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ABSTRACT 

Proper characterization of fractures is critical for evaluating the effectiveness of fracturing jobs and optimizing well performance in 

geothermal energy production, unconventional reservoirs, and other areas. However, accurately determining the size, shape, and 

orientation of these fractures solely from microseismic events is challenging due to weak signals and noise. To address this challenge, this 

study proposes a novel workflow that directly builds accurate fracture models from microseismic events using the DBSCAN clustering 
algorithm and BiLSTM-ESMDA. The first step is to filter the noise in microseismic events using the DBSCAN clustering algorithm. 

Next, a 3D planar equation is employed to construct the fracture plane in each perforation segment. Based on the results of this step, 

reservoir simulations are performed iteratively using PEBI grids and a BiLSTM surrogate model. Multiple representation models are 

obtained to capture calibration uncertainty and enable subsequent studies of long-term well performance, such as history matching for 

production. Finally, the ES-MDA history auto-fitting algorithm is utilized to find the most appropriate fracture model for matching 
production data through iterative processes. The developed inversion method was implemented on a representative geothermal model 

with a complex fracture network. The results demonstrate that the DBSCAN clustering algorithm effectively reduces noise in microseismic 

activity and ensures the accuracy of fracture geometry. A large number of different fracture models can be quickly generated by the 

surrogate model to capture calibration uncertainty. ES-MDA is utilized to optimize the fracture model and identify the optimal solution. 

The fracture models constructed using this method exhibit fracture half-lengths that are 20%-30% smaller than those estimated by 
microseismic monitoring. Furthermore, the high level of historical fit for this horizontal well indicates that the complex fracture model is 

realistic for the mine site. This study introduces a new approach to building a complex fracture network. By  using microseismic data and 

BiLSTM-ESMDA, this method provides a practical solution. The proposed workflow significantly improves the accuracy of fracture 

network prediction and computational efficiency compared to traditional fracture inversion methods, which are often plagued by high 

multi-solution, high computational cost, and difficulties with convergence. 

1. INTRODUCTION 

Geothermal energy stands out as a fundamental and highly promising clean energy source, drawing increasing attention in recent years 

due to its abundance, stability, and renewability on Earth (Randolph and Saar, 2011; X. Bu et al., 2012; X. Song et al., 2018; Q. Zhang et 

al., 2019). The development of geothermal energy plays a pivotal role in mitigating energy shortages and addressing environmental 
concerns arising from the use of fossil fuels. Typically, geothermal energy development involves circulating working fluids (such as 

water, CO2, etc.) through geothermal reservoirs to extract heat from the fluid. This extracted heat can be subsequently converted into 

electricity on the Earth's surface. Over the past few decades, the geothermal engineering industry has achieved substantial advancements, 

with the successful application of Enhanced/Engineered Geothermal Systems (EGS) marking a significant breakthrough (Huenges E., 

2016). Before the advent of EGS, geothermal energy extraction was confined to naturally permeable fractured hydrot hermal reservoirs. 
However, with the advent of hydraulic fracturing, geothermal resources can now be harnessed from hot dry rocks, predominantly  

composed of impermeable granite or other low-permeability rocks. 

Hot dry rock reservoirs, characterized by high density and extremely low permeability, require careful remodeling to facilitate sufficient 

heat exchange between injected fluid and reservoir rock. This remodeling aims to establish well-connected, high-conductivity flow 

channels, thereby improving reservoir permeability and enabling smooth fluid circulation through the production well. However, the 
common occurrence of a single high-permeability fracture during reservoir remodeling can lead to fluid short -circuiting and premature 

thermal breakthroughs, posing challenges to the sustainable development of Enhanced Geothermal Systems (EGS). Therefore, the accurate 

prediction of hydraulic fracture patterns and effective control of fracture network structure is pivotal for establishing a complex artificial 

fracture network and enhancing the heat extraction efficiency of EGS (Grant and Bixley, 2011; Park et al., 2017; Yoshioka et al, 2019; 

and Cheng et al., 2020). 

When acquiring specific parameters of hydraulic fractures, the primary source of information is hydraulic fracture monitoring 

technologies, with microseismic monitoring being a predominant method employed during the hydraulic fracturing process. The creation 

of microseismic event maps plays a crucial role in delineating the extent of fractures (Barree et al., 2002; Fisher and Warpinski, 2012). 

