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SUMMARY-Pressure data fiom two separate wells at Te Aroha are analysed using Fourier
and wavelet techniques. The long aim is to examine the possibility of characteristic
pressure fluctuations to benchmark the existing state of unexploited hydrothermal systems.

1. INTRODUCTION

Subsurface fluid reservoirs demonstrate
fluctuations in reservoir temperature and
pressure with time. In general these will be
either cyclic due to tidal effects, seasonal
changes or other regular disturbances, or
random due to the nature of the flow through
the reservoir. It may be possible to use the
random fluctuations to the flow

the reservoir and hence the existing
state of natural systems. The first step in
examining this is to check the sensitivity of
available instrumentation and develop the
analytical

The Te Aroha hydrothermal system was
chosen for this study because it is an easily
accessible unexploited geothermal system with
several unused wells. Moreover the wells are
low temperature and therefore safe and easy to
use, but discharge by geysering in a pseudo-
regular manner.

Te Aroha is located near the central east coast
of the North Island of New Zealand. Its
thermal water has been used for bathing and
therapeutic treatment since 1884 (Healy 1959).
There are three wells capable of discharging,
of which one is known as the Mokena Geyser
because it is fully open and discharges like
a geyser with a period of approximately 30
minutes. It was drilled in 1938 and has
apparently geysered ever since. The discharge
is collected for bathing. Although there has
been no continuous discharge or pumped
production, the geyser discharge is essentially
a low flow rate continuous discharge when
considered over a time period much longer
than the discharge period. The wells are
drilled to 105 metres or less and have

maximum temperaturesof 98 or less. The
two wells other than the Mokena Geyser are
known as the Wilson Street bore, which was
drilled in 1995but has remained closed except
for use for experiments by the Geothermal
Institute Diploma students, and the Domain
Trust bore, which is older and smaller in bore
and output, and has also remained closed. All
wells dischargeneutral sodium-bicarbonate
water with a high dissolved solids of about 12

(Henderson 1938).

The Mokena Geyser was completed with
casing to 28 m depth and from 28 m to 67
m. The discharge has amaximumtemperature
of 83 and an average discharge rate of 0.7

The well geysers fiom a 1” pipe on the
wellhead up to 5 metres in height. Deposition
of aragonite occurs both within the well and
around the wellhead. The well is reamed at
about 6 monthly intervals to maintain flow
capacity.

The Wilson well is located about 200 metres
south of the Mokena. When opened it
discharges with a period of approximately 15
minutes at and an average rate of 0.1 long
term equivalent, at temperatures up to
It is cased to 60 m and hasmaximumdepth of
79 m.

At the outset it was thought that the
disturbances to the reservoir caused by the
Mokena Geyser might be detectable at the
(closed) Wilson Street bore, or if not then at
the Domain Trust bore which is closer to the
Mokena Geyser. Even if not detectable, the
wells provide samples of random pressure
variations in an undisturbedreservoir.
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2. EXPERIMENTALMETHOD

The pressure transducers used were Geokon
vibrating wire transducers which have surface
readout to a datalogger or computer. The
principle of operation is that a circular
diaphragm deflects according to the pressure
change. A taut wire stretches fiom the centre
of the diaphragm to a point, so that its
tension vanes as the diaphragm deflects. The

wire is electronically plucked and the
frequency of vibration is measured and related
to the diaphragm deflection and hence the
pressure outside the The
instruments used are suitable for a maximum

temperature of 120 and maximum pressure
of 7 bars abs.. Their resolution is
approximately 0.04 bar. Their temperature
response is rather slow (several minutes to
reach thermal but the instruments
have been used in conditions at the
bottom of the wells. Their response to transient
pressures has not yet been quantified but
is of order of tens of

Pressure data was measured at 65.8 metres
below the casing head flange (CHF)in the
Wilson Street bore with the well shut, and at
61.5 metres below CHF in the Mokena Geyser
with the well open. Samples of measurements
are shown in Figures 1and 2.

3.

3.1

ANALYSIS METHODS

Fourier analysis methods 

The traditional Fourier series analysis is for a 
periodic function It is based on the idea
that such a function can be represented by a
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Figure 2 -Well pressures Wilson well.

superposition of sinusoids.
thus representedas :-

The function is
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Where w is the angular frequency and is
time.

The result of an analysis of this type is the

specification of values of and b,. The
presence of a particular frequency component
in a signal can be deduced by this type of
analysis. For example, if the Wilson Street
well was in hydraulic communication with the
Mokena well, the pressure variations at the
production of the Mokena well due to
the geysering would have a frequency
component representing the 30 minute periodic
discharge. This method of analysis would
reveal this component.

Figure 1 - Well pressures in the Mokena
Geyser.

