ;  and 
the two adsorption coefficients A and 6 is applicable. 
The  value of T ,  itself for desorption dominated flow is 
extremely low: T ;  < 300r,  a t  t d  = lo9, which lays a 
question mark on the validity of the assumption that  
pressure can be approximated by its smooth envelope 
at such small radii. 

APPLICATION T O  FIELD DATA ON WELL 

DECLINE 

The parameters of the model which have to  be esti- 
mated from field d a t a  are: q* and t*, the flow rate and 
time normalizing constants, D and 6, the fractal object 
parameters and A and c ,  the adsorption coefficients. 
However, not all these parameters are independent of 
one another. 

We have seen already from Fig. 3 that  the fractal 
object parameters are not independent. Also, overall 
both adsorption parameters, A and c ,  have the effect 
of shifting the decline curve in time, therefore being 
correlated with the normalizing time constant. This is 
of consequence in analyzing field data  and estimating 
reservoir parameters, causing the problem to be poorly 
constrained. 

Another aspect important in estimating the reservoir 
parameters is that  the boundary condition at the well 
may be very important for the 'signature' of the de- 
cline curve. An illustration of the effect of changing 
the level of the well pressure is given in Fig. 6. The 
case where p , f  is changed from 0.3 to  1.0 within a 
period of time spanning two orders of magnitude, al- 
though less likely to  be encountered in practice, shows 
that  the shape of the pressure decline curve can be dis- 
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I Dln.n.lonl... TI.. 

.. .c.. . 1 0 .  . .-- * I. A I  . 0.1 --t---- A - 0 . 0 ,  

(b) 

Figure 4: Effects of adsorption parameters on 
well decline (a) c=O.Ol and variable A and (b) 
A=1000 and variable c 
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Figure 5: Interference radius (a) vs. adsorp- 
tion parameter A and (b) vs. adsorption pa- 
rameter c 

torted sufficiently to  make a simple type-curve match 
with type curves computed for constant wellbore pres- 
sure impractical. Therefore an automated model fit- 
ting using the appropriate boundary conditions is re- 
quired. 

Finally, we can set as a target for an automated type- 
curve matching program the estimation of 3 out of 6 
parameters. As an illustration of the application of the 
model t o  real field d a t a  we have tried t o  estimate the 
reservoir parameters for well LF 425 of Unit 12, Gey- 
sers geothermal field. T h e  parameters to  be estimated 
were: q*,  D ,  A .  The bottomhole corrected pressure 
was computed using Goyal’s method (1986) and used 
in defining the boundary condition at the well for the 
partial differential equation. For the short part of the 
decline d a t a  the parameters that  were used as input 
t o  the program were: 0 = 0.1 ,  t* = 0.19, c = 0.1, and 
the parameters resulting from the automated evalua- 
tion were: D = 1.15, q* = 12.5, A = 2137. This set of 
parameters is by no means unique. It belongs to  an en- 
tire family of correlated parameter sets. For instance 
the d a t a  could have been modeled with D = 1.45 and 
0 = 0.55 . 

In spite of the underdetermination of the model it can, 

Figure 6: Effects of changing the bottomhole 
pressure 

Figure 7: Model fitting to  decline data from 
well LF State 425, The Geysers 

nevertheless be used t o  predict future decline in wells. 

CONCLUSIONS 

The characteristics of flow denoted by ’anomalous dif- 
fusion’ are determined by a power law relation of dif- 
fusivity and Euclidean radius. Models of flow in a 
fractal network of fractures require two additional pa- 
rameters: D, the mass fractal dimension, associated 
with the storage properties of the reservoir and 8, a 
parameter representative for the spectral dimension 
of the fractal object, associated with the permeabil- 
ity field. Since adsorption is determined by the vapor 
pressure lowering phenomenon it can be assumed that  
the same mass fractal dimension of the storage space 
can be applied to  the adsorption space. 
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Flow rate decline in a fractal reservoir without adsorp- ,; 
tion obeys the general relation for hyperbolic decline. 
The signature of the flow rate decline in the presence of 
adsorption does not change significantly at  late times. 
However, at  early times a constant maximum attain- 
able flow rate develops when threshold values of the 
adsorption coefficients A and c are exceeded and des- 
orption becomes dominant. Model results show that 
when desorption dominantes interference effects may 
be completely eliminated. A question mark remains 
as to whether the assumption of a good approxima- 
tion of the actually nondifferentiable pressure function 
defined on a discontinuous fractal space is the smooth 
envelope anymore. 

Parameters akin to storage properties: adsorption co- 
efficients A and c and the invariant part of the dif- 
fusivity are strongly correlated and thus difficult to 
estimate from field data on flow rate decline. Reser- 
voir response is less sensitive to the spectral dimen- 
sion related parameter 0 than to the mass fractal di- 
mension D .  Estimation of a range of (ole) values is 
possible using real well decline data. Due to the cor- 
relation of model parameters a set of maximum three 
independent parameters out of six can be obtained by 
automated type curve matching. The model was suc- 
cessfully tested on a well from The Geysers geothermal 
field. 
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