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ABSTRACT 

Dispatchable energy resources are key for a reliable power supply. Whereas in the past the development of fossil fuel resources has 

dominated the supply for dispatchable capacity, this trend is slowing down due to the growing climate change concerns and the transition 

to renewable resources. Geothermal energy has always been an economic resource for district heating and baseload power. With the 

decline of fossil fuel plants, geothermal facilities have been expanding beyond baseload to supply flexible heat and electricity. There has 
been a limited number of studies that investigate the feasibility of flexibly dispatching geothermal power to the wholesale power market 

in the absence of fixed-price power purchase agreements (PPAs). This study performed techno-economic modeling and optimization of 

flexible geothermal power dispatch when coupled with thermal energy or Lithium-ion battery storage. 

We developed a techno-economic model to optimize system design (e.g., power plant, thermal tank, and Lithium-ion battery storage 

capacities) and dispatch schedule (e.g., turbine bypass, and dis/charging thermal tank and Lithium-ion battery) with the goal of maximizing 
the project net present value (NPV). Costs included capital and operational expenditure for upstream reservoir development, power plant, 

and storage facilities, while revenue streams included wholesale power markets, capacity value, and renewable energy certificates (RECs). 

We posed the problem as a mixed integer, multi-objective setting and solved it using the Reference-Point Based Non-Dominated Sorting 

Genetic Algorithm (R-NSGA-II) which offers robust means of efficiently finding the global optima.  

We examined a 220 C, liquid-dominated geothermal resource developed with 6 producers and 6 injectors developed with a subcritical 

Organic Rankine Cycle power plant. We used a conceptual subsurface model to simulate temperature decline over time alongside 

correlations to estimate power plant efficiency under different operating conditions. Economics was based on 30-year forecasts of the 

California power markets. Results indicate that participating in the free market with a 66 MW power plant without added storage facilities 

results in profits equivalent to signing a PPA with 82.4 $/MWh fixed price. While adding thermal storage was found to be suboptimal, 

Lithium-ion battery storage results in a more profitable system equivalent to signing a PPA with nearly 105 $/MWh. 

This work shows that flexible geothermal dispatch is techno-economically feasible from the perspective of the developer. Flexible 

portfolios are also desired by system operators, especially in decarbonized grids. Additionally, our results indicate that geothermal systems 

could be developed economically for power generation even in the absence of PPAs. 

1. INTRODUCTION 

The California net-zero carbon economy has been dependent on the rapid growth of solar and wind electricity, as well as electrification 

of transportation and heating. However, the increasing reliance on weather-dependent renewables can raise grid reliability challenges  

which mandate careful resource planning. This raises the need for "clean firm power": carbon-free power resources that are always 

available for as long as needed. Diversity of resources across dispatch capabilities is also desirable and found to further reduce the costs 

of full grid decarbonization (Long et al. 2021). Generally, a renewable resource is more appealing when it can integrate cost-effectively 

into the energy mix and shift its power output to span diverse forms of dispatch, e.g., baseload, hourly, daily, and seasonal. 

Geothermal energy provides clean firm power, which has been viewed historically as a baseload or "always-on" resource with high-

capacity factors (CF). Given the high upfront risk and capital expenditure, geothermal power operators typically operate under p ower 

purchase agreements (PPAs). However, the high penetration of intermittent resources caused an increase in the value of dispatchable 

geothermal generation that would fill in the diurnal and seasonal gaps. Under the Grid Modernization Initiative launched by the U.S. 
Department of Energy (DOE), the Geothermal Technologies Office invested in the Beyond Batteries initiative which aims to integrate 

geothermal energy into a flexible and controllable resource through underground storage (Dobson et al. 2020). In the 2021 U.S. 

Geothermal Power Production and District Heating Market Report, the National Renewable Energy Laboratory (NREL) identified 

dispatchable geothermal energy as one of the top ten emerging geothermal technologies (Robins et al. 2021). Hence, there is a need for 

further techno-economic analysis to evaluate the economics and requirements of flexible geothermal operations for future decarbonized 
electricity grids. This paper performed techno-economic optimization of flexible geothermal power dispatch when coupled with thermal 

energy or Lithium-ion battery storage. 
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2. LITERATURE REVIEW 

Due to the relatively recent interest in dispatchable geothermal resources, we have found only limited studies and field implementations 

in the direction of flexible geothermal operations. We reviewed these implementations to develop an understanding of what options are 

available to achieve dispatchable geothermal operations. 

Globally, researchers and engineers across different geothermal institutes and organizations have followed different approaches to achieve 

dispatchable geothermal operations. Recognizing that economic feasibility is essential, technical variability across methods is mainly 
governed by the geothermal reservoir and power plant configuration. Conventional geothermal reservoirs are generally either liquid-

dominated or vapor-dominated, depending on which phase/s is mobile in the subsurface porous media. It is important to note that most 

global geothermal resources are liquid-dominated. Other nonconventional geothermal resources also exist, such as enhanced geothermal 

systems (EGS), but they are less common and under ongoing research and development (Olasolo et al. 2016). Geothermal power plants 

are commonly classified into three main categories: dry steam, flash steam, and binary cycle (Augustine et al. 2019). Although they are 
less common, other power plant configurations also exist, e.g., multiflash, combined cy cle, amongst others (Dipippo 2012). Optimal 

reservoir management and production engineering are governed by the type of the associated geothermal resource. Also, each power plant 

configuration is characterized with different operating requirements and power generation efficiencies. Hence, in addition to the economic 

viability, it is inevitable to consider operational challenges in pursuit of dispatchable operations. 

Based on our literature review of the studies and implementations of dispatchable geothermal energy, we classified such flexible operations 
into four main categories: (1) wellhead throttling, (2) steam vent-off, (3) turbine bypass, and (4) storage. A recent study evaluated the 

impact of wellhead throttling in vapor- and liquid-dominated geothermal reservoirs using data from The Geysers and Casa Diablo, 

respectively (Rutqvist et al. 2020). They found wellhead throttling to be more feasible in liquid-dominated compared to steam-dominated 

systems. Steam vent-off has been commonly used across fields (Minson et al. 1985; Hardarson et al. 2018) given its ease, yet it is extremely 

suboptimal. Meanwhile, turbine bypass is another option that has been used for curtailment in fields such as The Geysers and Puna 
geothermal fields (Dobson et al. 2020; Nordquist et al. 2013). Lastly, storage is a newly emerging approach for flexible geothermal 

operations with limited pilot design and evaluation of surface thermal energy (Garabetian 2021; Petursdottir et al. 2020; TWI 2020) and 

underground storage in EGS (Ricks et al. 2022). 

