Seismic Tomography and Monitoring of Magmatic Geothermal and Natural Hydrothermal Systems in the South of Bandung, Indonesia

1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany.
2 Institut Technologi Bandung, Faculty of Mining and Petroleum Engineering, Bandung, Indonesia
3 Star Energy Limited, Jakarta, Indonesia
4 Center of Volcanology and Geological Hazard Mitigation, Bandung, Indonesia
5 SGS Horison B.V., The Netherlands; Formerly: Helmholtz Centre Potsdam GFZ

Keywords: Imaging, seismic tomography, fluid, volcanism, tectonic, earthquakes.

ABSTRACT
We assess geothermal resources from our understanding of the structure and the dynamics of geothermal reservoirs and hydrothermal systems in the south of Bandung. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. We deployed a geophysical network starting with a network of 30 seismic stations including high-dynamic broadband Güralp and Trillium sensors (0.008 - 100 Hz) and 4 short-period (1 Hz) sensors from October 2012 to December 2013. We extended the network in June 2013 with 16 short-period seismometers. Finally, we deployed a geodetic network including a continuously recording gravity meter, a GPS station and tilt-meters. In this paper we describe the set-up of the seismic and geodetic networks and we discuss first observations and results. The earthquakes locations were first estimated using a non-linear algorithm, and revealed at least 3 seismic clusters. We perform joint inversion of hypocenters and VP velocity 1D and 3D tomography. We discuss the resulting seismic Vp structure and the seismic activity pattern within the area and relate the structure to the distribution of hydrothermal systems. We aim at searching possible structural and dynamical links between different hydrothermal systems. In addition, we discuss possible dynamical implications of those volcanic systems from temporal variations of inferred parameters. The integration of those results allows us to achieve a better understanding of the structures and the dynamics of those geothermal reservoirs. This approach contributes to the sustainable and optimal exploitation of the geothermal resource in Indonesia.

1. INTRODUCTION
Soaring world population and emergence of nations from developing to industrial countries result in an increasing energy requirement and increase in prices of conventional energy resources. In this context, geothermal energy utilization rises, as it provides cleaner, cheaper and safer renewable source of energy. The exploration of new geothermal reservoirs and the monitoring of exploited geothermal reservoirs are both required to ensure human activities for sufficient energy supply and sustainable management of the geothermal resources. Geothermal resources are located in the Earth crust where increased heat flux and sufficient permeability to host fluids at depth is found (Huenges, 2010). Increased heat flow occurs in places like continental margins with subduction induced melting of the subducting plate, graben-structures, middle oceanic ridges and other spots where heat reaches crustal levels due to mantle convection and heats up shallow crustal layers.

The exploration of geothermal reservoirs can be performed with a number of techniques including geochemical and geological prospecting, and geophysical exploration methods, including resistivity (Arnason et al., 2010), active seisms (e.g., Krawczyk et al., 2015). Passive (broadband) seismology is a cost-effective way to image underground structures (e.g., reservoir structures, faults etc.) and movements by analyzing earthquake data (e.g., Jousset et al., 2010; Jousset et al., 2011), especially in geological settings where seismicity is significantly high, like Indonesia.

This study takes part of the framework of the Indonesian-German cooperation in geothermal studies (Erbas et al., 2014). Seismological methods are powerful tools to be applied for geothermal exploration when geothermal sites are located in areas of intense local seismic activity (Jousset et al., 2011; Muksin et al. 2013A; 2013b). In the south of Bandung, several geothermal systems are present, together with intense superficial seismic activity (and active volcanoes, e.g., Syahbana et al., 2014). For example, the Wayang Windu geothermal system is a bi-phasic reservoir located in the center of this large volcanic complex and associated with Wayang, Windu and Bedil volcanoes (Figure 1).

2. SEISMIC NETWORKS AND DATA ANALYSIS
2.1 Network and stations
The deployment of a passive seismic network around geothermal areas in the South of Bandung was performed in several steps. It aims at detecting local and regional earthquakes and uses them as probe of the structure and stress changes in the volcanic complex.
Forty-eight seismometers were deployed from October 2012 until December 2013. We started with a network of 30 seismic stations (Fig 1.) including high-dynamic broadband Guralp (Fig. 2) and Trillium sensors (0.008 - 100 Hz) and 4 short-period (1 Hz) sensors. Four additional broadband sensors and 16 short-period sensors were added in June 2013. Data loggers are Earth Data Loggers (Fig. 3) or Cube (Omnirecs).

