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ABSTRACT  

The estimation of the geothermal potential of sedimentary basins becomes an essential condition through the representation of  
temperature and its depth variations. Part of the improvement in the accuracy of the variables of temperature and geothermal gradient 

(GG) lies in the estimation of the possible values through robust statistics, while knowing their positions in space. The processing and 

representation environments used for the spatial prediction correspond to 2D and 3D. The exploratory and structural analysis of data 

was performed using the statistical computing environment R. 2D modeling was executed in Oasis Montaj by Geosoft with pixels as the 

minimum representation unit. 3D modeling was implemented in GeoModeller by Intrepid Geophysics, using the voxel in the 
representation of 3D models as a volumetric unit. The techniques used for the 2D and 3D modeling are framed in t he deterministic 

methods (minimum curvature and Inverse Weighted Distance – IDW method), probabilistic methods with Ordinary Kriging, and 

geostatistical simulation with Sequential Gaussian Simulation (SGS). The analysis was applied in three sedimentary bas ins with Bottom 

Hole Temperatures (BHT) values of hydrocarbon wells and was based on a spatial datum known by the observer. 

1. INTRODUCTION 

The deterministic and probabilistic spatial prediction methods have been defined as a procedure that allows calculat ing the value of a 

variable and its position in space (Ramírez, 2010), from sampled values of the same variable in other positions of the space, by means of 

mathematical algorithms that facilitate the calculation of them (Deutsch, 2002). The most common geostatistical methods from a set of 

irregularly distributed points can be classified into global and local interpolators, where the former is characterized by us ing all the data 

from the study area to generate predictions through smoothing functions that reveal areas of greater deviation from the general trend 
(Webster and Oliver, 2007). Local interpolators, on the other hand, are characterized by working around the point to interpolate as long 

as there is a correlation in the surface, which will decrease while the distance between the points sampled to the point to be interpolated 

is greater. Kriging is the most representative method of this type of interpolation (Webster and Oliver, 2007) 

2. MATERIALS 

2.1 Bottom Hole Temperature Wells 

For the calculation of the apparent geothermal gradient, the LogDB database is available, which was used to compile pairs of 

temperature and depth data for the 3303 wells drilled (Alfaro et al., 2009). In Figure 1, the location of the wells with temp eratures 

located in the three sedimentary basins under study is observed (Barrero et al., 2007). The LogDB database is located in the Exploration 

and Production Information Service (EPIS), system belonging to the Petroleum Information Bank (BIP), currently administered and 
property of the Colombian Geological Survey (SGC). The compilation of information and the structuring and processing of raw data 

was generated by the Geothermal Resources Research and Exploration Group of the SGC (Alfaro et al., 2009). In the estimation of the 

coefficients to apply the topographic correction to the geothermal gradient (Westaway and Younger, 2014), the Digital Elevation Model 

(DEM) of Shuttle Radar Topography Mission (SRTM) with a resolution of 30 m was used, which is shown in Figure 1 (Farr et al.,  

2007). 

2.2 Geothermal Gradient 

With topographically corrected geothermal gradient data, spatial prediction interpolations were generated. Table 1 shows the statistics of 

the observed geothermal gradient ranges, depths of the bottom of the well and the distances (in kilometers) of the BHT wells (Deming, 

1989) located in the three sedimentary basins under study  (Alfaro et al., 2010). Although a difference is indicated with the location of 

the wells, with a minimum distance of 0.001 km and a maximum of 746.29 km between wells, this being a difficulty in the elaboration 
of spatial prediction models, consideration is given to the technical characteristics and economic conditions that the realiz ation of a BHT 

perforation is required for its subsequent spatial prediction (Alfaro et al., 2015). 
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Table 1: Well distribution with the calculation of the geothermal gradient by sedimentary basin and depth ranges . 

