Title:

Core Image Analysis of Matrix Porosity in the Geysers Reservoir

Authors:

D.L. Nielson, G. Nash, J. Hulen, and A. Tripp

Geo Location:

The Geysers, California

Conference:

Stanford Geothermal Workshop

Year:

1993

Session:

The Geysers

Language:

English

File Size:

1356KB

View File:

Abstract:

Adsorption is potentially an important consideration when calculating reserves at The Geysers. Our investigations of the mineralogical relationships in core samples have shown matrix pore spaces to be largely associated with fractures. Dissolution of calcite from hydrothermal veins increases porosity in the graywacke reservoir. The high relative surface area of secondary alteration phases could promote adsorption. In order to quantify porosity distribution and surface area, Scanning Electron Microscope (SEM) images were analyzed using software developed for the interpretation of satellite imagery, This software classifies the images as either crystal or pore and then accumulates data on pore size, total porosity and surface area of the mineral-pore interface. Review of literature shows that data on thickness of adsorbed water layer does not exist for many of the mineral phases of interest in The Geysers. We have assumed thicknesses of 10, 100, and 5300 Angstroms for the adsorbed layer and calculated the relative proportions of adsorbed water. These calculations show 0.005%, 0.05%, and 2.5% of total water would be adsorbed using the above thicknesses.


ec2-18-232-62-134.compute-1.amazonaws.com, you have accessed 0 records today.

Press the Back button in your browser, or search again.

Copyright 1993, Stanford Geothermal Program: Readers who download papers from this site should honor the copyright of the original authors and may not copy or distribute the work further without the permission of the original publisher.


Attend the nwxt Stanford Geothermal Workshop, click here for details.

Accessed by: ec2-18-232-62-134.compute-1.amazonaws.com (18.232.62.134)
Accessed: Thursday 28th of March 2024 10:18:06 PM