Title:

Integrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems

Authors:

Philip WANNAMAKER, James FAULDS, B. Mack KENNEDY, Virginie MARIS, Drew SILER, Craig ULRICH, Joseph MOORE

Key Words:

Hidden Systems, Hydrothermal, Great Basin, High Enthalpy, Magnetotellurics, Structural Geology, Isotope Geochemistry

Conference:

Stanford Geothermal Workshop

Year:

2019

Session:

Field Studies

Language:

English

Paper Number:

Wannamaker

File Size:

4745 KB

View File:

Abstract:

We applied magnetotellurics (MT), diagnostic structural affiliations, soil gas flux, and fluid geochemistry to assist in identifying hidden, high-enthalpy geothermal systems in extensional regimes of the U.S. Great Basin. We are specifically looking for high-angle, low-resistivity zones and dilatant geologic structures that can carry fluids from magmatic or high-grade metamorphic conditions in the deep crust upward to exploitable depths, and to verify the nature of the deep sources through soil gas and fluid compositions. The project was motivated by prior MT transect coverage of western and central Nevada centered upon the Dixie Valley producing geothermal system where such favorable indicators were first recognized. The high-angle MT structures are taken to be fluidized fault zones connecting deep magmatic/metamorphic activity with the geothermal system, but the concept required verification by testing at other systems. The project was set up with a two-phased organization. Phase I was carried out at the McGinness Hills system, central Nevada, where Ormat Inc flagship power facility is located and a considerable amount of pre-existing data were available. Transect MT data also showed a strong low-resistivity upwelling originating from interpreted deep crustal magmatic underplating. Controlling structures on production as indicated by Ormat data and our new mapping were favorable to dilatancy, comprising an accommodation zone between major normal faults of opposing dip. A 3D MT survey and inversion confirmed the existence of the steep low-resistivity zone dipping ESE toward the deep crust and placed N-S bounds upon the feature. In cooperation with Ormat personnel, we sampled well fluids from production intervals for He isotope composition. Elevated 3He was verified through mass spectrometry analysis confirming a magmatic connection into the producing system. High CO2 soil gas flux including possibly metamorphic 13C and 14C component was measured over the area of dilatant structures. Hence, the triad of indicators posed above was confirmed in Phase I. Subsequently, Phase II of the project proceeded in the greenfield Kumiva-Blackrock Desert district of northwestern Nevada to see if a new system could be identified. Transect MT data also showed a strong low-resistivity upwelling originating from interpreted deep crustal magmatic underplating. An areal MT survey of 131 sites was imaged through 3D inversion using the in-house, DOE-supported finite element algorithm. Particular MT low resistivity upwellings that received followup study occurred under the flanks of the Seven Troughs Range, under Kumiva Playa immediately west of the Blue Wing Mountains, and under northern Granite Springs Valley. Structural assessment of the project area by Co-I J. Faulds at UNR provided numerous favorable Quaternary fault settings, which were correlated to the MT upwelling structures. Soil CO2 gas flux anomalies generally were not large but did show correlation with MT upwelling structure and favorable geological structures. Isotope analyses showed presence of possible inorganic/metamorphic 13C but 14C concentrations did not exceed background values. We view the initial concept of a confluence of MT low-resistivity upwelling, favorably dilatant 3D geological structure, and elevated soil gas flux including 13C component to be supported by the further evidence of this project although the indicators in the Phase II study were more diffuse. Mass balance calculations based upon 3He R/Ra values indicates that the proportion of magmatic fluids in a producing system is fairly low, 10-15% by volume. We suggest that the diagnostic MT geophysical structures denote zones of concentrated extensional deformation that increases permeability, potentially enabling a circulating upper crustal geothermal system, while at the same time connecting telltale deep component signatures to the upper crust. The northern Granite Springs Valley structure is receiving followup study and drilling in the University of Nevada Reno Play Fairway Analysis, being at the southern termination of a major normal fault with silicified soil and slightly elevated temperature probe results.


ec2-18-118-166-98.us-east-2.compute.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 2019, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-18-118-166-98.us-east-2.compute.amazonaws.com (18.118.166.98)
Accessed: Thursday 18th of April 2024 06:59:27 PM