3. PROBLEM FORMULATION 

Since the start of the 21st century, most newly built geothermal power plants in the US have been binary as they are suitable for power 
generation from more common low-enthalpy resources and provide a closed system on the surface with zero emissions (Linga 2019). 

Therefore, we considered a binary power plant in our problem definition, although it would be straightforward to modify it for flash or 

combined cycle power plants. As seen in Figure 1, produced geofluid flows from one or more producer wells at variable mass flow rates, 

passes through a heat exchanger (e.g., vaporizer and preheater train) to boil a binary working fluid, and is reinjected at one or more injector 

wells with variable mass flow rates. The boiling binary working fluid spins a turbine to generate power and then runs through a dry 
condenser before reentering the heat exchanger train. We considered three means for flexible generation: (1) power plant bypass, (2) 

thermal energy storage (TES) tank, and (3) Lithium-ion battery storage. Whereas TES units can be functional for the typical geothermal 

power lifetime of 30 years, Lithium-ion battery storage will have to be replaced once given its typically shorter lifetime of 15-20 years. 

We are particularly interested in projects that are fully or partially financed in the absence of PPAs, where revenue is earned through 

trading in the free market as managed by an independent system operator (ISO). In this work, we considered three revenue streams: 
wholesale market based on real-time (RT) locational marginal prices (LMP), capacity market, and renewable energy certificates (RECs) 

market. 

 

Figure 1: S implified drawing of a geothermal resource developed with producers and injectors, and a binary power plant. 
Additionally, this setup incorporates three means for flexible geothermal power operations (1) power plant bypass line, (2) TES 

tank, and (3) Lithium-ion battery. Revenue is acquired from trading in the free market through ISO, with no PPA in place. 
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We categorized the problem parameters into fixed variables, state variables, and decision variables. Fixed variables (𝒇) include the initial 
development design, i.e., subsurface geothermal model, number of producers (𝑁𝑝𝑟𝑑), number of injectors (𝑁𝑖𝑛𝑗), wellbore configurations , 

nameplate power plant capacity (𝑃𝑃𝐶 ), capacity factor (𝐶𝐹), bypass piping, TES tank design, and Lithium-ion battery design. Whereas  

we fixed most of these variables, we optimized for 𝑃𝑃𝐶 , TES tank volumetric capacity, and Lithium-ion battery power and energy 

capacities while simultaneously solving for the respectively optimal dispatch schedule. State variables (𝒔) vary over time (𝑡) and must be 

computed for each timestep ∆𝑡. The state variables can be divided into three categories: upstream, downstream, and electricity market. 

Upstream state variables are associated with the reservoir and wellbore conditions, i.e., reservoir pressure (𝑃𝑡
𝑟) and temperature (𝑇𝑡

𝑟), and 

producer wellhead temperature (𝑇𝑡
𝑝𝑟𝑑

). Downstream state variables relate to the power plant output, i.e. ambient temperature (𝑇𝑡
𝑎𝑚𝑏), 

injection water temperature (𝑇𝑡
𝑖𝑛𝑗

), geofluid consumption efficiency (𝜂𝑡
𝑝𝑝

), tank heat loss rate (𝑄̇𝑡
𝐻𝐿) and steam quality (𝑥𝑡) at 

thermodynamic equilibrium, battery state of charge (𝑆𝑂𝐶), and operational limits of ramp up/down rate (𝑈𝐶𝑡
𝑟𝑎𝑚𝑝

). State variables also 

involve the state of electricity market, i.e., real-time (RT) market prices (𝑝𝑡
𝑅𝑇), capacity value (𝑝𝑡

𝐶𝑎𝑝
), RECs value (𝑝𝑡

𝑅𝐸𝐶), and battery 

effective load carrying capacity (𝐸𝐿𝐶𝐶𝑡
𝑏𝑎𝑡). Lastly, decision variables (𝒙) are quantities determined by the optimizer with the objective 

of maximizing the economic value of the flexible geothermal system operations. Some decision variables are static, i.e., tank volumetric 

capacity (𝑉𝑡𝑎𝑛𝑘), and primary and replacement battery power capacities (𝐵𝐶𝑏𝑎𝑡1, 𝐵𝐶𝑏𝑎𝑡2) and durations (𝐵𝐷𝑏𝑎𝑡1, 𝐵𝐷𝑏𝑎𝑡2). Other decision 

quantities are temporal, i.e., turbine bypass mass flow rate (𝑚̇𝑡
𝑏𝑦𝑝𝑎𝑠𝑠

), producer well mass flow rates (𝑚̇𝑡
𝑝𝑟𝑑

), injector well mass flow rates 

(𝑚̇𝑡
𝑖𝑛𝑗

), TES charge (𝑚̇𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

) and discharge (𝑚̇𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

) mass flow rates, and battery charge (𝑝̇𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

) and discharge (𝑝̇𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

) power. 

 3.1 Financial Parameters 

To evaluate the profitability of flexible generation scenarios, we should also define economic parameters. With geothermal power plant 

lifetime of 𝑁𝑙
𝑝𝑝

 years and inflated nominal discount rate 𝑑, the objective is to maximize the net present value (𝑁𝑃𝑉) defined as the sum 

of discounted annual profits, seen in Eqs. 1-6. For a given year 𝑛, annual profits are defined as the difference between the annual revenue 

(𝑅𝑛) and annual cost (𝐶𝑛). The latter is calculated as the sum of the annual short-run marginal cost (𝑆𝑅𝑀𝐶𝑛) of total annual generation 

(𝐺𝑛), and fixed cost of capacity (𝐹𝐶𝑂𝐶𝑛) which is constant over years. Since geothermal power does not involve carbon emission and 

fuel costs, 𝑆𝑅𝑀𝐶𝑛 is equal to the variable operation and maintenance cost (𝑉𝑂𝑀𝑛) minus production tax credit (𝑃𝑇𝐶𝑛). Meanwhile, 

