Title:

Improved Image of Intrusive Bodies at Newberry Volcano, Oregon, Based on 3D Gravity Modelling

Authors:

Alain BONNEVILLE, Trenton T. CLADOUHOS, Kelly ROSE, Adam SCHULTZ, Chris STRICKLAND and Scott URQUHART

Key Words:

Newberry, EGS, Cascade Range, Gravity

Conference:

Stanford Geothermal Workshop

Year:

2017

Session:

Geophysics

Language:

English

Paper Number:

Bonneville

File Size:

958 KB

View File:

Abstract:

Beneath Newberry Volcano is one of the largest geothermal heat reservoirs in the western United States and it has been extensively studied for the last 40 years. Several magmatic intrusions have been recognized at depths between 2.5 and 8 km and some of them identified as suitable targets for enhanced geothermal energy and tested during two previous EGS campaigns. These subsurface structures have been intersected by three deep wells and imaged by various geophysical methods including seismic tomography and magnetotellurics. Although three high quality gravity surveys were completed between 2006 and 2010 as part of various projects, a complete synthesis and interpretation of the gravity data has not yet been performed. Regional gravity data also exist in the vicinity of the Newberry volcano and have been added to these surveys to constitute a dataset with a total of 1418 gravity measurements. When coupled with existing geologic and geophysical data and models, this new gravity dataset provides important constraints on the depth and contours of the magmatic bodies previously identified by other methods and thus greatly contributing to facilitate any future drilling and stimulation works. Using the initial structures discovered by seismic tomography, inversion of gravity data has been performed. Shape, density values and depths of various bodies were allowed to vary and three main bodies have been identified. Densities of the middle and lower intrusive bodies (~2.6-2.7 g/cm3) are consistent with rhyolite, basalt or granites. Modeled density of the near-surface caldera body match that of a low density tephra material and the density of the shallow ring structures contained in the upper kilometer correspond to that of welded tuff or low-density rhyolites. Modeled bodies are in reality a composite of thin layers; however, average densities of the modeled gravity bodies are in good agreement with the density log obtained in one well located on the western flank (well 55-29). Final gravity data residuals show that most of the observed gravity anomalies at the surface can be explained by the modeled gravity bodies and are consistent with other site characterization information.


ec2-3-143-244-83.us-east-2.compute.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 2017, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-3-143-244-83.us-east-2.compute.amazonaws.com (3.143.244.83)
Accessed: Tuesday 23rd of April 2024 12:39:10 PM