Title:

Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks

Authors:

Russell L. Detwiler, Jeffery J. Roberts, William Ralph, and Brian P. Bonner

Conference:

Stanford Geothermal Workshop

Year:

2003

Session:

Modeling

Language:

English

File Size:

94KB

View File:

Abstract:

Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.


ec2-3-14-246-254.us-east-2.compute.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 2003, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-3-14-246-254.us-east-2.compute.amazonaws.com (3.14.246.254)
Accessed: Friday 26th of April 2024 06:49:25 PM