Sedimentary 

Basin 
Total Wells 

Geothermal 

Gradient Range 
Depth Range 

Average 

distance 

between wells 

Minimum 

distance 

between wells 

Maximum 

distance 

between wells 

Magdalena 

Middle Valley 
2330 

3.41°C/km – 

63.19°C/km 
500 m – 4816 m 208.82 km 0.001 km 599.76 km 

Eastern 

Cordillera 
112 

11.03°C/km – 

69.83°C/km 
568 m – 5823 m 119.37 km 0.00449 km 439.46 km 

Eastern Plains 861 
5.007°C/km – 

57.61°C/km 
515 m – 6273 m 76.726 km 0.00011 km 445.69 km 

Total 3303 
3.41°C/km – 

69.83°C/km 
500 m – 6273 m 197.32 km 0.001 km 746.29 km 

 

  

Figure 1: Digital elevation model and spatial distribution of BHTs. 

3. METHODS 

The methods used in the development of spatial prediction models (Fortin and Dale, 2005) were carried out in two processing and 

representation environments: 2D and 3D. 2D modeling was executed in Geosoft's Oasis Montaj software and 3D modeling was 

implemented in GeoModeller by Intrepid Geophysics. The statistics used for the 2D and 3D modeling are centered in the deterministic 

methods of minimum curvature and IDW (Álvarez et al., 2011). Probabilistic methods were completed using Kriging (exploratory 
analysis, structural analysis, and cross-validation) and geostatistical simulation with the Sequential Gaussian Simulation (SGS) method 

(Amezcua and Van Leeuwen, 2014). The methods are framed in the characterization of the prediction models using pixels as the 

minimum representation unit for 2D, and the voxel as a volumetric unit in the representation of 3D models. 
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3.1 Exploratory Analysis 

In the exploratory analysis, descriptive measures were applied: central tendency (mean and median), amplitude (minimum and 

maximum), dispersion (standard deviation, variance and coefficient of variation) and structure (skewness and kurtosis). Graphical 

analysis included histograms, quantile-quantile diagrams, and the elimination of atypical data (Haining, 2004). The exploratory and 

structural analysis of the data was carried out in the statistical software R, which is open source. The specific packages used in the 

exploratory analysis correspond to sjstats, e1071, psych, sjPlot, lattice, caret, outliers, and ggplot2. For the structural analysis 

(semivariograms), the packages used correspond to sp, car, maptools, gstat, geoR, rgdal and spatstat . 

3.1.1 Descriptive Statistics 

The central tendency measures highlight the absence or not of normality in the data. The median/mean relation, which should tend to 1 

in normal distributions, is 0.9183 for BHTs. The median/mean of the GG is 0.8832. These relationships allow to state that the data does 

not have a normal distribution. Additionally, there is a possibility for outliers, which is also highlighted by the range of observations in 

each of the variables. The measures of central tendency for the BHT and GG can be observed in Table 2. 

Table 2: Descriptive measures for the BHT and GG. 

Analysis Measure BHT GG 

Central Tendency 

Mean 73.75229 26.062 

Median 67.73136 23.02062 

Amplitude 

Minimum 38.11291 6.866284 

Maximum 193.7427 214.36 

Scale 

Standard Deviation 22.53367 11.35423 

Variance 507.7661 128.9186 

Coefficient of Variation 30.55318% 43.56623% 

Structure 
Asymmetry Coefficient 1.109923 5.536042 

Kurtosis 1.134615 60.68424 

 

3.2 Graphical Analysis 

The histograms and box diagrams of BHT and GG presented in Figure 2 and Figure 3, respectively, certify the presence of high values 

of low frequency, and the wide grouping of lower values of temperature with high frequencies. The quantile - quantile diagrams show 

the concavities of the straight lines at the ends of each, confirming the asymmetric distribution to the right. Where the observations 
touch the line, a behavior parallel to it is evident, marking a certain homogeneity towards the central measurements of the t emperatures. 

For the GG, the graphical analysis was more forceful when exposing a very marked heterogeneity of the observations. A large number 

of observations with high values of GG, but with few representations or frequencies, and asymmetry to the right and the consp icuous 

concavity of the data in the quantile-quantile diagrams confirm the presence of extreme values that affect the normality of the data. 

