Proceedings Eighth Workshop Geothermal Reservoir Engineering Stanford University. Stanford, California. December **1982 SGP-TR-60**

RESISTIVITY LOGGING OF FRACTURED BASALT

V. Stefansson, G. Axelsson and *0.* Sigurdsson

Orkustofnun Grensdsvegi 9 Reykjavik, Iceland

f

V. Stefansson, G. Axel

Orkusto

Orkusto

Grensás

Reykjav

INTRODUCTION

The electric log has been used for about

half a century as a tool for studying

the formations penetrated by a borehole. The electric log has been used for about At early stage, comprehensive studies of sedimentary rock established the dependence of formation resistivity factor upon porosity. Archie (1942) pioneered this effort by suggesting his well-known empirical formula correlating the formation factor and porosity. Ever since, Archie's law has been a central
since, Archie's law has been a central
point in interpretation methods for interpretation methods for electrical logs.

Despite the simple empirical dependance
of rock conductivity on porosity as
expressed by Archie's law, there does
not exist a simple theoretical explanation for this phenomenon. Mathematical modeling to prove the validity of an Archie type relationship has been carried out by Greenberg and Brace (1969), Shankland and Waff (1974) and Hadden (1976). However, all models depend on simplistic geometrical assumptions of pore space distributions and the degree of realism can be disputed.

During the last decade, investigations on geothermal reservoirs have accentuated the role of fractures in reservoir physics. Various types of geophysical logs have been applied in order to distinguish between fractured and intergranular reservoirs. One of
the strong candidates for that is the
electric log (Towle 1962, Aguilera 1974
and 1976). The main reason for that is
the fact that the exponent $\langle m \rangle$ in
Archie's law seem to be 1.0 in et.al. 1965).

In this **paper** a simple lumped double porosity model is studied in order to Further, the results of resistivity **and** porosity logging in Icelandic basalt is Archie's law seem to be 1.0 in the case

of fractured rock (Brace and Orange

1968), where as a walue of 2.0 seems to

be valid for non-fractured rock (Brace

et.al. 1965).

The R₁ = $\frac{x}{x^2}$ ρ_b (3)

In this paper resistivity-porosity relationship. **X2** x^2 presented, and it is shown that the
presented, and it is shown that the
distribution of porosity in these rocks $R_3 = \frac{1}{1-x^2} \rho_w$ (5) rock (Brace
 $R_1 = \frac{x}{x^2} \rho_b$

lumped double

ed in order to

actures on the

relationship.

sistivity and

sistivity and

mdic basalt is

own that the

in these rocks
 $R_3 = \frac{1}{1-x^2} \rho_w$

LUMPED DOUBLE POROSITY MODEL

Consider an idealized model for fractured rock in order to estimate the effects of fractures on
resistivity-porosity relations. This resistivity-porosity relations. This

model is presented in figure 1 and

consists of cubes representing the rock and the spacing between the
parallelepipeds representing waterfilled
fractures. Similar models have been
presented before (Towle 1962, Aguilera
1974 and 1976, Birakawa and Yamaguchi
1981), but the present approach is
somew .

The following parameters are used in the $\begin{bmatrix} \text{model} \\ \text{p}_y \end{bmatrix}$

- P_w = resistivity of water in pores
 P_b = resistivity of rock matrix
 P_b = porosity of rock matrix
 P_b = porosity of rock matrix
-
- **43** = resistivity of rock matrix

⁴_b = porosity of rock matrix

(relative to matrix volume) only)
- $x = length of each matrix cube,$ fraction
- $1-x$ = width of fractures, fraction

It is convenient to introduce **lumped** resistances in approximating the resistivity of the model as is shown in figure 1. Thus the resistance of an unit cube is approximately given by

$$
\frac{1}{R} = \frac{1}{R_1 + R_2} + \frac{1}{R_3}
$$
 (1)

and the resistivity of the model is

 $\rho = R$ (2)

