Title:

Calcite Precipitation in Low Temperature Geothermal Systems: An Experimental Approach

Authors:

Omer Izgec, Birol Demiral, Henri Bertin and Serhat Akin

Key Words:

calcite scaling, permeability reduction

Conference:

Stanford Geothermal Workshop

Year:

2005

Session:

Production Engineering

Language:

English

Paper Number:

Izgec

File Size:

157KB

View File:

Abstract:

One of the most common production problems in geothermal fields is calcite (calcium carbonate) scale deposition. Calcite formed in the wellbore and in near wellbore region significantly decreases the output of a production well. Calcite scaling is experienced in almost all the geothermal fields around the world. Calcite may form from hydrolysis, boiling and heating of cooler peripheral fluids.

Although there are plenty of mathematical modeling studies that try to explain the rock-fluid-carbon dioxide reaction kinetics, experimental studies are limited in number. This study presents results of computerized tomography (CT) monitored laboratory experiments where CO2 was injected in carbonate cores at three different temperatures. Porosity changes along the core plugs and the corresponding permeability changes were reported for differing temperatures. CT monitored experiments were designed to model fast near well bore flow and slow reservoir flows. It was observed that permeability initially increased and then decreased for slow injection cases. As the salt concentration decreased, the porosity and thus the permeability decrease was less pronounced.

Furthermore, rock-fluid-carbon dioxide interactions were seen to be affected by the orientation of the core plugs used in experiments. In vertical experiments, it is observed that permeability increased at the beginning, and then decreased for later times. On the other hand, for horizontal core plugs, permeability change was observed to be completely in reverse order. Because of the preferential paths, sometimes permeability alteration trend did not match with the porosity alteration trend. Experiments showed that solubility of CO2 is larger compared to mineral trapping and temperature have great influence on chemical kinetics, thus on permeability change.


ec2-18-216-32-116.us-east-2.compute.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 2005, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-18-216-32-116.us-east-2.compute.amazonaws.com (18.216.32.116)
Accessed: Tuesday 23rd of April 2024 06:52:41 AM