3.2.1 Removing Outliers  

Although the exploratory analysis of both the BHT and GG data corroborates the existence of extreme values for both variables , the 

observations away from the centrality of the data do not necessarily  correspond to an outlier. Geologically one must take into account 

the composition of a sedimentary basin, generally composed of sandstones, shales, limestones, and granites in depth (Figure 4) (Balling 

et al., 1981).  

3.3 Data Transformation  

When examining the data through exploratory analysis, some tendency of the natural logarithm function (lognormal) was observed in 

the observations of BHT, but being more noticeable for GG observations. In the BHT values, the transformation of the observations was  

applied to the total data set. The transformation of the GG data to a natural logarithmic distribution was applied after the elimination of 

outliers to avoid the variability of the total set of observations. For the BHT, an improvement in the normal distribution of the data was 

found. The transformation to natural logarithm allowed the variables to improve the distribution of the observations. However , in the 
Quantile-Quantile diagrams, a separation of extreme data in relation to the distribution trend line is observed. This reflects that in its 

entirety, the observations do not correspond to an entirely lognormal distribution. The graphics results that were obtained for the BHT 

are presented in Figure 5 and for GG are show in Figure 6. 
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Figure 2: Histogram, boxplot, and quantile-quantile graphics for BHT.  

 

Figure 3: Histogram, boxplot, and quantile-quantile graphics for GG.  
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Figure 4: Generic relationship of temperature as a function of depth for lithologies in sedimentary basins, illustrating changes in 

geothermal gradient by lithology (Morgan & Scott, 2014). 

 

Figure 5: Histogram without outliers, transformed to a lognormal distribution, and quantile-quantile diagram for BHT.  
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Figure 6: Histogram without outliers, transformed to a lognormal distribution, and quantile-quantile diagram for GG.  

3.4 Structural Analysis  

In the analysis of the structure of the observations, to quantify the best (between greater or lesser) similarity that exists between pairs of 
data, the moments of order 2 are considered as the main source of contribution in the elementary and operational description of the 

continuity space. This characterization is carried out by means of variograms to the variable to be spatially predicted. In t he structural 

evaluation of the BHT and GG data, the experimental variograms of the variables, the behavior of the anisotropy, the correlation of the 

adjustable theoretical variograms to the observations, and the validation of the obtained model were represented. 

3.4.1 Experimental Variogram  

The estimated experimental variogram corresponds to the global or omnidirectional variogram, which depends not only on the direction 

(angular tolerance of 90°) but also on the magnitude of semivariance in relation to distance. Table 3 lists the parameters with which the 

experimental variograms were estimated for the BHT and GG. These parameters were tested with a trial and error processes, and it was 

determined to take the same parameters to see the behavior of the BHT and GG models under the same conditions of spatial variability.  

Table 3: Descriptive measures for semivariogram analysis of the BHT and GG. 

Analysis BHT GG 

Central Tendency 90° omnidirectional 90° omnidirectional 

Steps numbers (Lag) 10 10 

Step size (Lag) 25000 m 25000 m 
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Trend Constant Constant 

Estimator Classic Classic 

 

The experimental variograms (mean and variogram cloud) calculated for the BHT are shown in Figure 7. The resulting mean 

variograms allow observing that the relative variance  contains fluctuations (due to very high differences in values) when the 
spatial separation distance increases. The great distances contained for the data are derived from the geological – geophysical analysis 

that must be taken into account for the drilling of hydrocarbon production wells. Drilling should be carried out in sedimentary basins, 

such as those under study and not in areas of igneous or volcanic origin, where there is no access to the petroleum resource in the 

country. In turn, the variograms show that the behavior at the origin is discontinuous, presenting a generalized so-called nugget effect in 

the variance. For the BHT, the sill does not stabilize while the distance increases, so there is no definitive range. This absence of sill is 
observed because the observation scale corresponds to one third of the maximum distance reached in the variogram. The analysis of the 

variogram clouds shows the spatial variability of the observations for the BHT. This indicates that pairs of observations are responsible 

for high values, indicating the strong presence of atypical data evidencing the different data from their close neighbors. 

