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ABSTRACT 

Previous geological studies in the Basin and Range of the Western U.S. have shown that conventional geothermal systems are usually 

located in geological settings of intense fracturing. The field studied here, Soda Lake geothermal field is one of the first geothermal fields  

developed in Nevada. The field contains steam vents and warm ground. However, most of the recent geothermal developments have been 
blind, with no surface hot springs or steam, and future developments are also likely to be blind. Therefore, characterizing subsurface 

fractures may provide an approach to unraveling blind geothermal systems. The sizes of small-scale fractures are much smaller than the 

seismic wavelength. Therefore, seismic migration cannot directly image small-scale fractures. We have demonstrated that our seismic 

double-beam (DB) method is effective in characterizing the fracture parameters in synthetic data: fracture orientation, density, and 

compliance. Augmented by a machine learning algorithm, our new double beam neural network (DBNN) algorithm can predict the 
locations and orientations of discrete fractures. We apply our DBNN method to the 3D Soda Lake seismic data to identify addit ional blind 

geothermal resources, particularly the shallow steam-charged fracture zones with large fracture compliance values. We identify four 

possible drilling targets showing high fracture compliance values, with one of them (Well 41-33) previously verified as a hot steam zone 

via drilling. Our seismic results on fractures and faults, in addition to known geology, well-logging information, and production data, can 

be used to identify new drilling targets. 

1. INTRODUCTION  

Faults and fractures have been shown to play important roles in controlling the geothermal systems in the Great Basin in the west U.S. 

(Faulds and Hinz, 2015).  Better characterization of subsurface faults/fractures can allow us to develop new resources and to extend the 

life of existing geothermal power plants.  

We distinguish small-scale fractures (smaller than the dominant wavelength) from faults (larger than the dominant wavelength with 

possible slip on the fault surface). In this paper, we focus on seismic characterization of subsurface small-scale fractures using the double-

beam neural network (DBNN) method (Zheng et al., 2021c) at the Soda Lake geothermal field. We do not discuss how to image faults 

but refer readers to other related works (Gao et al., 2021a; Gao et al., 2021b; Gao et al., 2021c; Gao et al., 2022; Huang et al., 2023).  

Traditionally, fractures are characterized using the effective medium theory in which aligned fractures in rocks can cause anisotropy (e.g., 
Thomsen, 1995). Amplitude-versus-angle/azimuth (AVAz) for reflected waves (e.g., Rüger and Tsvankin, 1997; Lynn et al., 1999; Perez 

et al., 1999; Thomsen, 1999; Vasconcelos and Grechka, 2007) and shear-wave splitting (e.g., Crampin, 1985; Tatham et al., 1992; Vetri 

et al., 2003; Long, 2013; Verdon and Wustefeld, 2013) are commonly used to indirectly infer fracture properties. However, fractures (or 

joints) usually appear in clusters (Gale et al., 2007). Because of the random distribution, the fracture system can exhibit multiple spatial 

scales (e.g., distance between neighboring fractures, sizes of the fracture clusters, distance between clusters, etc.). Because of multiple 
scattering and interference, the effective-medium methods can produce erroneous results for randomly distributed fractures (Fang et al., 

2017). Another weakness of the anisotropy-based method is that it is challenging to handle thin fractured layers. Can we see small-scale 

fractures in seismic migration? Using a 3D synthetic example based on the Soda Lake geothermal field, Zheng et al. (2021c) showed that 

it is not likely to be able directly image small-scale fractures because the fracture scattering energy is extremely weak  compared with 

reflections from geological formations. There are no image offsets across the fracture interface so conventional fault detection algorithms 

cannot detect fractures.  

In this paper, we consider imaging small-scale fractures using a neural network architecture that augments the double-beam (DB) method 

(Zheng et al., 2013; Hu and Zheng, 2018; Hu et al., 2018). The method is called double-bean neural network (DBNN) method (Zheng et 

al., 2021c). Intuitively, the method works in the following manner. We partition the subsurface into many fracture target ‘boxes.’ We 

select a box that may contain zero or multiple fracture sets. We synthesize point sources on the surface as directional source beams (Ding 
et al., 2017; Ding et al., 2019) to shoot seismic-wave energy into the box and analyze the interference pattern of the scattered/reflected 

beam at receivers. This interference pattern contains subsurface fracture parameters: fracture orientation, density, and fracture compliance 

(Schoenberg, 1980; Schoenberg and Sayers, 1995).We recently developed a DBNN method to interpret the DB interference patterns as 

discrete fracture networks (DFNs) (Li et al., 2019; Zheng et al., 2021c). The DBNN can automatically and accurately invert the DFNs 

from surface-recorded active seismic data. We recently validated the DBNN method using 3D synthetic seismic data based on the Soda 
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Lake geological and geophysical models (Zheng et al., 2021c). The goal of this paper is apply ing the DBNN to the Soda Lake field data 

to detect steam charged fracture zones. 