An important parameter the analysis of
random signals is the autocorrelation function.
If we a random variable having a
Gaussian probability distribution, the
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probability of a particular value of is
which is defmed by the usual bell-shaped
curve. If we wished to predict how x varies
with time and produce this as a graph of x

versus there would be an infinite number
of possible graphs - an ensemble. average
can be defined as

=

For one of these graphs we can define a
particular average

where and are the values of x at times
and in a particular signal. This is called the

If the process is
stationary, then the autocorrelation function
does not depend on the actual values of and

but only on the difference - = A
particular class of stationary processes is
ergodic, which means that the statistical
properties of the process deduced from
analysing the ensemble, notably the ensemble
averages, are the same as the temporal
averages determined fiom a single
measurement of versus time. Combining

these ideas we see that

The autocorrelation function is an easily
computed function. The determination of the
spectral density of a stationary ergodic random

can be determined fiom the
autocorrelation function. Since the function is
random, is no single
component representation of the signal - the
frequency components present at any time
follow a Gaussian (or other) distribution. They
may nevertheless represent a real random
process that has physical significance. The

power spectral density of the signal is the
Fourier transform of the autocorrelation
function. In practice the signal is Fourier
transformed directly rather than via the
autocorrelation use the Fast Fourier
Transform algorithm. If the signal to be
analysed consists of N samples, where N is a
power of 2, then the Fourier Transform can be
performed with a fractional reduction in the
number of calculations of about
(Newlands, 1992)where N is the sample size.

The Fourier Transform is :-

( * ) e- i
o

It is not effective at modeling frequency
information that may occur only over part of
the signal as the transform assumes that the
frequencies obtained from the transform are
uniform over the full length of signal. In order
to locate frequencies that occur over parts of
the signal it is necessary to use windowed
analysis in which the signal is analysed in a
series of smaller sections.

3.2 Wavelet Transform

Wavelet analysis provides a way of
decomposing a signal into its constituent parts
using a compact waveform. The signal is
broken up into scaled and translated versions
of the wavelet. Analysis can be performed with
either a continuous (CWT) or discrete wavelet
transform (DWT). The is continuous in
that the analysing wavelet is shifted smoothly
over the signal domain. The can also
operate at every scale fiom that of the original
signal to a specified maximum.

The operates on scales and translation
positions which are dyadic power of two).
Computational effort is substantially reduced
with DWT. Processing is enhanced if a
fast wavelet transform algorithm (Mallat,
1989) is used. One-dimensional analysis
involves signal decomposition by a family of
orthogonal analysing signals. Orthogonal
wavelets are derived fiom scaling functions.

The wavelet transform coefficients depend on
scale and amplitude. The magnitude of these
coefficients represents a of correlation
between the signal and wavelet and are
calculated by:

=

Where is the function and a,b are
dyadic scale and translation factors
respectively.

Data was recorded at intervals ranging from 2

seconds to 5 minutes. The period of continuous
data collection was limited by data logger
memory capacity of 7999 points and the ability
to travel to the site to download data.The data
range selected for analysis was 400 to 600

hours from the zero datum of 0900 hours on 1
July 1999. During this time data was collected
continuously at 5 minute intervals.
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4.

4.1

DISCUSSION

Fourier Analysis

Fourier analysis for Mokena (Figure 3)

demonstrates pressure cycling at a frequency
of about 410 cycles per 200 hours or a cycling
period of about 29 minutes.

Figure 3 - Fourier analysis of Wilson and
Mokena data

Other features occur at frequencies of 910
cycles or period of 13minutes and 1150 cycles
or period of 10 minutes. There are no obvious
features in the Wilson data analysis in
Figure 3.

4.2 AutocorrelationAnalysis

There .is little of obvious significance in
Wilson well analysis.

4 3 Wavelet Analysis

Wavelet analysis in this study uses one of the
family of orthogonal and compactly supported
wavelets. include the wavelet types of
Daubechies and

General properties of this family are that they
are based on a function that has a given
number of vanishing moments and the analysis
is orthogonal.Both the scaling function and the
wavelet functionare compactly supported.
These properties are conducive to both
continuous and discrete wavelet transform
analysis due to the numerical efficiency
generatedas a result of orthogonality.

The wavelet used to analyse Te Aroha data is
the order 5 wavelet (Figure 5)
developed by et al. (1992). This
wavelet was chosen because of its ability to
model sharp points in the data and its
analyticalefficiency.

Auto-correlation analysis for the Mokena data
(Figure 4) shows high correlation coefficients
at lag cycles of about 400 data points or 33
hours.

Figure 5 - of ‘coifs’ wavelet

The scaling and wavelet functions have a
support width of 1, and length of They
also have 2N-1 and 2N vanishing moments
respectively.

Figure 4 - for Wilson and
Mokena data.

A 12 level wavelet decomposition was
on both the Wilson (Figure 6)

and Mokena (Figure 7) pressure data. A
detailed interpretation is outside the scope of
this paper. The finest details (highest
frequency)of the signal are shown in Details 1
and the lowest frequency in Detail 6 of Figures
8 and 9).

For the Wilson well the plots of details at
levels 6 and lower are not statistically
significant as pressure fluctuations are below

gauge resolution. The amplitude peaks in
Figure 9 demonstrate characteristic fiequencies
of the pressure cycles in the Mokena well.
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5. CONCLUSIONS

The analysis techniques reviewed reveal that
the combination of conventional Fourier
analysis with autocorrelation and wavelet
analysis should provide greater clarity in the
detection characteristic pressure fluctuations.
Much more detailed analysis will be required
to examine the significance of the fluctuations
noticed.
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