 

Figure 7: Experimental variogram and variogram cloud for BHT.  
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3.4.2 Anisotropy  

The behavior of the variables’ spatial correlation in different directions can be analyzed through variogram maps. The presence of 

geometric anisotropy in any of the evaluated directions allows confirming the sp atial variability of BHT and GG in the sedimentary 

basins. The variogram map allows for observing anisotropic spatial behaviors for both variables. Directionally, the maps are symmetric, 

representing the spatial correlation with any axis taken as a reference. In the BHT calculated with TMA, the direct ional variograms 

evaluated at 0° (N-S), 45° (NE-SO), 90° (E-O) and 135° (NO-SE), infer that the nugget effect or the nuggets are similar in all four 
directions. The sills reach lower values at 0° and 45° compared with the other two directions, showing, in turn, a very variable behavior 

at greater distances. In Figure 8, the variogram maps for BHT are provided. 

 

Figure 8: Variogram map and directional variograms for BHT. 

3.4.3 Theoretical Variogram  

The fit to the experimental variogram was carried out by means of the analytical functions of theoretical variograms using spherical 

models (sill equal to the range), exponential models (asymptotic sill) and Gaussian models (asymptotic sill with a nugget tending to 
advance in greater distance from the origin 0). These models are transitional because the estimation of the sill is included in the 

modeling. In the BHT it is denoted that the theoretical range of the sill is similar up to the range of 175000 m, while for the Gaussian 
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model it is not reached within the limit of the observation scale of the semivariance. The Gaussian model does not reach a defined sill 
for the evaluated semivariance. In Figure 9, the models of the theoretical variograms for BHT are characterized. The effect of the spatial 

correlation in the GG characterized by means of the directional variograms (Figure 9), shows that the geothermal gradients estimated the 

nugget effect is differentiated for each direction, but similar in its origin. Although the sills are very different from each other, they 

reach higher values in the N-S and NW-SE directions, corresponding to 0° and 135° respectively, having a greater structural variance. 

The variogram maps validate the correspondence of the spatially found isotropy levels. Although t he nugget is variable in close range, 

the directional variogram shows that in the 45°, 90° and 135° directions the sills are reached at lower values. 

 

Figure 9: Theoretical variograms (exponential, spherical, and gaussian) for BHT and GG. 

3.4.4 Cross-Validation  

The cross-validation of the estimates to be predicted allows asserting whether the model of the theoretical variogram correctly describes 

the spatial dependence of the predicted value close to the real value. In the cross-validation methodology, a value of the variable to be 

estimated is eliminated, then the adjusted theoretical variogram is calculated where, from this, the predicted value of the eliminated 
observation is obtained. To select the best theoretical model, two statistical evaluation criteria were taken into account: the Root Mean 

Square Standardized (RMSS), which must be the same or tend to zero (0). If the RMSS values are greater than 1, the variability of the 
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predictions is underestimated. On the other hand, if the RMSS values are less than 1, the variability in predictions is overestimated. The 
other evaluation criterion to be taken into account corresponds to the percentage of data rejected, which should not be great er than 5%. 

In Table 4, the RMSS statistics are observed for each of the models of the theoretical variograms for the BHT, where it was obtained 

that the theoretical variogram of the Gaussian model is the one that best represents these variables. The number of accepted observations 

corresponded to 3303 for BHT and 3285 for GG, with which 0% of rejected data was obtained. When obtaining an RMSS above 1, it 

follows that the variability of the predictions is underestimated for the BHT and GG. 

Table 4: Descriptive measures for BHT and GG. 