We organize the paper as follows. First, we briefly review the DBNN method. We then describe the Soda Lake seismic survey and the 

seismic dataset. Finally, we apply our DBNN to this dataset to detect shallow steam zones above the basalt body.   

2. METHODS  

We briefly review the method for extracting DB interference (DBI) patterns from surface-recorded active seismic data, and then describe 

how to train the DBNN and use the well-trained DBNN to transform DBI into DFNs. 

2.1 DBI Pattern  

The DB method characterizes subsurface fractures using a source-beam and a receiver-beam (Figure 1a) (Zheng et al., 2013; Hu and 

Zheng, 2018; Hu et al., 2018; Hu et al., 2021). The principle of the DB method is seeking the spatial scattering interference pattern, 

𝜎(𝜑,𝑎|𝜔), based on multiple scattering of a local incident plane wave upon a set of fractures  The interference pattern is a complex-

valued double-beam interference (DBI) pattern (Figure 1b). The parameters 𝜑, 𝑎, 𝜔, are the fracture orientation, fracture spacing, and the 

angular frequency of the seismic wave, respectively. Fracture planes are assumed vertical, and it is a valid assumption if the maximum 

stress is along the vertical direction. Within each fracture target (i.e., “box”), we search all possible (𝜑, 𝑎) using all possible source-

receiver beams and obtain 𝜎(𝜑, 𝑎|𝜔) for the fracture target location using multiple frequencies. At the true values (𝜑,𝑎) , the modulus 
|𝜎(𝜑, 𝑎)| corresponds to high-amplitude “bright spots” (Figure 1b). Importantly, the amplitudes of the bright spots are proportional to the 

average fracture compliance values for that particular fracture set in the “box.” Multiple co-existent fracture sets in the same box can also 

be detected using DB. Based on the DBI, we can identify the existence of fractures if there are “bright spots .” In addition, we can also 
infer the fracture spacing, orientation, and relative compliance according to the location and amplitude of “bright spots” for each 

subsurface target. Such interpretations of DBI were mainly performed by human previously. Large compliance values indicate presence 

of gas or steam.  

 

Figure 1: Schematic diagram of the DB fracture characterization method. (a) Stars and triangles represent sources and receivers, 

respectively. Parameter a is the local fracture spacing in the target region. Parameter 𝝋 is the fracture normal direction. 

(b) An example of the absolute value of the complex-valued DBI pattern, |𝝈(𝝋,𝒂)| . Two picked bright spots show two 

fracture sets. Radial direction indicates fracture spacing a. The polar angle is the fracture orientation 𝝋. The magnitude 

of |𝝈(𝝋,𝒂)| at the bright spot indicates the fracture compliance for this set of fractures around the target. 

2.2 DBNN – Interpreting DBI as DFN Using Neural Networks  

Automatically converting the DBI pattern to the DFN map using neural networks is an image-to-image transform. Li et al. (2019) and 
Zheng et al. (2021b); (Zheng et al., 2021c) described this algorithm in detail. They used a fully connected neural network to automatically 

convert a DBI to a DFN for each subsurface target. Under ideal acquisition conditions, DBI and DFN can be considered as Fourier 

transform pairs. Hence, DBNN is physics-guided machine learning but for an imperfect data acquisition configuration. Using 3D synthetic 

data based on the Soda Lake field geometry, Zheng et al. (2021c) demonstrated that DBNN correctly inverts for DFNs from synthetic 

DBIs.   

3. RESULTS — STEAM ZONE CHARACTERIZATION AT THE SODA LAKE GEOTHERMAL FIELD   

The Soda Lake 3D seismic dataset was described by Gao et al. (2021a). The entire 3D seismic acquisition covered a rectangle region with 

a size of 6 km by 6 km (see the acquisition geometry in Figure 2). There are 8,371 shots and 2,972 receivers. The entire seismic dataset 

contains about 5 million traces. Each trace has 2,001 samples with a sampling interval of 2 ms (see a seismic gather in Figure 3).  