𝐹𝐶𝑂𝐶𝑛 is equal to the sum of the levelized cost of capacity  (𝐿𝐶𝑂𝐶𝑛) and annual fixed operation and maintenance cost (𝐹𝑂𝑀𝑛) minus 
investment tax credit (𝐼𝑇𝐶𝑛). We used the cost recovery factor (𝐶𝑅𝐹) to calculate 𝐿𝐶𝑂𝐶𝑛 for overnight capacity cost 𝐶𝑐𝑎𝑝 including 

surface storage tank cost. As seen in Eq. 7, we can also calculate the levelized cost of energy  (𝐿𝐶𝑂𝐸 ) based on the project annual 

expenditure and power generation. Meanwhile, 𝑅𝑛 is calculated as the revenue from the RT, capacity, and RECs markets based on the 

generation schedule, as seen in Eq. 8, where 𝐺{𝑡,𝑖}
𝑅𝑇 = 𝐺{𝑡,𝑖}, since the RT market is treated as the sole revenue stream to wholesale markets. 

Note that 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑃𝐶 accounts for reservoir depletion, while 𝐺{𝑡,𝑖}is a function of the flexible dispatch schedule. 

𝑁𝑃𝑉 = ∑
𝑅𝑛−𝐶𝑛
(1+𝑑)𝑛

𝑁𝑙
𝑝𝑝

𝑛=0            Eq 1 

𝐶𝑛 = 𝑆𝑅𝑀𝐶𝑛 ∙ 𝐺𝑛+ 𝐹𝐶𝑂𝐶𝑛 ∙ 𝑃𝑃𝐶          Eq 2 

𝑆𝑅𝑀𝐶𝑛 = 𝑉𝑂𝑀𝑛 − 𝑃𝑇𝐶𝑛          Eq 3 

𝐹𝐶𝑂𝐶𝑛 = 𝐿𝐶𝑂𝐶𝑛 +𝐹𝑂𝑀𝑛 − 𝐼𝑇𝐶𝑛         Eq 4 

𝐿𝐶𝑂𝐶𝑛 = 𝐶𝑅𝐹 ∙ 𝐶𝑐𝑎𝑝          Eq 5 

𝐶𝑅𝐹 =
𝑑 ∙(1+𝑑)𝑁𝑙

𝑝𝑝
 

(1+𝑑)
𝑁
𝑙
𝑝𝑝

−1
           Eq 6 

𝐿𝐶𝑂𝐸 =
∑

𝐶𝑛

(1+𝑑)𝑛

𝑁
𝑙
𝑝𝑝

𝑛=0

∑
𝐺𝑛

(1+𝑑)𝑛

𝑁
𝑙
𝑝𝑝

𝑛=0

           Eq 7 

𝑅𝑛 = (𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑃𝐶 ⋅ 𝐸𝐿𝐶𝐶𝑛
𝑝𝑝+ 𝐵𝐶𝑛 

𝑏𝑎𝑡 ⋅ 𝐸𝐿𝐶𝐶𝑛
𝑏𝑎𝑡) ⋅ 𝑝𝑛

𝐶𝑎𝑝
⏟                                    

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑒𝑣𝑒𝑛𝑢𝑒

 +  ∑ ∑ 𝐺{𝑡,𝑖}
𝑅𝑇 ∙ (𝑝{𝑡,𝑖}

𝑅𝑇 + 
𝑖 𝑝{𝑡,𝑖}

𝑅𝐸𝐶𝑠)8760
𝑡⏟                    

𝑅𝑇 𝑎𝑛𝑑 𝑅𝐸𝐶𝑠 𝑟𝑒𝑣𝑒𝑛𝑢𝑒

   Eq 8 

3.2 Physical Parameters 

This problem requires the definition of a subsurface model to simulate temperature decline, a binary power plant model to simulate the 

geofluid consumption and reinjection fluid conditions, and a thermal storage model to simulate heat losses and thermodynamic equilibrium 
across the surface storage tank. Whereas we adopted conceptual models and correlations to simulate temperature decline and binary power 

plant efficiency, we built heat loss and thermodynamic equilibria models to simulate thermal storage. 

Because this problem of flexible generation does not involve wellhead throttling, then producer and injector mass flow rates 𝑚̇𝑡
𝑝𝑟𝑑

and 

𝑚̇𝑡
𝑖𝑛𝑗

, respectively, are held constant. Therefore, we can assume a percentage thermal drawdown model, where temperature decline based 

on an initial reservoir temperature and fixed decline rate 𝜌 across timesteps (Beckers and McCabe 2019). Neglecting wellbore heat losses, 
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Eq. 9 describes the producer wellhead temperature 𝑇𝑡
𝑝𝑟𝑑
 over time which is assumed to be identical across all producer wells. In this work, 

we assume 𝜌 = 0.005, reservoir true vertical depth of 4 km, surface temperature of 20° 𝐶, and geothermal gradient of 50 °𝐶/𝑘𝑚; hence, 

an initial reservoir temperature of 𝑇0
𝑟 = 220° 𝐶. 

𝑇𝑡+1
𝑝𝑟𝑑= (1− 𝜌) 𝑇𝑡

𝑝𝑟𝑑           Eq 9 

In modeling power plant thermodynamics, we considered a subcritical Organic Rankine Cycle (ORC) power plant modeled using 

correlations originally developed for GEOPHIRES, a geothermal project economics module produced by NREL scientists (Beckers and 

McCabe 2019). This correlation predicts the power plant geofluid consumption 𝜂𝑡
𝑝𝑝

 and reinjection water temperature 𝑇𝑡
𝑖𝑛𝑗

 for different  

combinations of wellhead temperature 𝑇𝑡
𝑝𝑟𝑑

 and ambient temperature 𝑇𝑡
𝑎𝑚𝑏. 