Referring to figure 1

$$
R_1 = \frac{x}{x^2} \rho_b \tag{3}
$$

$$
R_2 = \frac{1-x}{x^2} \rho_W \qquad (4)
$$

$$
R_3 = \frac{1}{1-x^2} \rho_w
$$
 (5)

-189-

L 3500-900-9000 G Ax

Figure 1 Schematic figure of the
double porosity model and the
equvalent resistivity calculated for each unit cube.

and the resistivity of the fractured rock **is** according to equation 1

$$
\frac{1}{\rho} = \frac{1 - x^2}{\rho_w} + \frac{x^2}{(1 - x)\rho_w + x\rho_b}
$$
 (6)

Introducing the fracture porosity

$$
\phi_f = 1 - x^3 \tag{7}
$$

an **^a** resis **pros** >proximation for the formation :ivity factor for the double ity model **is** obtained as:

$$
\frac{\frac{1}{F} = 1 - (1 - \phi_f)^{2/3} + (1 - \phi_f)^{2/3}}
$$
\n(1 - \phi_f)^{2/3} + (1 - \phi_f)^{1/3} \rho_h / \rho_w (8)

where

$$
F = \rho / \rho_{\rm tot} \tag{9}
$$

Equation **8 is** somewhat simpler than the one presented by Hirakawa and Yamaguchi (1981), but gives similar results.

The same approach can be used to estimate the formation factor for models with either vertical fractures only or horizontal fractures only. Omitting the details of the derivation one obtains for vertical fractures only:

$$
= \frac{1}{\phi_f + (1 - \phi_f) \rho_w / \rho_b}
$$

and for horizontal fractures only

$$
F = \phi_F + (1 - \phi_F) \rho_h / \rho_w \tag{11}
$$

 (10)

Figure 2.

Equation **8 is** used to estimate the formation resistivity factor for the double porosity model. Here it **is** assumed that

$$
\rho_{\rm b} = \rho_{\rm w}/\phi_{\rm b}^2 \tag{12}
$$

The use of an exponent of 2 is supported
by the results of Brace and Orange
(1968b). From their experiments with
different rock samples, saturated with
brine and measured at 4 kbar to close up
most of the crack porosity, a residual porosity was obtained. These
results were confirmed by the simulation
studies of Shankland and Waff (1975).
Equation (12) has been recognized as an
empirical law in the petroleum industry
and is valid for normally sandstone.

The relationship between the porosity gnd the formation factor according to equation **8** is presented in figures **2** and 3. The results **for** horizontal fracture only (equation **11)** are presented in figure **4.**

HO-BM-9000.6.Ax.

Figure **2** Relation between formation resistivity factor and total

porosity as calculated from the

double porosity model. Curve B

represents vertical fracture only

with matrix porosity equal to zero.

Other curves are for cases where Other curves are for cases where
both vertical and horizontal fractures are present.

Vertical and horizontal fractures

ki

u

*

Figure 3

Figure 3 Relation between formation resistivity factor and total porosity for vertical and hori-zontal fractures, given various values of the ratio between fracture porosity and matrix porosity.

[] HO-8M-9000. BAL

Figure 4

Figure 4 Relation between formation resistivity factor and total porosity for horizontal fracture only.

^Euations **8,** 10 and 11 can be combined wfth Archie's law (Archie 1942)

$$
= a/\phi_{+}^{m}
$$

where

P

 $\phi_t = \phi_f + \phi_b - \phi_f \phi_b$ (14)

 (13)

is the total porosity. The double
porosity model in the presence of
vertical and horizontal fractures, when
 ϕ_b^* 0 and ϕ_t <30% then yields, a = 1.4 and $m = 1.0$. This compares favorably with the values a = 1.5 and $m = 1.0$ obtained by Towle (1962) for his plane
model, but it is identical to the model
used here. Similarly for vertical
fracture only, a = 1.0 and m = 1.0 when
 ϕ_{B} ⁹⁰. A m = 1.0 dependence upon total
porosity is also see

$$
k = \frac{\phi_f}{\phi_b - \phi_f \phi_b} \tag{15}
$$

is constant and total porosity is small (figure **31,** but the values for <a> increase with decreasing k-values.