Figure 1: Seismic network deployed in the south of Bandung (2012-2013). Bandung is few km north of station HBB28. Blue circles are locations of the seismic stations; red dots are locations of the geothermal wells; Green triangles are locations of 4 short period stations. The additional 18 short-period stations deployed in June 2013 are not shown. Square symbols with 2 letters represent volcanoes location: Ab: Abig; Be: Bedil; Ke: Kendang; Ma: Malabar; Pa: Papandayan; Wa: Wayang; Wi: Windu;

2.2 Seismic data analysis

Following the approach described in Jousset et al. (2010; 2011), we analysed the seismic records using a semi-automated processes. In order to select seismic events for travel time tomography, we first detected events at each station with a classical STA/LTA algorithm (Fig. 3). On the basis of the number of detections for a single event at each station, a first classification of the earthquakes is automatically performed. For each earthquake, the identification of P- and S-waves is then manually performed in order to “pick” arrival times at each station. A quality check of the picks is ensured using a double-pick technique instead of classical single pick and the reference to an Akaike Information Criteria (Akaike, 1978). In addition, the Wadati diagram is used to identify outliers in the picking and estimate roughly the VP/VS ratio.
Figure 3: Seismograph 3-component records of a local micro-earthquake detected by at least 23 seismic stations. Vertical lines indicate arrival times for P and S waves manually picked with a Matlab interface tool Seismotool (Jousset et al., 2011).

Figure 4: Statistics of detected and classified events (left) histogram representation with time (right). Percentage of each of the detected events for the considered period. Note that teleseismic events are included in the tectonic class.

A threshold time difference between S and P-wave arrival time of less than three seconds allows us to classify the first order earthquake type and location: we define local micro-earthquakes, regional tectonic earthquakes or teleseismic earthquakes (Fig. 4). Between October 2012 and April 2013, we have determined more than 350 local earthquakes events in the Wayang Windu area using the non-linear algorithm.

We then performed a preliminary location using a non-linear localization algorithm, which automatically determines earthquake or micro-earthquake hypocenters in these regions. The non-linear algorithm for locating local earthquakes is the following (Jousset et al., 2013): we assume a constant velocity model. The space below the network is parametrized as a 3D grid of nodes, where the velocities V_P and V_S and density are assumed. We compute the travel time of waves from each node of the parametrization modelled grid to all stations locations of the network. Then we compare in the least square sense the computed travel times with the observed travel times. The picking uncertainty is used as the error for the minimization. The result is the probability density function of being at the misfit minimum, chosen as the earthquake location (Fig. 5).
Figure 5: Non-linear localisation algorithm. The probability density function of being at the minimum of the misfit function between computed and observed travel times is shown with colour scale. Warm colours indicate high probabilities and blue represent low probability. (left) Result after the first iteration, showing the pdf in the whole grid with coarse resolution. (right) Result after the second iteration, showing the pdf in a section of the grid with finer resolution. The hypocenter location is taken at the highest probability of the pdf.

3. SEISMIC VP TOMOGRAPHY FOR INTEGRATED GEOPHYSICAL STRUCTURE OF THE RESERVOIRS

3.1 1D VP inversion and depth of the perturbations

A large number of authors (e.g., Thurber, 1983; 1986; 1993; Kissling, 1988; Ellsworth et al., 1991; Eberhart-Phillips, 1993; Iyer and Hirahara, 1993; Kissling et al., 1994; Tryggvason et al., 2002; Koulakov et al., 2007; Muksin et al., 2013a) have described details of the theory of local tomography inversion method. Two steps are required: 1. joint inversion for the 1-D velocity model and hypocentre locations, followed by 2. joint inversion for the 3-D velocity model and hypocentre locations.

The first step involves determining jointly the earthquake locations and the 1-D velocity model used in the hypocenter computation, using arrival time data for the 354 detected earthquakes; station corrections are used to adjust residual errors and are most likely due to surface effects. Following Husen et al. (1999), for each set of the performed inversions we used a wide range of starting velocity models to estimate the resolution of the 1-D inverted model, assuming a constant average. We used apriori earthquakes locations determined using the non-linear algorithm. We performed travel time tomography inversion, using several initial conditions for the number and the thickness of layers, surface velocity and velocity gradient. For each of several cases of number and thickness of layers, we performed 225 inversions with 25 various initial velocities at the surface and 25 values of the velocity vertical gradient.

Table 1: Example of depth for layers of initial 1D velocity models. For each of those layer repartition, 25 initial values of the velocity (1.2 km.s$^{-1}$ until 2.9 km.s$^{-1}$) at surface layer were tested. For each of the initial velocity, 25 values of the vertical gradient of the velocity were tested. Results for each of those 3 examples are shown in Figure 6. Note that we tested more cases (Guichard, 2014), which are not represented here. Final inversion are similar for all the models.

<table>
<thead>
<tr>
<th>Initial model</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
<th>Layer 5</th>
<th>Layer 6</th>
<th>Layer 7</th>
<th>Layer 8</th>
<th>Layer 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>-2.5</td>
<td>1.0</td>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
<td>10.0</td>
<td>13.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(b)</td>
<td>-2.5</td>
<td>-1.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>13.0</td>
<td>-</td>
</tr>
<tr>
<td>(c)</td>
<td>-2.5</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td>6.0</td>
<td>13.0</td>
</tr>
</tbody>
</table>

The results reveal that final shallow VP velocities and deep velocity do not show large dispersion, whereas the intermediary velocities (between -1 and -4 km depths) are more scattered. This result may point to 3D velocity variations due to the presence of geothermal reservoirs.
Figure 6: Earthquake locations and final 1D velocity models for several initial velocity 1D model. Note that the final results are independent on the initial model, pointing to a robust result. (a),(b) and (c) are results obtained with 7, 8 and 9 layers, respectively (see table 1).