Tank heat losses at each timestep ∆𝑡 were computed based on heat transfer principles of conduction, convection, and radiation (Orsini et 

al. 2021; Lienhard and John 2005; Bergman et al. 2011). As seen in Figure 2, we considered an insulated steel tank of height 𝐻, diameter 

𝐷, top/bottom surface area 𝐴𝑟𝑜𝑜𝑓, sides surface area 𝐴𝑠𝑖𝑑𝑒𝑠, steel inner and outer radii 𝑟 {𝑖𝑛,𝑠𝑡} and 𝑟 {𝑜𝑢𝑡,𝑠𝑡}, insulation inner and outer radii 

𝑟 {𝑖𝑛,𝑖𝑛𝑠} and 𝑟 {𝑜𝑢𝑡,𝑖𝑛𝑠} , steel wall thickness 𝐿𝑠𝑡 , and insulation wall thickness 𝐿𝑖𝑛𝑠. The tank is assumed to have steady material temperature 

for small infinitesimally timestep ∆𝑡. At each ∆𝑡, we perform two steps: (1) heat transfer, and (2) thermodynamic equilibrium calculations . 

 

Figure 2: Insulated steel thermal storage tank, where heat losses are considered across the side and top/bottom walls. 

We first addressed the heat loss calculations using heat transfer principles. As seen in Eqs. 10-16, the conductive heat loss rate across the 

steel wall 𝑄̇𝑐𝑜𝑛𝑑,𝑠𝑡 is then equal to the conductive heat loss rate across the insulation wall 𝑄̇ 𝑐𝑜𝑛𝑑,𝑖𝑛𝑠, and also equal to the total convective 

𝑄̇𝑐𝑜𝑛𝑣 and radiative 𝑄̇ 𝑟𝑎𝑑 heat loss rates to the atmosphere (Note that we omit subscript 𝑡 for convenience). Conductive heat losses are 

driven by the thermal conductivity coefficients 𝑘𝑠𝑡  and 𝑘𝑖𝑛𝑠, and include those at the sides 𝑄̇ 𝑐𝑜𝑛𝑑,𝑖,𝑠𝑖𝑑𝑒𝑠, top 𝑄̇ 𝑐𝑜𝑛𝑑,𝑖,𝑡𝑜𝑝, and bottom 

𝑄̇𝑐𝑜𝑛𝑑,𝑖,𝑏𝑡𝑚 ∀  𝑖 ∈ {𝑠𝑡, 𝑖𝑛𝑠}. Also, convective 𝑄̇𝑐𝑜𝑛𝑣 and radiative 𝑄̇ 𝑟𝑎𝑑 heat loss rates are calculated as functions of 𝑇𝑎𝑚𝑏 and 𝐴𝑠𝑖𝑑𝑒𝑠 using 

the convective heat transfer coefficient 𝑢 and the Stefan-Boltzmann constant 𝜎, respectively. This is a system of two equations and two 

variables which we solve analytically to find 𝑇𝑠𝑡(𝑟𝑜𝑢𝑡,𝑠𝑡), 𝑇𝑖𝑛𝑠(𝑟𝑜𝑢𝑡,𝑖𝑛𝑠), and 𝑄̇𝑐𝑜𝑛𝑑,𝑠𝑡. Using the system heat loss rate, i.e. 𝑄̇𝑐𝑜𝑛𝑑,𝑠𝑡, we 

can finally calculate the tank temperature drop ∆𝑇𝑡𝑎𝑛𝑘 for a timestep ∆𝑡 using the water and steam isobaric specific heat capacities and 

mass inside the tank, i.e. 𝑐𝑤, 𝑐 𝑠, 𝑚𝑡𝑎𝑛𝑘,𝑤 and 𝑚𝑡𝑎𝑛𝑘,𝑠, respectively. 

𝑄̇𝑐𝑜𝑛𝑑,𝑠𝑡 = 𝑄̇𝑐𝑜𝑛𝑑,𝑖𝑛𝑠 = 𝑄̇𝑐𝑜𝑛𝑣 + 𝑄̇ 𝑟𝑎𝑑          Eq 10 

𝑄̇𝑐𝑜𝑛𝑑,𝑖 = 𝑄̇𝑐𝑜𝑛𝑑,𝑖,𝑠𝑖𝑑𝑒𝑠 + 𝑄̇𝑐𝑜𝑛𝑑,𝑖,𝑡𝑜𝑝+ 𝑄̇ 𝑐𝑜𝑛𝑑,𝑖,𝑏𝑡𝑚        Eq 11 

𝑄̇𝑐𝑜𝑛𝑑,𝑖,𝑠𝑖𝑑𝑒𝑠=
2𝜋𝐻𝑘𝑖[𝑇𝑖(𝑟𝑖𝑛,𝑖)−𝑇𝑖(𝑟𝑜𝑢𝑡,𝑖)]

ln
𝑟𝑜𝑢𝑡,𝑖

𝑟𝑖𝑛,𝑖

      ∀  𝑖 ∈ {𝑠𝑡, 𝑖𝑛𝑠}       Eq 12 

𝑄̇𝑐𝑜𝑛𝑑,𝑖,𝑗 =
𝐴𝑟𝑜𝑜𝑓𝑘𝑖[𝑇𝑖(𝑟𝑖𝑛,𝑖)−𝑇𝑖(𝑟𝑜𝑢𝑡,𝑖)]

𝐿𝑖
      ∀  𝑖 ∈ {𝑠𝑡, 𝑖𝑛𝑠}   𝑎𝑛𝑑    ∀  𝑗 ∈ {𝑡𝑜𝑝,𝑏𝑡𝑚}    Eq 13 

𝑄̇𝑐𝑜𝑛𝑣 = 𝐴𝑠𝑖𝑑𝑒𝑠𝑢 [𝑇𝑖𝑛𝑠(𝑟𝑜𝑢𝑡,𝑖𝑛𝑠) − 𝑇𝑎𝑚𝑏]        Eq 14 

𝑄̇𝑟𝑎𝑑 = 𝐴𝑠𝑖𝑑𝑒𝑠𝜎 [ 𝑇𝑖𝑛𝑠(𝑟𝑜𝑢𝑡,𝑖𝑛𝑠)
4
 − (𝑇𝑎𝑚𝑏)4]        Eq 15 

∆𝑇𝑡𝑎𝑛𝑘=
𝑄̇𝑐𝑜𝑛𝑑,𝑠𝑡  ∙ ∆𝑡

𝑐𝑤 𝑚𝑡𝑎𝑛𝑘,𝑤+𝑐𝑠 𝑚𝑡𝑎𝑛𝑘,𝑠
         Eq 16 

In modeling heat losses, we require knowledge of water and steam mass inside the tank at each timestep. Hence, we also need to run flash 
calculations to establish thermodynamic equilibrium, and account for energy and mass balance with respect to the tank. As seen in 