These results are different from the
relationships commonly used in the relationships commonly used in the petroleum industry. An exponent of **1.0** is however in an agreement with the results of Brace and Orange (1968a), who observed that stressing rock samples into the dilant region of new crack formation produced **an** esponent of 1.0 dependence upon crack porosity.

It can be seen from the different values for <a> estimated above, for vertical and horizontal fractures, and for vertical fracture only, that
resistivity-porosity relations, for
fractured rock, are highly dependent on
the ratio of vertical to horizontal
fractures, i.e. fracture orientation.
Different ratios of vertical to horizontal fractures can be modeled
using the simple lumped approach used
above. Space does not permit a detailed
discussion, but results indicate a rapid
increase in resistivity, at near
constant total porosity, with decr 4).

The results from the above discussion can be summarized as follows.

1) Even though the present results are only a first order approximation it can $F = \phi^{-2}$ is not valid for fractured rock.
An exponent of 1.0 is probably more correct.

2) The relationship between resistivity and porosity for fractured rock **is** in general not simple (figures 2, 3 and 41, but depends on the amount of matrix **porosity as** well **as** the fracture or ientation.

3) Results indicate that porosity of fractured rock should not be determined form resistivity data based on a $F = a\phi^{-m}$ relation alone.

4) Assuming that the ratio of vertical to horizontal fractures **is** as in the model of figure 1 with total porosity and formation factor known from geophysical logging data, one can estimate roughly the relative importance of fracture- and matrix porosity by the of fracture- and matrix poroximate model presented
above.

RESISTIVITY-POROSITY RELATIONS FOR BASALT

Extensive geophysical logging has been
performed in several. deep (2 km)
boreholes in Iceland. Among the
parameters observed were resistivity
(16" and 64" normal) and porosity
(neutron-neutron). Examples of resistivity (formation resistivity factor) -porosity crossplots from two boreholes in basaltic environment are presented in figures **5** to 7. These figures show only few, but representative examples.

Figure 5 Resistivity - porosity
cross plot for Dolerite at 1900 -
1970 m depth in well KJ-16 in the
Krafla high temperature geothermal
field. The best linear fit to the
data points is shown along with its
correlation coeff

Well KJ-16 **is** a production hole drilled inside the Krafla geothermal area
(Stefansson 1981) in the neovolcanic
zone of Iceland. The IRDP-hole (Fridleifsson et.al 1982, Robinson et.al. 1982) **is** drilled in approximately **10** My old basalt pile in Eastern Iceland. The pore water resistivity **(Pw) is** fairly well known, as a function of depth, for the IRDP-hole, which enables the estimation of the formation resistivity factor (figures 6 and 7).

A rather good correlation between resistivity and porosity is seen for the examples in figures 5 to 7. A relationship of the form $\rho = a \rho_w \phi^{-m}$ has been fitted to these data and the results are presented in the

F IOum *6*

 \bigcup

I

.
.
.

d

cd

Figure 6 Formation resistivity factor - porosity cross plot **for** Basalt dikes in the depth interval 1360-1500 m in the IRDP hole in Eastern Iceland.

Figure 7 Formation resistivity factor - porosity cross plot for Basalt flows in the depth interval 1700-1800 m in the IRDP hole in Eastern Iceland.

figures. An equation of this form has
also been fitted to data from other
intervals, not presented here, and
weighted average for the exponent (m)
calculated for the two different
areas. The results are presented in Tigures. An equal

siso been fitt

intervals, not

intervals, not

weighted average

calculated for

areas. The re

table I.

Table I

Location Weighte

<m>
Cocation Weighted Average Data based on

-192-

These results are in good agreement with
results for basalt from Rawaii (Keller
et.al. 1974) and results from .the Atlantic Ridge at **23'N** (Kirkpatrick 1979)

How do we interpret an exponent $\langle m \rangle$
close to 1.0 ? This indicates,
according to the double porosity model
presented before and the results of
Brace and Orange (1968a), that fractures
constitute an important part of the porosity for the basalts studied.
However, we can not determine, on the
basis of the values for $\langle m \rangle$ alone, how important fractures are in the overall porosity. According to the double porosity model an exponent of 1.0 **is** possible, even though matrix porosity **is** considerable.