Variable 
Theoretical Variogram 

Model 

Accepted observations 

number 

Percentage of rejected 

data 
RMSS 

BHT 

Spherical 

3303 0% 

1.137245 

Exponential 1.155564 

Gaussian 1.099185 

GG 

Spherical 

3285 0% 

1.167388 

Exponential 1.095529 

Gaussian 1.030567 

 

4. SPATIAL REPRESENTATION 

The generation of the spatial prediction models was preceded by the exp loratory analysis of the data, structural analysis and the spatial 

representation of the bottom hole temperature and the corrected geothermal gradient. The BHT and GG modeled by spatial prediction 

were corrected topographically before their representation. The representation of the models of BHT and GG was carried out in 2D and 

3D, allowing to determine geometries of the variations of the temperature as a function of the depth. 

4.1 Kriging 

With the exploratory analysis and the structural analysis applied to the observations, surfaces and volumes of estimation were generated 

by the ordinary Kriging linear interpolator. This interpolator takes into account the distance between the observations, the weight of the 

points and the spatial structure of the variable that is represented. The uncertainties of the estimated model are obtained as the standard 

deviations thereof. All the representations were generated from the best theoretical variogram that adjusts to the experimental variogram 

of the data: Gaussian model. The most relevant characteristic in the characterization of the estimated model corresponds to t he 
representation grid according to the cell or pixel size. In Figure 10 and Figure 11, the 2D and 3D Kriging models are observed for 

topographically corrected BHTs. 

In 2D Kriging modeling, the cell size was 5000 m (X and Y). For 3D modeling, the grid is composed of voxels, which represent the 

minimum cubic unit for the generation of volumetric grids. The voxel dimension used in the Kriging 3D modeling was 5000 meters in 

X, 5000 meters in Y, and 1000 meters in Z. The 2D grids allow relating the positive anomalies of BHT towards the central and northern 
zone of the Eastern Cordillera basin and the northwestern sector of the Eastern Planes basin (Kellogg et al., 2005). These values of high 

temperatures coincide with the outcrop of the Paleozoic basement present in the Eastern Planes basin.  

The central area of the Middle Magdalena Valley basin (Mojica and Franco, 1990) denotes sectors with high temperatures without 

anomalies. Towards the south of the basin, medium temperature zones are concentrated. In the western sector of the Valle Medio del 

Magdalena basin and the eastern sector of the Eastern Planes basin there are negative BHT anomalies, which are associated with the 
edge effect of the interpolated model. The representations of Kriging 3D modeling are very similar. The anomalies are concentrated in 

the upper part of the Eastern Cordillera basin, decreasing towards the east at the end of the llanero piedmont in the Eastern Planes basin. 

Towards the Middle Magdalena Valley basin, average BHT values are concentrated with negative BHT anomalies , linked to the edge 

effect of the method and interpolation. 

For GG, a temperature variation linked with a positive GG anomaly is observed depending on the outcrop of the GG crystalline 
basement in the West-East direction in the Eastern Planes basin. The central sector of the Eastern Cordillera basin also shows positive 

GG anomalies in the Southwest-Northeast direction, framed between the Bituma and La Salina Fault System and the Guaicaramo Fault 

System. In the Middle Magdalena Valley basin, negative anomalies are evidenced with low values of GG, located to the West of the 

department of Santander. The most northeastern sector of the Llanos Orientales basin concentrates negative anomalies with low  GG 

data. The Middle Magdalena Valley basin associates GG mean values, without negative anomalies. In Kriging 3D models, the same 
behavior is shown as in 2D modeling. The positive anomalies of high GG are concentrated in the most southeastern part of the Eastern 

Planes basin and the intermediate zone of the Eastern Cordillera basin (Bachu et al., 1995). A negative anomaly, with low GG 

observations, is concatenated in the northernmost part of the Eastern Cordillera and Middle Magdalena Valley basins. 
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Figure 10: Kriging 2D and 3D for BHT. 
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Figure 11: Kriging 2D and 3D for GG.  