(𝑚𝑡+∆𝑡
𝑤  ℎ𝑡+∆𝑡

𝑤 + 𝑚𝑡+∆𝑡
𝑠  ℎ𝑡+∆𝑡

𝑠 )− (𝑚𝑡
𝑤 ℎ𝑡

𝑤+𝑚𝑡
𝑠  ℎ𝑡

𝑠) = (𝑚̇𝑡
𝑐ℎ𝑎𝑟𝑔𝑒ℎ𝑡

𝑐ℎ𝑎𝑟𝑔𝑒− 𝑚̇𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒ℎ𝑡

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒− 𝑄̇𝑡
𝑐𝑜𝑛𝑑,𝑠𝑡) ∆𝑡  Eq 17, we use 

control volume around the tank over each timestep ∆𝑡 and account for the enthalpy flow in/out of the tank, enthalpy accumulation, and 

heat losses. As seen in Eq. 18, we similarly formulate the mass balance around the storage tank. Given the tank volume 𝑉 𝑡𝑎𝑛𝑘, we must 
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also establish thermodynamic water-steam equilibrium after each timestep ∆𝑡 by accounting for the two-phase specific volume 𝜈 and 

steam quality 𝑥, seen in Eqs 19-20. Note that enthalpy ℎ𝑡 and specific volume 𝜈𝑡 are implicitly estimated using steam tables (Holmgren 

2006) as functions of 𝑇𝑡
𝑡𝑎𝑛𝑘 which also changes over time. Finally, we solve for 𝑚𝑡+∆𝑡

𝑤 , 𝑚𝑡+∆𝑡
𝑠 , and 𝑇𝑡+∆𝑡

𝑡𝑎𝑛𝑘. This is solved iteratively by 

minimizing the sum of squared residuals of the system equations (Virtanen et al. 2020; Garbow 1984).  

(𝑚𝑡+∆𝑡
𝑤  ℎ𝑡+∆𝑡

𝑤 + 𝑚𝑡+∆𝑡
𝑠  ℎ𝑡+∆𝑡

𝑠 )− (𝑚𝑡
𝑤 ℎ𝑡

𝑤+𝑚𝑡
𝑠  ℎ𝑡

𝑠) = (𝑚̇𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

ℎ𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

− 𝑚̇𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

ℎ𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

− 𝑄̇𝑡
𝑐𝑜𝑛𝑑,𝑠𝑡) ∆𝑡  Eq 17 

(𝑚𝑡+∆𝑡
𝑤 +𝑚𝑡+∆𝑡

𝑠 )− (𝑚𝑡
𝑤 +𝑚𝑡

𝑠 ) = (𝑚̇𝑡
𝑐ℎ𝑎𝑟𝑔𝑒− 𝑚̇𝑡

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒) ∆𝑡        Eq 18 

𝜈𝑡+∆𝑡 
𝑡𝑎𝑛𝑘=

𝑉𝑡𝑎𝑛𝑘

𝑚𝑡+∆𝑡
𝑤 +𝑚𝑡+∆𝑡

𝑠           Eq 19 

𝑥𝑡+∆𝑡 =
𝑚𝑡+∆𝑡
𝑠

𝑚𝑡+∆𝑡
𝑤 +𝑚𝑡+∆𝑡

𝑠 =
𝜈𝑡+∆𝑡 
𝑡𝑎𝑛𝑘− 𝜈𝑡+∆𝑡 

𝑤

𝜈𝑡 +∆𝑡 
𝑠 + 𝜈𝑡+∆𝑡 

𝑤          Eq 20 

3.3 Optimization Algorithm 

The objective is to maximize a profit function 𝑓(𝒙) by solving for the optimal static and temporal decision variables 𝒙 = [𝒙𝒔𝒕𝒂𝒕𝒊𝒄,
𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍]. Whereas 𝒙𝒔𝒕𝒂𝒕𝒊𝒄 belongs to a low-dimensional space, 𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍 belongs to an infeasibly high-dimensional space where each 

temporal physical quantity is associated with a total number of timesteps 𝑇 =  30 ⋅ 8,760 = 262,800 timesteps. Therefore, we introduced 

a technique to reversibly reduce the space of 𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍 through optimizing a data-driven encoder-decoder transformation (Michalewicz  

and Fogel 2013). 

As seen in Figure 3 and Eq. 21, considering a temporal quantity "𝑖", we hypothesize that the corresponding optimal decision vector 

𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍,𝒊
∗  can be expressed through a functional transformation ℛ(⋅;𝑊𝑖), parametrized with 𝑊𝑖, of independent and known temporal 

state variables denoted by 𝒑 ∈ ℝ𝑇 ×𝑘. Note that 𝑘 represents the number of those independent and known variables, which in this problem 

are [𝑝𝑅𝑇, 𝑝𝐶𝑎𝑝, 𝑝𝑅𝐸𝐶]. The choice of ℛ(⋅;𝑊𝑖) should be parametrizable in a low-dimensional space dim(𝑊𝑖) ≪ dim (𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍,𝒊),  
sufficiently expressive, and computationally inexpensive. As seen in Eqs. 22-23, because we are mapping temporal quantities with varying 

frequencies, we chose ℛ as a sequence of parameter-free empirical mode decomposition (𝐸𝑀𝐷𝑑1) with 𝑑1 modes where 𝐸𝑀𝐷𝑑1(𝒑) ∈

ℝ𝑇 ×(𝑘𝑑1), and a two-layer feedforward neural network parameterized with 𝜃𝑖
(1) ∈ [−1,1](𝑘𝑑1)×𝑑2 and  𝜃𝑖

(2) ∈ [−1,1]𝑑2, where 𝑘,𝑑1, 𝑑2 ∈
ℕ. Note that we also introduced rescaling and thresholding factors 𝛼𝑖, 𝛽𝑖 ∈ ℝ, respectively. Hence, the goal is to solve for 𝒙𝒔𝒕𝒂𝒕𝒊𝒄

∗  and 𝑊𝑖
∗ 

to find 𝒙∗. In other words, we reduced the dimensionality for each temporal physical quantity to 𝑑2(𝑘𝑑1 +1) +2 = dim(𝑊𝑖) ≪
dim(𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍,𝒊) = 𝑇 = 262,800. In this study, we chose 𝑑1 = 𝑑2 = 5 and 𝒑 = [𝑝𝑅𝑇] ∈ ℝ𝑇 , hence 𝑘 = 1, because the wholesale real-

time market is the primary driver of the dispatch schedule in our settings. Note that we adopted the PyEMD implementation of 

𝐸𝑀𝐷𝑑1(Laszuk 2017). 

𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍,𝒊
∗  ≈ ℛ(𝒑;𝑊𝑖

∗)          Eq 21 

𝑅𝑒𝐿𝑈𝛽(𝑦) = {
𝑦;   𝑦 > 𝛽

0;   𝑦 ≤ 𝛽
          Eq 22 

𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍,𝒊=  ℛ(𝒑; 𝑊𝑖) = αi ⋅ 𝑅𝑒𝐿𝑈𝛽𝑖 (𝑅𝑒𝐿𝑈0 (𝐸𝑀𝐷𝑑1(𝒑) ⋅ 𝜃𝑖
(1)) ⋅ 𝜃𝑖

(2))     Eq 23 

 

Figure 3: Optimization framework showing the data-driven encoder-decoder transformation (EMD and neural network) as 

means of dimensionality reduction. 

Beyond decision variables, we also consider bound, equality, and inequality constraints on physical quantities to satisfy conservation laws, 

but we do not constrain sales to the power market. To ease the optimization problem, we satisfy equality and inequality constraints of 
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physical constraints (e.g., TES tank volumetric limits, battery dis/charge rates, turbine capacity, etc.) within the integrated flexible 
geothermal system simulation module. Hence, aside from bound constraints, this becomes an unconstrained optimization problem. We 

used genetic algorithms as gradient-free global optimization solvers (Mitchell 1998). However, when solely optimizing for 𝑁𝑃𝑉, finding 

the global optima in a highly nonlinear setting with multiple interdependent decision variables can be difficult. During the first few 

optimization iterations, the dispatch schedule 𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍 is far from optimal; hence, the optimizer tended to dismiss the installation of the 

costly TES and battery storage facilities and simply operates in baseload mode, which could be a local optimum. This problem persisted 

in single-objective optimization even with more significant and frequent mutation transformations because dim(𝒙𝒔𝒕𝒂𝒕𝒊𝒄)≪
dim(𝒙𝒕𝒆𝒎𝒑𝒐𝒓𝒂𝒍). As a solution, we posed this problem as a dual-objective optimization, where we optimize over 𝑁𝑃𝑉 and Net Income.  

This encourages exploration of various system designs despite high upfront cost, which often involves storage. Additionally, noting that 

capital expenditure 𝐶𝐴𝑃𝐸𝑋 = 𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 −𝑁𝑃𝑉 , this approach allows for systematically exploring the 𝑁𝑃𝑉 versus 𝐶𝐴𝑃𝐸𝑋 Pareto 

front during optimization. Finally, we solved this mixed-integer, dual-objective optimization problem using the Reference-Point Based 

Non-Dominated Sorting Genetic Algorithm (R-NSGA-II) which provides robust means of efficiently finding global optima (Deb and 

Sundar 2006). We adopted the pymoo implementation of R-NSGA-II (Blank and Deb 2020). 

4. CASE STUDY 

To evaluate the techno-economics of a 30-year flexible geothermal system coupled with storage in California, we mainly require forecasts 

for the wholesale, capacity and REC markets, and battery capital and operational expenses. We used a publicly accessible avoided cost 

calculator (ACC) developed by Energy and Environmental Economics, Inc. (E3 2022) which spans 2021-2050 for the California trading 

hub NP15. To conduct an evaluation with respect to potential future investments in geothermal and storage systems, we considered a 

project launched in 2025 with a 30-year financial lifetime. To fully span the project lifetime of 2025-2055, we linearly extrapolated the 
2022 E3 ACC market forecasts based on yearly growth/decline to cover the period of 2050-2055. As it is atypical to forecast RECs market 

value, it can be substituted for the carbon cap and trade value which is forecasted in the 2022 E3 ACC calculator. As seen in Figure 4, RT 

LMPs and REC values both depict a “duck curve” behavior with varying trends over years due to the forecasted expansion in solar and 

storage capacity. Figure 5 demonstrates the respective forecasts for the capacity market and battery ELCC. We note that capacity value is 

relatively high in the first few years and declines continuously to zero. This is because the 2022 E3 ACC model bases capacity value on 
battery capacity expansion in California, which is forecasted to increase significantly resulting in diminishing capacity values in the 

presence of wholesale and REC markets depicted in Figure 4. Lithium-ion battery ELCC is forecasted to also diminish as battery power 

capacity increases in the California power system. Note that battery ELCC in today’s California market is about 90%.  

 

Figure 4: Annual average hourly price forecasts for the RT (left) and REC (right) markets based on the 2022 E3 ACC model. 
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Figure 5: Annual capacity value (left) and battery ELCC (right) forecasts based on the 2022 E3 ACC model. 

In the 2022 E3 ACC models, Lithium-ion battery is characterized with 20 years lifetime and 84% roundtrip efficiency. Figure 6 shows 

forecasts for battery capital expenditure which is calculated based on its energy and power components, where each is associated with a 
corresponding cost. Additionally, interconnection cost is included to account for connecting the added battery power capacity to the 

electricity grid. We observe that battery capital expenditure is forecasted to drop significantly, which is closely aligned with recent battery 

cost projections published by NREL (Cole et al. 2021). Furthermore, we also consider annual fixed costs for maintenance in addition to 

replacement and augmentation costs which account for maintaining the battery to run with the same efficiency throughout its lifetime. 