Rock fracturing during hydraulic fracturing generates seismic waves, detectable by sensors either on the surface or downhole. Analyzing 

seismic wave data through surface systems allows for the generation of a distribution map of seismic sources, offering specific parameters 
related to hydraulic fractures. As early as 2000, microseismic technology demonstrated success in the Barnett oil field in the United States, 

producing post-fracturing microseismic source images (Maxwell et al., 2002). Consequently, microseismic monitoring technology has 

evolved into a mature commercial tool in U.S. hydraulic fracturing operations, facilitating the monitoring of hydraulic fract uring 
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effectiveness and the extraction of hydraulic fracture parameters. Through microseismic monitoring technology, approximate ranges of 
parameters such as length, dip angle, azimuth, height, and stimulated reservoir volume (SRV) of hydraulic fractures can be obtained. 

However, owing to the typically weak signals of microseismic events, prone to noise interference, reliance solely on microseismic events 

poses challenges in accurately determining the size, shape, and orientation of fractures. This limitation complicates the dep iction of the 

fine morphology of hydraulic fractures through microseismic monitoring (Wang et al., 2021). 

In recent years, researchers have endeavored to construct hydraulic fracture models utilizing microseismic data, yielding not able 
outcomes. Li et al. successfully calibrated a complex network of discrete fractures using microseismic data, effectively modeling fractures 

in shale gas horizontal wells and conducting reservoir production simulations (Li et al., 2022). Han Bach et al. corrected the geometric 

shapes of fractures based on microseismic data, subsequently integrating the fracture model into a reservoir model for reservoir production 

simulation and forecasting (Bachi et al., 2023). Additionally, Liu et al., incorporating natural fractures, employed microseismic data to 

extract morphological information about hydraulic fractures (Liu et al., 2022). They iteratively updated the reservoir model with the 
assistance of an automatic history-matching algorithm to determine fracture parameters. While these methodologies deliver relatively 

accurate fracture parameters, their application in the geothermal field is limited, and they necessitate a substantial number of reservoir 

numerical simulations. The repetitive nature of these simulation computations results in a computation speed that falls short of meeting 

the practical requirements of real-world problems. This is a critical challenge that current research must address. 

Surrogate models offer approximations of the relationship between well operational parameters and production data, rep lacing the direct 
numerical computation of a set of partial differential equations involved in the thermo-hydro-mechanical-chemical coupling processes. 

These surrogate models have found application in problems related to geological fluid flow and geothermal energy. In recent years, deep 

learning algorithms have gained prominence for modeling challenges in underground energy development. For example, deep learning 

models can be trained using available data to predict pressure fields, temperature fields, stress fields, etc., within geothermal reservoirs 

(H. Aydin et al., 2020). Bassam et al. introduced a novel Artificial Neural Network (ANN) technique for determining pressure drops 
between inclined and vertical geothermal wells (A. Bassam et al., 2015). Haklidir developed a Deep Neural Network (DNN) model to 

predict geothermal fluid temperatures based on hydrogeochemical data from the geothermal reservoir (Haklidir and Haklidir, 2019). 

However, it is still challenging to construct reasonable surrogate models to characterize complex hydraulic fracture parameters. 

To address the aforementioned issues, this study introduces a novel workflow for the inversion of hydraulic fracture parameters in 

geothermal development. The process is initiated by constructing an initial hydraulic fracture model based on microseismic data. 
Subsequently, a Bidirectional Long Short-Term Memory (BiLSTM) model is employed to establish a surrogate model. The Ensemble 

Smoother-Multiple Data Assimilation (ES-MDA) algorithm is then applied, utilizing production data such as temperature changes in 

production wells as benchmarks, to achieve accurate inversion of hydraulic fracture parameters. This method offers a practical and feasible 

solution for precisely determining the size, shape, and orientation of hydraulic fractures. 

2. METHOD AND WORKFLOW 

This section provides a concise overview of the methodology and workflow associated with hydraulic fracture parameter inversion. Firstly, 

it is essential to establish the equation for the hydraulic fracture model. Due to the phased implementation of downhole microseismic 

monitoring in practical operations, the microseismic events in different stages often overlap in the plane. Therefore, it is necessary to 

redivide the microseismic events based on the perforation section positions. Here, we use the principle of image segmentation algorithms 

in computer vision, taking the boundary lines of each perforation section as segmentation lines, considering microseismic points as pixels, 
and recognizing pixels in the rectangular area enclosed by every two boundary lines. This step avoids cumbersome calculations , ensuring 

that there is no overlap between microseismic points in each stage, and preparing for the subsequent clustering analysis. Microseismic 

events are weak signals susceptible to noise from various sources, requiring further data filtering. Experimental studies have found that 

most hydraulic fractures exhibit a "cluster expansion" t rend, and density clustering thinking should be used for analysis. The Density-

Based Spatial Clustering Algorithm with Noise (DBSCAN), recognized for its ability to manage noise, can partition regions with 
sufficiently high density into clusters (Ester et al., 1996). It defines clusters as the largest collection of points connected by density and 

can implement clustering in spatial databases containing noise. This algorithm is used for clustering analysis of microseismic point sets 

in three-dimensional space for each perforation section, determining the required microseismic points set for modeling. A three-

dimensional plane equation is constructed to characterize hydraulic fractures, obtaining accurate hydraulic fracture models for each 

perforation section. The complete process for this part is shown in Figure. 1 and the detailed work in this part has been discussed in our 

previous papers (Sun et al., 2023). 
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Figure 1: Workflow of the fracture model construction method based on DBSCAN. 