A more complete interpretation of formation resistivity factor-porosity cross-plots can be attempted on the basis of the double porosity model. The model can be used to estimate the relative- importance of fracture- and matrix porosity when the pore water
resistivity is known. We will take as
examples three cross-plots from the
IRDP-hole presented in figures 8 to 10.
The two extremum cases ($\phi_p = 0$ and
 $\phi_r = 0$), for vertical and horizo for constant k-ratios are superimposed on these cross-plots. We see from the on these cross-plots. We see from the
figures that these data can be interpreted on the basis of the double porosity model. **An** interpretation of that kind **is** of course approximate, requires an exact knowledge of the value for and **is** limited by the underlying assumption of fracture orientation.

REPAIRING CONTRACT STATE

 $\overline{\mathcal{L}}$

t

'I

Figure **8** Relation between formation resistivity factor and total
porosity for Basalt flows in the
depth interval 0-300 m in the IRDP hole in Eastern Iceland. superimposed are lines for the two extremum cases $\phi_b = 0$ and $\phi_f = 0$ and one line for constant ratio between fracture porosity and matrix porosity.

THE #8.09. 1070 T/By J

Figure 9 Relation between formation resistivity factor and total porosity for Basalt flows in the depth interval 1500-1600 m in the IRDP hole in Eastern Iceland.
Superimposed are lines for the two
extremum cases $\phi_b = 0$ and $\phi_f = 0$
along with a line for constant ratio between fracture porosity and matrix porosity.

Figure 10 Relation between
formation resistivity factor and
total porosity for Basalt dikes in
the depth interval 1700 - 1800 m in
the IRDP hole in Eastern Iceland.
Superimposed are lines for the two
extremum cases $\phi_1 =$ between fracture porosity and matrix porosity,

Using figure 3 we can estimate roughly the ratio of fracture- to matrix porosity. For the cases from the IRDP-hole presented in figures **8** to 10 the following results are obtained (table 11):

-193-

The apparent decrease in fracture porosity with depth is noteworthy, but the underlying assumptions mentioned
above should be kept in mind. A
decrease in fracture porosity could be
the result of increasing pressure with
depth closing up some fractures. This
effect could on the other hand also
r

To conclude this discussion we present
one example for a non-basaltic unit in
figure 11, where formation resistivity
factor - porosity creasulat for one example for a non-pasaitic unit in
figure 11, where formation resistivity
factor - porosity crossplot for a
diorite (55% Si0) unit from the IRDP-hole **is** shown. Here we see a relationship which **is** quite different from the relationships for the basalt presented above. Interpreting the data in figure 11 according to the double porosity model we find that fracture porosity should be insignificant in this diorite unit.

HD-BM-9000. G.Ax.

Figure 11 Relation between formation resistivity factor and total porosity for 10 m thick Diorite formation at 1710 m depth in the IRDP hole in Eastern Iceland. Superimposed are lines for the two extremum cases $\phi_b = 0$ and $\phi_f = 0$. The data points fall close to and parallel with the line $\phi_f = 0$ indicating that fracture porosity is negligible.

CONCLUSION

A lumped double porosity model has been
studied in order to estimate the effect
of fractures on resistivity - porosity
relations. It is found that the
relationship between resistivity and
porosity for fractured rock is in general not simple and depends both on the amount of matrix porosity **as** well **as** the fracture orientation. However, when fractures dominate over matrix porosity the exponent <m> **is** close to 1.0.

Resistivity-porosity relations have been determined for large amount of basaltic
formations in Iceland. An exponent
close to 1.0 is found in all cases
investigated. This is interpreted as
fractures constitute a considerable part
of the porosity of the basalts. In INVESTIGATED IN THE 18 INCHEFIFICATE CONSTRUCTS CONSTRUCT OF the porosity of the basalts. In the IRDP-hole in Eastern Iceland it is found that the ratio of fracture porosity to total porosity decreases with depth.