Figure 7 provides a simplified comparison of capacity revenue and battery capital and operational expenditure, and how much net income 
from the energy market, including both RT and REC, is required to break even across. This analysis is expressed in nominal USD per 

MWh installed; hence, it is independent of battery power capacity installed. Capacity revenue per MWh and required overall net income 

are both inversely proportional to battery duration. They are dominated by power capacity in ranges of low battery durations and dominated 

by energy capacity in ranges of higher battery durations. Eventually, the required overall net income converges to the energy cost for each 

corresponding year while the capacity revenue per MWh converges to zero with sufficiently large battery duration designs. With these 
observations, we can analyze the net income required from the energy market, including both RT and REC prices. In this setting, the 

reader may assume that the battery is a standalone unit that follows near optimal daily arbitrage trades where it is charged and discharged 

during the lowest and highest prices hours, respectively , every day. In years as early as 2025, a battery unit with less than about 3-hours 

in duration already records positive annual cashflow even without potential profits from energy markets. However, in later years, the 

required daily arbitrage margin grows significantly to infeasible magnitudes over years as the capacity value approaches zero and 
decreases at rates faster than the decrease in battery power and energy costs. Meanwhile, with significantly large durations, the required 

energy market net income also approaches the energy capacity cost for the corresponding year given the negligible capacity revenue per 

MWh installed of battery energy capacity. 

 

Figure 6: Annual battery power and energy capital costs including interconnection (left), and replacement and augmentation 

forecast (right). 
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Figure 7: Analysis of how much net income in nominal USD per MWh installed of Lithium-ion battery is required from the energy 

market, including both RT and REC prices, for an investment in battery power capacity to break even. This is shown for different 

duration designs and annual forecasts of capacity value and battery capital and operational expenditure. 

Additionally, we retrieved the 2021 weather conditions around the California Bay Area and assumed this weather repeats annually for the 

project lifetime. Particularly, ambient temperature is important as an input into the power plant module which determines the efficiency  

of converting thermal energy to electricity. Also, we considered other technical and financial parameters which are needed to complete 

this setup. We considered a subsurface geothermal system with reservoir true vertical depth of 4 km, surface temperature of 20° 𝐶, and 

geothermal gradient of 50 °𝐶/𝑘𝑚; hence, an initial reservoir temperature of 𝑇0
𝑟 = 220° 𝐶. The resource was developed with six producers 

and six injectors with steady-state producer wellhead mass flow rate of 𝑚̇𝑡
𝑝𝑟𝑑 = 100 𝑘𝑔/𝑠 and capacity factor 𝐶𝐹 = 95%. Financially, 

we considered inflated nominal discount rate of 11%, 𝐼𝑇𝐶 of 30% and no 𝑃𝑇𝐶, upstream 𝑂𝑃𝐸𝑋 of 4 $𝑀𝑀/𝑦𝑒𝑎𝑟, 2% 𝑂𝑃𝐸𝑋 annual 

escalation, power plant 𝐶𝐴𝑃𝐸𝑋 of 2250 $/𝑘𝑊, power plant interconnection cost of 260 $/𝑘𝑊, and TES tank 𝐶𝐴𝑃𝐸𝑋 of 1435  $/𝑚3 

(E3 2022; Orsini et al. 2021; Beckers and McCabe 2019).  

If operated in baseload mode with no storage facilities, then 𝑃𝑃𝐶  is the only decision variable which is optimal at 66 MW, which yields 

𝐿𝐶𝑂𝐸  of 51.4 $/𝑀𝑊ℎ. Table 1 shows NPV and equivalent 𝑃𝑃𝐴  price for various optimized system configurations. An optimal baseload 
design with 66 MW PPC yields 189.2 $MM, equivalently 82.4 $/MWh PPA, which is higher than the historical average PPA price of 

around 70 $/MWh. This result indicates that a baseload geothermal developer in California could profit more from participating in the 

free market rather than seeking and signing an average PPA. The flexible bypass configuration does not require optimization as it is set 

up such that the operator controls the geofluid to bypass the power plant only when 𝑝𝑡
𝑅𝑇 <  −𝑝𝑡

𝑅𝐸𝐶. These scenarios are infrequent in the 
considered forecasts; hence, we only see marginal improvement in NPV to 190.7 $MM, equivalently 82.7 $/MWh PPA. Nevertheless, the 

capability to bypass could prevent losses in markets with more negative pricing and/or settings with frequent contingent curtailment  

requirements due to system operational issues, e.g., transmission line congestion.  

Table 1: Optimal NPV in $MM for baseload and flexible generation systems compared to typical PPA contract prices . 

Additionally, we show the equivalent fixed PPA price in $/MWh that would need to be signed to achieve an equivalent NPV. 

Configuration 
Baseload  

66 MW PPC 

Flexible  

Bypass  

Flexible  

Bypass + TES  

Flexible  

Bypass + Battery 

NPV ($MM) 189.2 190.7 190.7 309 

Equivalent PPA 

Price [$/MWh] 
82.4 82.7 82.7 105 
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Next, we maintained the option to bypass and introduced storage facilities: TES tank and Lithium-ion battery storage independently. In 
the case of bypass and TES configuration, the optimizer converged to discarding TES and simply operating as it would with a flexible 

bypass configuration, again equivalently yielding 82.7 $/MWh PPA. TES tanks are less favorable because they still require excess turbine 

capacity to convert their thermal energy content into usable power. While the power plant could be oversized to allow for dispatching the 

TES tank content during on-peak hours, the optimizer found this design choice to be suboptimal. Furthermore, TES tanks do not earn 

capacity value. Rather, TES tanks are anticipated to hold significant value for flexible geothermal generation in direct -use applications, 
e.g., district heating. In the configuration of bypass and Lithium-ion battery storage, the optimizer arrived at an optimal design that is 

significantly superior to other configurations with 309 $MM NPV, equivalently 105 $/MWh PPA. Particularly, the optimizer exploits the 

considerably high battery capacity value in the first few years as well as the arbitrage opportunity in energy markets. The optimizer chose 

to reduce the power plant nameplate capacity to 64 MW, and only install a single battery, spanning 2025-2045, with 1-hour duration and 

1424 MW power capacity. The 1-hour duration design is demonstrated in Figure 7 while the high power capacity is aimed for the arbitrage 
opportunity, seen in Figure 4 as the difference between off-peak and on-peak energy prices, which the optimizer converged to as we 

selectively assume unconstrained demand in both the energy and capacity markets. While we could have constrained demand, this would 

require a detailed investigation of the forecasted market dynamics  

We performed further analysis to understand the techno-economics and rationale behind the optimal decision vector for TES and Lithium-

ion battery configurations. While it is a valid objective, 𝑁𝑃𝑉 alone as a quantity does not provide information on the required upfront 

investment. Rather, a developer is interested in the 𝑁𝑃𝑉 versus 𝐶𝐴𝑃𝐸𝑋 Pareto front to learn how much capital needs to be raised for an 

anticipated net income. This curve is generated automatically as part of our optimization setup as we already treat this problem as a dual-

objective optimization, where we optimize over 𝑁𝑃𝑉 and Net Income. Additionally, the optimizer of choice R-NSGA-II makes use of the 