4.2 Sequential Gaussian Simulation  

The results obtained under this method contain the Gaussian anamorphosis transformation, which allows taking the data to a st andard 

Normal distribution (mean = 0 and variance = 1). The stochastic simulation results in many equiprobable surfaces of the BHT and the 

GG. In the SGS, a random deviation applied to observations was selected based on the normal distribution (Gaussian anamorphos is), 

according to a uniform random number that represented the probability level of the normal distribution applied as a transformation to 
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the observations. The SGS uses the Gaussian variogram to model the spatial correlation of the generated 3D grids. The size of  each 
voxel in 3D stochastic modeling corresponded to a volume of 5000 meters in X, 5000 meters in Y, and 1000 meters in Z. The number of 

simulations applied to the results corresponded to 60 for each simulated variable. The processing times of the 3D grids were 

approximately 12 hours for 60 simulations. The representation of the resulting voxels was adjusted to the surface topography, which 

was delimited by the DEM input to the model for the three sedimentary basins to be modeled.  

In Figure 12, resulting 3D grids are observed with the stochastic simulation for the BHT and GG. In the vicinity of the Eastern 
Cordillera basin, a positive anomaly of temperature is denoted, which is characterized by both inputs for the entire extension of the 

basin, becoming more noticeable in the southwest-northeast direction. For the Eastern Planes basin, it is considered a negative 

temperature anomaly with an East-West trend. In the Middle Magdalena Valley basin, the negative anomaly is part of the sets of voxels 

on the western flank of this basin. 

 

 

Figure 12: SGC 3D for BHT and GG. 
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4.3 Inverse Distance Weighting  

With the prediction of the surfaces of BHT by means of the Inverse Distance Weighting (IDW) method, a great positive anomaly is 

observed in the Eastern Cordillera basin. This anomaly is framed within the limits of the piedmont planes in the eastern region of the 

Eastern Cordillera basin. For the Eastern Planes basin, a transition is observed between the positive anomalies of BHT in the vicinity of 

the western edge of the basin, which has average temperature values, towards a negative anomaly in the eastern flank of the Eastern 

Planes basin. In the Middle Magdalena Valley basin, high temperatures are evident towards the northern part of the basin. In the North-
South direction, low temperatures are observed throughout the basin. In 3D voxels, a wide correlation is observed between the 

observations obtained by both estimation methods. The great anomaly of BHT can be seen in most of the extension of the Eas tern 

Cordillera basin, delimited by average temperatures found in the Middle Magdalena Valley basin and low temperatures and a large BHT 

anomaly towards the northeastern sector of the Eastern Planes basin. Figure 13 and Figure 14 shows the 2D and 3D grids with the BHT 

and GG values corrected for topography. 

 

Figure 13: IDW 2D and 3D for BHT. 
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Figure 14: IDW 2D for 3D for GG. 

CONCLUSIONS  

Given the lack of data directly linked to the geothermal industry, the use of multipurpose information, such as wells in the oil industry, 

allows the creation of representative scenarios for the nascent geothermal community in Colombia. A robust statistical treatment of the 

temperature values allows reducing the uncertainty in the way of acquiring data from the oil industry, with which geothermal grids can 

be calculated and determine the heat flow, which also requires the thermal conductivity of the rock.  

The representation of bottom hole temperatures and geothermal gradients calculated by means of data extracted from hydrocarbon 

wells, allows for characterization of the thermal structure of the sedimentary basins studied. Using geostatistical modeling, it is possible 

to typify the behavior of the temperature and its variations in relation to the Colombian topography with robust interpolators and 

algorithms for 3D models. Statistical and spatial analysis allows for recreating that higher temperature values are present in the basin of 

the Eastern Cordillera, while the highest values of geothermal gradient are located in the Eastern Planes basin and the basin of the 
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Middle Magdalena Valley (concordant with the location of the oil fields in these two regions). The mean values for the geothermal 

gradient are located in the Eastern Cordillera basin, influenced by the effect of the topography of the Colombian Andes. 

To improve the uncertainty of the data, it is necessary to densify the BHT records, as far as possible with temperature profiles depending 

on the depth and taken after the drilling is completed, thus completing a temperature profile over time. The reduction of the uncertainty 

in the estimation of the geothermal gradient can be achieved from the incorporation of temperature profiles that allow to identify 

changes in the slope, related to vertical variations in thermal conductivity along the lithological column. 
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