3.2 3D joint inversion
The second step of our tomography involves inversion of the P-wave velocity model using SIMULSP12 (Evans et al., 1994), with the 1-D model and earthquake locations, as a priori information. As suggested by Evans et al. (1994), we first filter out all earthquakes for which the azimuthal distribution of stations around the epicenter leaves an angular gap greater than 180 degrees. The number of earthquakes in the reduced data set drops down to 324 earthquakes. Several methods have been proposed to parametrize the structure. We parametrize the structure by the VP velocity values at the nodes of a 3-D grid, possibly irregular. The observed P- and S-arrival times are inverted to simultaneously determine the coordinates of earthquake hypocenters and the values of velocities at the grid nodes. The solution is obtained by iterative damped least squares inversion (Evans et al., 1994). For each iteration, new ray paths are determined and the hypocentre solution is computed. Weighting is applied to each observation based on the size of the travel time residual and source-receiver distance. A damping parameter is used to stabilize the inversion (Eberhart-Phillips, 1993). Due to the source- and station distribution, the model volume is irregularly sampled. Estimating model fidelity or resolution in earthquake tomography may be performed by several means, e.g., inspecting the diagonal elements of the resolution matrix (Roeker, 1982), or by evaluating reconstructed synthetic models (e.g., checkerboards) for the specific earthquakes/station geometry (Humphreys and Clayton, 1988; Eberhart-Phillips and Michael, 1998).

Figure 7 shows results for several depths. For each depth, we note a similar pattern. A high velocity anomaly is visible in the west part of Wayag, Windu and Bedil volcanoes. A low VP velocity anomaly is clearly identified with SE-NW trend and extending from Papandayan volcano until the NW side of the Wayang Windu complex. The low velocity anomaly indicates a strudural relationship between Wayang Windu and Papandayan volcano. Note that the resolution is poor, indicating that more picks should be included in the inversion for improved results.
Figure 7: Horizontal slices of the Vp velocity model resulted from the joint inversion of P- and S-waves travel times from 324 local earthquakes. Each slice has its own color scale. Black triangles are the locations of the seismic stations. Red circles are the locations of the relocated earthquakes, taken between +/-500 m above and below the slice depth indicated in the upper right corner of each slice. A low velocity anomaly is highlighted by redish colors at each depth and has its root at 5 km depth, possibly deeper. This anomaly spread along a direction NW-SE and suggests a structural link between Papandayan volcano and the south of Wayang Windu volcanic complex. A high VP velocity anomaly seems to correspond to the Wayang Windu Bedil volcanic complex and may be interpreted by high velocities due to the cooled magma.

5. CONCLUDING REMARKS AND PERSPECTIVES

Geophysical investigations of the geothermal province in the south of Bandung have been carried out both in terms of structure and dynamics.

In order to improve the knowledge of the structure, we performed a travel time tomography based on the analysis of detected earthquakes recorded by a network of more than 50 seismometers deployed in the south of Bandung.
The detection and the picking of arrival times of P- and S-waves allowed us the joint inversion of 1D and 3D velocity model and earthquake location. Results of the 1D velocity model are not dependent on the initial 1D model (velocity distribution, number of layers), pointing to a final robust solution for the 1D velocity model. 3D joint inversion results indicate a low velocity anomaly at all depths from 1 to 5 km in the NW – SE direction and establishing a structural link between Papandayan volcano and the West and South of Wayang and Windu volcanoes (see locations in Figure 1). A positive VP anomaly seems correlated with the Wayang-Windu-Bedill magmatic complex. In order to increase the resolution at the surface, we are currently performing ambient noise tomography, and we will compare both models.

Three seismic clusters are found in the area. Two of those clusters are associated with geothermal areas (Gunung Malabar and Gunung Kendang); one identified seismic cluster was unknown earlier (not detected) and is located at the southern border of the low velocity anomaly (Gunung Abig), possibly indicating the presence of fluids at depth in this area.

In order to monitor the dynamic feature of this vapor bi-phasic reservoir, we also deployed a geodetic network, including a continuously recording gravity meter, a GPS station, tilimeters and a meteo station. We hope to track fluid movements in the structure found. We will also perform Earth Tide analysis, which will be very useful for removing accurate local tidal model and gravity surveys performed in the area.

ACKNOWLEDGEMENTS

The authors thank the Indonesian partners from Ministry for Science and Technology RISTEK, Agency for the Assessment and Application of Technology (BPPT), Star Energy Geothermal (Wayang Windu) Limited. The seismic stations are provided partly by the Geophysical Instrumental Pool of Postdam (GIPP). Arkadindo provided the station construction materials and constructed the stations. The German Federal Ministry for Education and Research is funding this German projects under grants 03G0753A&B and 03G0834A.

REFERENCES

Jousset, et al.

