Title:

Estimation of Statistical Properties of Fracture Networks from Thermal-tracer Experiments

Authors:

Guofeng SONG, Delphine ROUBINET, Zitong ZHOU, Xiaoguang WANG, Daniel M. TARTAKOVSKY, Xianzhi SONG

Key Words:

discrete fracture network, properties estimates, thermal-tracer experiments, heat transport processes, Bayesian inference, neural network surrogate models

Conference:

Stanford Geothermal Workshop

Year:

2022

Session:

Modeling

Language:

English

Paper Number:

Song

File Size:

1264 KB

View File:

Abstract:

A two-dimensional particle-based heat transfer model is used to train a deep neural network. The latter provides a highly efficient surrogate that can be used in standard inversion methods, such as grid search algorithms. The resulting inversion strategy is utilized to infer statistical properties of fracture networks (fracture density and fractal dimension) from synthetic thermal experimental data. The (to-be-estimated) fracture density is well constrained by this method, whereas the fractal dimension is harder to determine and requires adding prior information on the fracture network connectivity. The method is tested on several fracture networks and hydraulic conditions.


ec2-3-141-202-187.us-east-2.compute.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 2022, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-3-141-202-187.us-east-2.compute.amazonaws.com (3.141.202.187)
Accessed: Tuesday 23rd of April 2024 12:20:34 AM