Pareto fronts as one ranking criterion to elect surviving candidates in the genetic offspringing process. Figure 9 show the Pareto fronts 
generated for the configurations of bypass and battery (top), and bypass and TES (bottom). We provide two views of each: zoomed out 

(left) and zoomed in (right). With Lithium-ion battery storage, the first few optimization iterations are associated with highly negative 

NPV due to installing high battery capacities with poor dispatch schedule. Meanwhile, the Pareto front is evident in the zoomed-in plots 

where the optimizer tends to elect and mutate candidates falling on the Pareto front. These plots also show fewer capital-intensive 

candidates that fall on the Pareto front, despite having smaller 𝑁𝑃𝑉 as a tradeoff. Meanwhile, the TES configuration falls on a single 

front, representing the Pareto front because it is constrained by the capacity of the turbine. 

 

Figure 8: Pareto front of NPV versus Net Income (i.e., optimization objective quantities) for different candidate decision vector 

in the R-NSGA-II optimization sessions. Top and bottom rows represent the configurations of bypass and battery, and bypass 
and TES, respectively. Left and right columns represent zoomed out and zoomed in plots, respectively. Each candidate point is 

colored based on when it was evaluated during the optimization process. 
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Figure 9: Pareto front converted to a plot of NPV versus CAPEX for different candidate decision vector in the R-NSGA-II 

optimization sessions. Top and bottom rows represent the configurations of bypass and battery, and bypass and TES, respectively. 

Left and right columns represent zoomed out and zoomed in plots, respectively. Each candidate point is colored based on when it 

was evaluated during the optimization process.  

We also looked deeper into the configuration of bypass and Lithium-ion battery and visualized the system operations hourly. As seen in 
Figure 10-11, we show two weeks selected in the first and last years of operations, 2025 and 2054, respectively, to demonstrate various 

system behaviors. Figure 10 shows the year 2025 where we have a Lithium-ion battery installed. The optimized schedule depicts arbitrage 

opportunity trading behavior where the battery is charged and discharged during the lowest and highest LMP, respectively, almost daily. 

We also note that the chosen battery energy capacity 1424 MWh is optimally exploited by the dispatch where SOC spans 0-100% without 

signs of under- or over-sized battery energy capacity. Furthermore, we note how cumulative capacity revenue (area under the curve) is 
significantly greater than wholesale RT and RECs market revenues during the year 2025 because of the high capacity price forecasts 

shown in Figure 5. Toward the end of project lifetime, Figure 11 shows how the system is operating with no battery storage capacity as 

the optimizer elected to only install a single battery unit whose 20-year lifetime ends by 2045. This choice is justified by zero capacity 

value during these years of the forecast. Hence, the total power output in this case is simply that of the power plant. We can observe that 

the optimizer chooses to bypass in cases where 𝑝𝑡
𝑅𝑇 < −𝑝𝑡

𝑅𝐸𝐶. Also, we note that the system output is capped just below 40 MW (only 

62.5% of the installed 64 MW 𝑃𝑃𝐶 ), which depicts reservoir depletion over time. Additionally, the system power output oscillates between 

day and night hours because of the oscillating ambient temperature which affects the power plant efficiency. 
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Figure 10: Hourly operational details of the bypass and battery configuration for a selected week in 2025. From top to bottom, 

these seven subplots show (1) market prices, (2) ambient temperature, (3) power sold to the market as generated directly from 

either turbine and battery, (4) geofluid mass flow rates segmentation as either used to generate power sold to the market directly 

(M_Market), used to generate power used to charge the battery (M_Battery), or bypassed to reinjection (M_Bypass), (5) battery 

charge and discharge rates, (6) battery SOC, and (7) revenue from wholesale RT, RECS, and capacity markets.  

 

 

Figure 11: Hourly operational details of the bypass and battery configuration for a selected week in 2054. From top to bottom, 

these seven subplots show (1) market prices, (2) ambient temperature, (3) power sold to the market as generated directly from 

either turbine and battery, (4) geofluid mass flow rates segmentation as either used to generate power sold to the market directly 
(M_Market), used to generate power used to charge the battery (M_Battery), or bypassed to reinjection (M_Bypass), (5) battery 

charge and discharge rates, (6) battery SOC, and (7) revenue from wholesale RT, RECS, and capacity markets. 
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3. CONCLUSIONS  

In this work, we investigated the techno-economic viability of dispatching geothermal resources directly to the California power market 

in trading hub NP15, in the absence of a fixed-price PPA. We also investigated the techno-economic viability of flexible geothermal 

dispatch through means of turbine bypass, TES tank, and Lithium-ion battery storage. Economics was based on the 2022 E3 ACC model 

forecast of the wholesale RT, capacity, and REC markets. Results indicate that an optimal design with baseload dispatch to the free-market 

yields NPV equivalent to operating under an 82.4 $/MWh PPA. Meanwhile, incorporating Lithium-ion battery storage and switching to 
an optimized flexible dispatch was found to yield significant improvements in NPV, equivalent to operating under a 105 $/MWh PPA. 

This demonstrates the potential of geothermal energy to profit from the free market, with enhanced profits if operated flexibly by the 

developer/operator. Flexible operations are also much needed in decarbonized grids that are largely penetrated by intermittent renewable 

resources, such as the California electricity grid. 

4. LIMITATIONS AND FUTURE WORK 

We adopted a simplified conceptual geothermal reservoir model which could be, without loss of computational efficiency , substituted 

with a more involved analytical model. On the power market side, we used the 2022 E3 ACC forecasts to estimate the energy, renewable, 

and capacity values of the proposed flexible geothermal system. However, taking full revenue from these forecasts assumes market 

dynamics where net-positive power generators like the proposed system are uncommon. Additionally, using deterministic forecasts does 

not capture the uncertainty underlying market revenues, which stems from market price and bidding process uncertainties. Future work 
could incorporate a power market simulator to forecast multiple potential realizations and capture the uncertainty underlying the 

profitability of the proposed system. 
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