Artificial fractures exhibit a wide range of planar extensions, vertically traversing multiple small layers, with permeabilit y significantly  

higher than that of the matrix and natural fractures, exerting robust control over the direction and scale of fluid flow. Particularly in 

proximity to artificial fractures, the dynamics of fluid movement undergo rapid changes. The production well capacity proves highly  

sensitive to factors such as the distribution, geometric dimensions of artificial fractures, and the positional relationship between fractures 

and wells, necessitating a detailed characterization of these features. In this study, PEBI grids are employed to represent t he true 
morphology of the artificial fracture network and the grids are densified in the modified area to refine the flow characteristics near the 

fractures. Given that fractures in geothermal reservoirs are primarily vertical or approximately vertical, during the grid division, the 

fractures are initially projected onto the plane. Wells, fractures, and reservoirs are then gridded separately, constructing a 2D PEBI grid. 

Subsequently, a 3D PEBI grid is obtained based on depth (Figure.2). This study utilizes the geothermal simulation module in the MATLAB 

Reservoir Simulation Toolbox (MRST) to simulate the production of fractured reservoirs. The detailed implementation process of the 

model is described in the reference (Lie 2014). 

 

Figure 2: The 3D PEBI grid (yellow) conforms to two triangulated surfaces (red and blue): The grid is shifte d away from the 

surfaces in the illustration to visualize the conforming faces (Lie, 2014). 

Following this, the Bidirectional Long Short-Term Memory (BiLSTM) neural network is utilized to construct a surrogate model. 

Hochreiter and Schmidhuber (1997) introduced a Long Short-Term Memory (LSTM) network to address time series problems. LSTM, 
an advanced Recurrent Neural Network (RNN) architecture extensively applied in deep learning, diverges from traditional RNNs by 

incorporating gate structures within each recurrent unit. These gates closely emulate the information transmission patterns of biological 

neurons, enabling the network to retain longer-term sequential information without necessitating additional adjustments. More recently, 

BiLSTM has been introduced to further amalgamate information from both directions. Specifically, we integrate information from 

backward (from future to past) and forward (from past to future) directions for predictions. As shown in Figure.3, the fundamental units 
of BiLSTM resemble those of ordinary LSTM and encompass input gates, forget gates, candidate units, and output gates. In this study, a 

total of 7 input parameters, including fracture half-length, fracture porosity, fracture permeability, initial reservoir temperature, thermal 

conductivity, rock heat capacity, and time step, are considered. The output is the temperature change in the production well.  
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Figure 3: The structure of Bidirectional Long Short-Term Memory. 

Lastly, the Ensemble Smoother for Multiple Data Assimilation (ES-MDA) algorithm is applied for the inversion of fracture parameters. 

ES-MDA, recognized as a prevalent data assimilation method, is esteemed for its simplicity, user-friendly nature, and effective 

performance. It can achieve relatively accurate historical data fitting. 

The inversion process is depicted in Figure.4, encompassing four main steps. Initially, uncertain fracture parameters and their prior 

information, including ranges and distributions, are identified based on microseismic monitoring data. Following this, Latin hypercube 
sampling is employed to sample the training and testing sets. High-fidelity simulations (MRST) are conducted to gather input and output 

data. Subsequently, the collected data is utilized to train the BiLSTM surrogate model. Then, ES-MDA is applied to invert the uncertain 

fracture parameters, utilizing the trained BiLSTM as the forward model to reduce computational complexity. Finally, the inverted 

uncertainty parameters are input into the high-fidelity model for comparison. If the predicted values exhibit a sufficiently small error 

compared to the actual response, the inversion is considered accurate. Otherwise, the accuracy of the BiLSTM surrogate needs 

examination, and a revisit to the previous information may be necessary. 

 

Figure 4: Fracture parameter inversion workflow based on BiLSTM-ESMDA. 
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3. APPLICATION 

To illustrate the effectiveness of the aforementioned method in the inversion of uncertain fracture parameters during geothermal 

exploitation, we employed an Enhanced Geothermal System (EGS) provided by MRST as a reference model (Lie, 2019). As shown in 

Figure.5, this model was established through the fracturing of underground low-permeability, high-temperature rocks. It comprises an 

injection well and a production well, with cold water primarily injected, flowing within the fractures. These fractures function as heat 

exchangers, facilitating the extraction of heat from the reservoir. Figure.6 shows the temperature distribution at different time steps of 
water injection. The detailed parameters of the geothermal reservoir are outlined in Table 1. Before training the Bidirectional Long Short-

Term Memory (BiLSTM) surrogate model, we normalized the uncertain parameters to the range [0,1] to enhance accuracy. 