The Soda Lake geothermal field has been in production since 1972 (Benoit, 2016; McLachlan, 2018). A distinct geological feature in the 
field is the basaltic body at a depth about ~500 m. There is a significant interest for exploration of new heat sources above the basalt. The 

most prolific producing well at Soda Lake is Well# 41-33 (Figure 4) that produces hot water (370 °F) and steam at a depth of 815 feet (or 

248 m). There is a great need to use seismic data to find additional resources and discriminate permeable and impermeable zones where 

traditional seismic workflows cannot (Benoit, 2016).  
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We focus on targets at shallow depths above the basaltic unit where fractures may not be pervasively present. The main geothermal targets 
are steam-charged localized fracture zones. For locating the shallow fracture targets above the basalt  body, we use DBNN to detect 

possible fractures around two depths, 250 m, and 300 m.  

 

Figure 2: The geometry of the Soda Lake field seismic acquisition showing sources (red) and geophones (blue). 

 

Figure 3: Sample seismic shot gather of the Soda Lake field seismic data. The maximum offset is about 2600 m. The recording 

time is 4 s at a sampling interval of 2 ms. (From Zheng et al. (2021a)) 

To reveal the fracture distribution in the entire region covered by the seismic acquisition, we use 41x41 targets (i.e. boxes in horizontal 
directions) regularly, spaced at a spacing of 100 m by 100 m at two depths: 250 m and 300 m. We use three frequencies, 40 Hz, 50 Hz, 

and 60 Hz for DBNN. True fractures appear in all the three frequencies. Therefore, multiple frequency implementation of DBNN provides 

a self-validation means.  



Zheng, Hu, Bugti, Parsons, Huang, Gao, Cladouhos 

 4 

We show the inverted fracture compliance maps at two depths (250 m and 300 m) in Figure 5a and b, respectively. The inset rose diagrams 
show fracture orientations for all 441 fracture targets. We identified four locations (P0, P1, P2, P3, and P4 in Figure 5a &b) showing large 

fracture compliance values. We call them steam prospects. Steam-charged localized fracture zone should have large fracture compliance 

values, which measures how easy the fracture can be deformed by a given stress (compressional or shear). Steam-charged zones are more 

deformable than liquid saturated zones. P0 is very close to well 41-33 at depth 250 m. Well 41-33 has been verified to produce hot water 

and steam. We hypothesize that the other prospects, P1, P2, and P3, could also be the steam-charged fracture zones.   

 

Figure 4: Well locations (yellow) superimposed on the seismic acquisition geometry. The purple square shows the seismic 

acquisition boundary. The circles, P0, P1, P2, and P3 are proposed prospects (see Figure 5).  

4. DISCUSSION  

To make predictions based only one type of data (seismic in this case) could carry much uncertainty. However, it is encouraging to see 

one of the four proposed prospects, P0, corresponds to the previously drilled Well 41-33 that produces hot water/steam. Future work is 
needed to refine the results. First, we can reduce the beam width (currently 200m) and the size of the interrogat ion box (now 100 m by 

100 m) to achieve a higher spatial resolution.  Secondly, P3 is at the edge of the DBNN scanned region. We can enlarge the DBNN 

scanning region. Thirdly, we can use elastic DB, in particular the P to S converted waves, to characterize the steam zones. S waves could 

have better sensitivities to steam. Finally, we need to integrate more field data such as geology information and well logging to make 

better predictions.  

5. CONCLUSIONS   

We have characterized subsurface small-scale fractures at the Soda Lake geothermal field using our double-beam neural network (DBNN) 

method and the 3D surface seismic data. We have focused on the shallow regions above the basalt body. Our DBNN results in three 

different frequency bands (40Hz, 50 Hz, and 60 Hz) produce consistent fracture results. At 250 m depth, we have found four high fracture 

compliance regions (P0-P3) that could be prospects to be further evaluated for hot water/steam drilling. Three (P0, P1, P3) of the four 
prospects seem to be present down to about 300 m in depth. These results are encouraging. Prospect P0 is close to the previously drilled 

Well 41-33 that is the best producer in the region. Our method is different from the traditional seismic workflow and can be a useful tool 

for siting new wells to increase geothermal production.   
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(a) 

 

(b) 

Figure 5: Inverted fracture maps at two different depths (a) 250 m and (b) 300 m. The blue region in both (a) and (b) are the 

DBNN scanned region. High compliance prospect regions are labeled as P0, P1, P2, and P3.    
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