In contrast to the exponent of 1.0 found for basaltic formations in Iceland, many interbedded formations in the basaltic pile reveal an exponent of approximately 2.0. This **is** interpreted as matrix porosity dominates fracture porosity in these cases.

The study of resistivity-porosity relationship presented demonstrates that tommon geophysical logs can distinguish between fractured and porous reservoirs.

Aknowledgements

We thank Rafmagnsveitur Ríkisins-
Kröfluvirkjun for permission to use data
from the Krafla field.

BEFERENCES

- Aguilera, R. (1974), "Analysis of
Naturally Fractured Reservoirs From Sonic and Resistivity Logs", J. Pet. Tech., 26, p. 1233-1238.
- Aguilera, R. (1976), "Analysis of
Naturally Fractured Reservoirs From Conventional Well Logs", J. Pet. Tech., 28, p. 764-772.
- Archie, G.E. (1942), "The Electrical
Resistivity Log as an Aid in
Determining Some Reservoir Characteristics", Tran. AIME, 146, p. 54-67.
- Brace, W.F., Orange, A.S. and Madden, Pressure on the Electrical Resistivity **of** Water-Saturated Crystalline Rocks", J. Geophys. Res., 70, p. 5669-5678. T.R. (1965), "The Effect of

-194-

- Brace, W.F. and Orange, A.S. (1968a),

"Electrical Resistivity Changes in

Saturated Rocks during Fracture and

Frictional Sliding", J. Geophys.

Res., 73, p. 1433-1445.
- Brace, W.F. and Orange, A.S. (1968b),

"Further Studies of the Effects of

Pressure on Electrical Resistivity

of Rocks", J. Geophys. Res., 73,

p. 5407-5420.
- Fridleifsson, I.B., Gibson, I.L., Hall,

J.M., Johnson, H.P., Christensen,

N.I., Schmincke, H.U. and

Schonharting, G. (1982), "The

Iceland Research Drilling Project",

J. Geophys. Res., 74, p. J. Geophys.
6359-6362.
- Greenberg, R.J. and Brace, W.F. (1969), "Archie's Law **for** Rocks Modeled by Simple Networks", J. Geophys. Res., 74, p. 2099-2102. .
- Hirakawa, **S.** and Yamaguchi, **S.** (1981), 'Geothermal Well Logging and Its Interpretation", Proceedings Seventh Workshop Geothermal Reservoir Engineering, Stanford, p. 115-119.
- Keller, G.V., Murray. J.C. and Towle, G.H. (1974), 'Geophysical Logs From the Kilauea Geothermal Research Drill Hole", paper presented at Fifteenth Annual Meeting of **SPWLA,** McAllen, **L.**
- Kirkpatrick, R.J. (1979), "The Physical State of the Oceanic Crust: Results of Downhole Geophysical Logging in the Mid-Atlantic Ridge at 23^{°N}, J. Geophys. Res., 84, p. 178-188.
- Madden, T.R. (1976), "Random Networks and Mixing Laws", Geophysics, 41, p. 1104-1125.
- p. 1104-1125.

Robinson, P.T., Hall, J.M., Christensen,

N.I., Gibson, I.L., Fridleifsson,

I.B., Schmincke, H.U. and

Schonharting, G. (1982), "The

Iceland Research Drilling Project:

Synthesis of Results and

Implicatio
	- Shankland, T.J. and Waff, H.S. (1974),

	"Conductivity in Fluid-Bearing

	Rocks", J. Geophys. Res., 79,

	p. 4863-4868.
	- Stefansson, V. (1981), "The Krafla

	Geothermal Field, Northeast

	Iceland", in Geothermal Systems:

	Principles and Case Histories,

	L. Ryback and L.J.P. Muffler (Editors), p. 273-294. John Wiley & Sons Ltd.
	- Towle, G. (1962), "An Analysis of the Formation Resistivity Factor porosity Relationship of **Some** Assumed Pore Geometries", paper presented at Third Annual Meeting of SPWLA, Houston.