 

Figure 5: Utilizing PEBI to characterize fracture model. 

 

Figure 6: The change of the geothermal reservoir temperature distribution at different times. 

Table 1: Basic geothermal reservoir parameters used in the case. 

Model Parameter Value Unit 

Model dimension 50x50x15 m 

Matrix porosity 0.05 - 

Matrix permeability  0.1 mD 

Initial reservoir temperature 358.15 K 

Rock heat capacity 1400 J/(g·K) 

Rock thermal conductivity  3 W/(m·K) 

Injected water temperature 283.15 K 

Water injection rate 30 m3/day 

Water heat capacity 4.2 J/(g·K) 

Water thermal conductivity  0.6 W/(m·K) 
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Utilizing microseismic monitoring data, we developed a precise model for hydraulic fracture networks. Parameters associated w ith 
fractures, such as half-length, porosity, and permeability, were chosen as uncertain fracture parameters, and their ranges are outlined in 

Table 2. Employing Latin Hypercube Sampling, we generated 500 sets of parameter combinations as the initial model. From these, 450 

models were designated as training samples, while the remaining 50 were assigned as validation samples for training the Bidirectional 

Long Short-Term Memory (BiLSTM) network. The neural network structure underwent adjustments to bolster its feature extraction 

capabilities. 

Table 2: The range of the uncertain fracture parameters. 

Fracture Parameter Min Max Mean Unit 

Fracture half-length 6.49 22.41 15.41 m 

Fracture porosity 0.6 1 0.8 - 

Fracture permeability  0.01 0.15 0.1 mD·m 

 

The trained Bidirectional Long Short-Term Memory (BiLSTM) served as a surrogate model, and the Ensemble Smoother with Multiple 
Data Assimilation (ES-MDA) method was employed to conduct a history matching inversion for the temperature changes in the product ion 

well. The inversion aimed to obtain hydraulic fracture parameters, covering a simulation period of 25 years with a total of 38-time steps. 

The results of the inversion of uncertain fracture parameters were then fed into a high-fidelity model, and the temperature changes were 

compared with the inverted values. As depicted in Figure. 7a and illustrated in Figure. 7b, the error between these two sets of values was 

minimal, affirming the feasibility and effectiveness of this approach for hydraulic fracture parameter inversion in geothermal reservoirs. 

 

(a) 

 

(b) 

Figure 7: Comparison between the S imulation model and the best inversion fracture model: (a) The temperature change 

between the high-fidelity simulation and the BiLSTM-ESMDA inversion; (b) The errors between the two sets of values. 
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4. CONCLUSIONS  

This article introduces a novel approach for inverting complex hydraulic fracture parameters in geothermal reservoirs. The initial hydraulic 

fracture model is constructed based on microseismic data, and high-fidelity numerical simulation models are executed to obtain training 

data. The Bidirectional Long Short-Term Memory (BiLSTM) is then employed to establish a surrogate model, and the Ensemble Smoother 

with Multiple Data Assimilation (ES-MDA) algorithm is applied to accurately invert the hydraulic fracture parameters, utilizing the 

temperature changes in the production well as a benchmark. In conclusion, the key findings of this study are as follows: 

(1) In the hydraulic fracturing process of hot dry rock, injecting thousands of cubic meters of fracturing fluid is required to form a 

complex fracture network. Microseismic monitoring offers a preliminary range of fracture parameters, such as the half-length. 

However, these values are generally inaccurate and tend to be overestimated. Particularly in geothermal reservoirs, the actual 

modification range is smaller than anticipated. 

(2) The proposed BiLSTM-ESMDA method efficiently and accurately achieves hydraulic fracture parameter inversion. Given the 
complex morphology of hydraulic fractures, representing the fracture network with PEBI grids results in the slow execution of 

high-fidelity models. The introduced inversion method reduces the single numerical simulation run time from five minutes to 

around ten seconds, significantly improving computational efficiency for practical applications. The inversion results of 

uncertain fracture parameters align well with the actual temperature responses, demonstrating the robustness of the method. 

(3) The paper focuses solely on the inversion of three uncertain fracture parameters, such as the half-length of hydraulic fractures, 
without exploring the uncertainty of fundamental parameters in geothermal reservoirs, such as porosity and permeability. 

Subsequent research could extend this method to invert more uncertain parameters. 
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