Title:

Tracer Measurements During Long-Term Circulation of the Rosemanowes HDR Geothermal System

Authors:

K.A. Kwakwa

Geo Location:

Cornwall, United Kingdom

Conference:

Stanford Geothermal Workshop

Year:

1988

Session:

Fractured Reservoirs II

Language:

English

File Size:

652KB

View File:

Abstract:

Circulation experiments have been in operation for over two years in the artificially stimulated hot dry rock (HDR) doublet of the Camborne School of Mines (CSM) research facility in Cornwall, England. During that period tracer tests have been run at intervals using inert and reactive compounds. Initially, the results of the inert tracer investigations showed that the active volume (indicated by modal and median volumes) of the circulating system was dormant. Then, after a period of sustained oscillation, notable increases in active volume were observed which depended on both the subsequent flow rate changes and circulation time. These dynamic changes had almost reached optimum values when a downhole pump was introduced in the production well. The drawdown in the production well caused a reduction of the modal volume, whilst the median volume remained almost the same. Since then, the active volume has remained unchanged and irresponsive to circulation time and flow rate. The results of the reactive tracer tests confirm increasing chemical reaction with increasing circulation time and correlate qualitatively with the opening of newer and hotter pathways within the reservoir. However, repeated production logs throughout the circulation have identified flow paths that have depleted thermally; a discrepancy that can be explained by the geometry of the system and the preferential downward reservoir growth.


ec2-18-204-56-97.compute-1.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 1988, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-18-204-56-97.compute-1.amazonaws.com (18.204.56.97)
Accessed: Thursday 29th of September 2022 03:09:50 AM